Supplemental Materials for

The NOX4 pathway as a source of selective insulin resistance and responsiveness

Xiangdong Wu and Kevin Jon Williams

From the Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine (XW & KJW) and the Cardiovascular Research Center, Department of Physiology (KJW), Temple University School of Medicine, Philadelphia, PA USA.

Correspondence to:
Kevin Jon Williams, M.D.
Professor of Medicine
Chief, Section of Endocrinology, Diabetes, & Metabolism
Temple University School of Medicine
3322 North Broad Street
Medical Office Building, Room 212
Philadelphia, PA 19140 USA
Tel.: (215)707-4746; FAX: (215)707-5599
eMAIL: kjwilliams@temple.edu.
Supplemental Background

Prior literature has documented major site-specific phosphorylations and functions in the AKT limb of insulin receptor signaling (see Figure 1). Insulin-stimulated phosphorylation of FOXO1 has been reported at Thr24, a key site normally phosphorylated by activated AKT, leading to exclusion of FOXO1 from the nucleus\(^1\) and arresting its activity as a transcription factor for apoC-III and gluconeogenic genes.\(^2\text{-}^5\)

The AKT limb also affects several molecules involved in lipogenesis. The AKT target site on glycogen synthase kinase-3β (GSK3β) is Ser9.\(^6\) Phosphorylation by AKT inactivates GSK3,\(^6\) and may thereby block this factor from inhibiting ACL, a key enzyme in fatty acid, cholesterol, and new glucose biosynthesis,\(^7,^8\) as well as glycogen synthase. Insulin induces activation and site-specific serine-phosphorylation of a second enzyme in fatty acid biosynthesis, acetyl-CoA carboxylase-1 (ACC).\(^9,^{10}\) The effect of phosphorylation of ACC at Ser79 on its activity in vitro remains an open question,\(^11\) whereas in vivo, T2DM increases hepatic ACC activity and Ser79-phosphorylation together.\(^12\) We infer that overphosphorylation at Ser79 in T2DM liver in vivo could be driven by hyperinsulinemia in combination with continued responsiveness of this portion of the insulin receptor-AKT signaling cascade.

Another lipogenic target of AKT is the mammalian target of rapamycin complex-1 (mTORC1), which is activated in the tissues of obese mice.\(^13,^{14}\) This complex has two AKT-dependent inputs: PRAS40\(^15\) and TSC2.\(^16,^{17}\) Insulin stimulates AKT to phosphorylate PRAS40\(^15,^{18}\) at Thr246.\(^19\) Insulin-stimulated phosphorylation of TSC2 occurs at a key site acted on by AKT, Thr1462.\(^20\) Insulin-induced mTORC1 activity can be assessed by the phosphorylation of one of its substrates – namely, the ribosomal protein S6 kinase 1 (S6K1), an enzyme that desensitizes IRS1 in states of overnutrition and obesity (reference\(^21\) and Figure 1). Activated mTORC1 induces \textit{Srebp1c} mRNA, which encodes a major insulin-responsive transcription factor in lipogenesis.\(^22\text{-}^{26}\) Activated mTORC1 might also increase lipogenesis through induction of ER stress\(^17\) and hence
cleavage and activation of the SREBP1c protein. All of these effects are displayed schematically in Figure 1.

Pathways of interest that are not in Figure 1 include suppression of Irs2 mRNA by insulin; insulin-induced activation of mitogen-activated protein kinases in addition to ERK1,2; our sequence analysis of NOX4 and subsequent inference that NOX4 in cholesterol-rich caveolae could contribute to the putative generation of oxysterol ligands for LXR after insulin stimulation (Methods); inhibition of GLUT translocation by activated mTORC1; insulin-stimulated production of the vasodilator NO via activated AKT and of the vasoconstrictor endothelin-1 via activated ERK; direct effects of activated PI3K on ER stress; insulin-stimulated phosphorylation and inhibition of FOXA2, a transcriptional factor that otherwise drives the expression of genes encoding enzymes of fatty acid oxidation, ketogenesis, and glycolysis; insulin-induced cleavage and activation of SREBP1c protein via PI3K; ERK-mediated phosphorylation of SREBP1c at Ser93, which enhances transactivation of its target genes; the ability of activated MEK to bind, inhibit, and provoke the expulsion of PPARγ from the nucleus; and effects of insulin on sympathetic activity, renal sodium excretion, ERK-mediated phosphorylation and activation of the Na⁺/K⁺ ATPase, coagulation, expression of matrix metalloproteinases, and secretion of apoB-containing lipoproteins.
Supplemental References

44. Atchley DW, Loeb RF, Richards DW, Benedict EM, Driscoll ME. On diabetic acidosis: A detailed study of electrolyte balances following the

Supplemental figure legends

Supplemental Figure I: Type 2 diabetes renders the liver unable to inactivate PTP1B in response to insulin.

Displayed are PTP1B activities from the same liver samples as in Figure 2, which were obtained just before (*Pre*) and 10min after (*Post*) an intravenous injection of insulin into lean *db/m* mice (controls) and their hyperphagic, obese T2DM *db/db* littermates, as indicated. PTP1B activities in liver homogenates were assayed under strictly anaerobic conditions (mean±SEM, n=3). Statistical comparisons by the paired *t*-test are indicated.

Supplemental Figure II: Type 2 diabetes impairs a key insulin-stimulated hypolipidemic and hypoglycemic pathway in liver, yet preserves lipogenic pathways and robust ERK activation.

Displayed are immunoblots from the same liver samples as in Figure 2, which were obtained just before (*Pre*) and 10min after (*Post*) an intravenous injection of insulin into lean *db/m* mice (controls) and their hyperphagic, obese T2DM *db/db* littermates, as indicated. **Panel A**: Resistance of FOXO1 to insulin-stimulated phosphorylation in T2DM *db/db* livers compared to control *db/m* livers (*TG-rich lipoprotein clearance* and *Gluconeogenesis* pathways from Figure 1), yet continued responsiveness of GSK3β (*Lipogenesis-I* pathway from Figure 1). **Panel B**: Continued activation of molecules upstream (PRAS40) and downstream (S6K1) of mTORC1 in T2DM *db/db* livers (*Lipogenesis-D* pathway from Figure 1). The 70-kDa isoform of S6K1 is indicated. **Panel C**: Continued responsiveness of ERK to insulin-stimulated phosphorylations in T2DM *db/db* livers (*pT202-ERK, pY204-ERK*). Immunoblots for total (*t*-), meaning phosphorylated plus unphosphorylated) amounts of each target protein are shown for each sample. Numbers over the lanes refer to individual animals.
Supplemental Figure III: Inhibition of NOX4 in primary rat hepatocytes impairs the ability of insulin to suppress *Irs2* mRNA levels. Displayed are mRNA quantifications from the same set of cultured hepatocytes as in Figure 5A-C. As indicated, primary rat hepatocytes were pretreated with 0 (vehicle) or 1.0 µM DPI (an inhibitor of NOX4), exposed to 0 or 10nM insulin for 6 h, and then harvested. Displayed are *Irs2* mRNA levels normalized to *ß-actin* mRNA levels (∆Ct) and then expressed relative to the mean value from the cells that had been incubated with neither DPI nor insulin ($2^{-\Delta\Delta C_{t}}$; mean±SEM, n=4). P<0.001 by ANOVA; columns labeled with different lowercase letters (a, b, c) are statistically different by the Student-Newman-Keuls test (P<0.01).
Supplemental Table I: Antibodies against target proteins.

<table>
<thead>
<tr>
<th>Target Protein</th>
<th>Epitope</th>
<th>Supplier/ Catalog Number</th>
<th>Description</th>
<th>Molecular weight of target protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>p-ACC</td>
<td>Cell Signaling #3661</td>
<td>Rabbit polyclonal antibody (Ab) against acetyl-CoA carboxylase that is phosphorylated at Ser79</td>
<td>280 kDa</td>
</tr>
<tr>
<td></td>
<td>t-ACC</td>
<td>Cell Signaling #3676</td>
<td>Rabbit monoclonal antibody (mAb) against total acetyl-CoA carboxylase (phosphorylated and non-phosphorylated)</td>
<td>280 kDa</td>
</tr>
<tr>
<td>AKT</td>
<td>pT308-AKT</td>
<td>Cell Signaling #4056</td>
<td>Rabbit mAb against AKT phosphorylated at Thr308</td>
<td>60 kDa</td>
</tr>
<tr>
<td></td>
<td>pS473-AKT</td>
<td>Cell Signaling #4051</td>
<td>Mouse mAb against AKT phosphorylated at Ser473</td>
<td>60 kDa</td>
</tr>
<tr>
<td></td>
<td>t-AKT</td>
<td>Cell Signaling #2920</td>
<td>Mouse mAb against total AKT (phosphorylated and non-phosphorylated; clone 40D4)</td>
<td>60 kDa</td>
</tr>
<tr>
<td>ß-actin</td>
<td>ß-actin</td>
<td>Cell Signaling #3700</td>
<td>Mouse mAb against ß-actin</td>
<td>45 kDa</td>
</tr>
<tr>
<td>ERK</td>
<td>pT202-ERK</td>
<td>Cell Signaling #4376</td>
<td>Rabbit mAb against Erk1/2 that is phosphorylated at Thr202, regardless of the status of Tyr204</td>
<td>42, 44 kDa</td>
</tr>
<tr>
<td></td>
<td>pY204-ERK</td>
<td>Cell Signaling #4377</td>
<td>Rabbit mAb against Erk1/2 that is phosphorylated at Tyr204, regardless of the status of Thr202</td>
<td>42, 44 kDa</td>
</tr>
<tr>
<td></td>
<td>t-ERK</td>
<td>Cell Signaling #4695</td>
<td>Rabbit mAb against total ERK1/2, also known as the P44/42 mitogen-activated protein kinase</td>
<td>42, 44 kDa</td>
</tr>
<tr>
<td>FOXO1</td>
<td>t-FOXO1</td>
<td>Cell Signaling #9454</td>
<td>Rabbit polyclonal Ab against total FOXO1 (used here for immunoprecipitation)</td>
<td>78 to 82 kDa</td>
</tr>
<tr>
<td></td>
<td>pT24-FOXO1</td>
<td>Cell Signaling #9464</td>
<td>Rabbit polyclonal Ab against FOXO1 phosphorylated at Thr24 or FOXO3A phosphorylated at Thr32</td>
<td>78 to 82, 95 kDa</td>
</tr>
<tr>
<td></td>
<td>t-FOXO1</td>
<td>Cell Signaling #2880</td>
<td>Rabbit mAb against total FOXO1 (used here for immunoblotting)</td>
<td>78 to 82 kDa</td>
</tr>
<tr>
<td>GSK3ß</td>
<td>pS9-GSK3ß</td>
<td>Cell Signaling #9322</td>
<td>Rabbit mAb against GSK3ß phosphorylated at Ser9</td>
<td>46 kDa</td>
</tr>
<tr>
<td></td>
<td>t-GSK3ß</td>
<td>Cell Signaling #9315</td>
<td>Rabbit mAb against total GSK3ß</td>
<td>46 kDa</td>
</tr>
<tr>
<td>NOX4</td>
<td>NOX4</td>
<td>LifeSpan Biosciences #LS-C33986</td>
<td>Rabbit polyclonal Ab against NOX4</td>
<td>67 kDa (isoform 1) 31.8 kDa (isoform 4)</td>
</tr>
<tr>
<td>PRAS40</td>
<td>pT246-PRAS40</td>
<td>Cell Signaling #2997</td>
<td>Rabbit mAb against PRAS40 phosphorylated at Thr246</td>
<td>40 kDa</td>
</tr>
<tr>
<td></td>
<td>t-PRAS40</td>
<td>Cell Signaling #2691</td>
<td>Rabbit mAb against total PRAS40</td>
<td>40 kDa</td>
</tr>
<tr>
<td>PTEN</td>
<td>PTEN</td>
<td>Cell Signaling #9188</td>
<td>Rabbit mAb against PTEN (used here for immunoprecipitation)</td>
<td>54kDa</td>
</tr>
<tr>
<td></td>
<td>PTEN</td>
<td>Cell Signaling #9556</td>
<td>Mouse mAb against PTEN (used here for immunoblotting)</td>
<td>54kDa</td>
</tr>
<tr>
<td>PTP1B</td>
<td>PTP1B</td>
<td>Santa Cruz sc-1718</td>
<td>Goat polyclonal Ab against PTP1B (used here for immunoprecipitation)</td>
<td>50kDa</td>
</tr>
<tr>
<td></td>
<td>PTP1B</td>
<td>Santa Cruz sc-1718-R</td>
<td>Rabbit polyclonal Ab against PTP1B (used here for immunoblotting)</td>
<td>50kDa</td>
</tr>
<tr>
<td>S6K1</td>
<td>pT389-S6K1 (70-kDa isoform)</td>
<td>Cell Signaling #9206</td>
<td>Mouse mAb against the 70-kDa isoform of S6 kinase-1 that is phosphorylated at Thr389</td>
<td>70, 85 kDa</td>
</tr>
<tr>
<td></td>
<td>t-S6K1</td>
<td>Cell Signaling #2708</td>
<td>Rabbit mAb against total S6K1</td>
<td>70, 85 kDa</td>
</tr>
<tr>
<td>SULF2</td>
<td>SULF2</td>
<td>Santa Cruz sc-68436 (Lot # C1905)</td>
<td>Rabbit polyclonal Ab against SULF2</td>
<td>72 kDa</td>
</tr>
<tr>
<td>TSC2</td>
<td>pT1462-TSC2</td>
<td>Cell Signaling #3617</td>
<td>Rabbit mAb against TSC2 (tuberin) phosphorylated at Thr1462</td>
<td>200 kDa</td>
</tr>
<tr>
<td></td>
<td>t-TSC2</td>
<td>Cell Signaling #4308</td>
<td>Rabbit mAb against total TSC2</td>
<td>200 kDa</td>
</tr>
</tbody>
</table>
Supplemental Table II: Primer and probe sequences for quantitative real-time PCR.

<table>
<thead>
<tr>
<th>Target mRNA</th>
<th>Forward primer</th>
<th>Reverse primer</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apoc3</td>
<td>5'-atg cag ggc tac atg gaa ca-3'</td>
<td>5'-cac agc tat atc aga ctc ct-3'</td>
<td>F-5'-tcc aag acg gtc cag gat gca ct-3'-Q</td>
</tr>
<tr>
<td>Irs2</td>
<td>5'-atg aac ctg gac ttc agt tct-3'</td>
<td>5'-atc cat gga gcc tac tgt gt-3'</td>
<td>F-5'-tcc ccc aag cct agc acc cgc-3'-Q</td>
</tr>
<tr>
<td>Pepck</td>
<td>5'-agt cac cat cac ttc ctg ga-3'</td>
<td>5'-cag aat cgc gag tgt gga tg-3'</td>
<td>F-5'-cg gtt cct cat cct gtg gtc tcc ac-3'-Q</td>
</tr>
<tr>
<td>Srebp1c</td>
<td>5'-gga gcc atg gat tgc aca tt-3'</td>
<td>5'-cat caa ata ggc cag gga ag-3'</td>
<td>F-5'-tg ctt cag ctc atc aac aac caa gac a-3'-Q</td>
</tr>
<tr>
<td>β-actin</td>
<td>5'-tgc ctg acg gtc agg tca-3'</td>
<td>5'-cag gaa gga agg ctg gaa g-3'</td>
<td>F-5'-ca cta tgc gca atg agc gtt tcc g-3'-Q</td>
</tr>
</tbody>
</table>

In the probe sequences, *F* and *Q* denote the positions of the FAM fluorophore and TAMRA quencher, respectively.
Supplemental Figure I

PTP1B Activity

(A410 of product per recovered enzyme)

Insulin: Pre db/m Post P<0.01 db/db Post NS

Supplemental Figure I
Supplemental Figure II-C

<table>
<thead>
<tr>
<th>Insulin: Mouse #</th>
<th>db/m Pre 1</th>
<th>db/m Post 2</th>
<th>db/m Post 3</th>
<th>db/db Pre 4</th>
<th>db/db Post 5</th>
<th>db/db Post 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT202-ERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-ERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pY204-ERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-ERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure III

Insulin (nM): 0 10 0 10

Vehicle DPI

$Irs2$ mRNA (normalized %)

0 20 40 60 80 100 120

\[\text{Vehicle}: \quad 0 \quad b \quad a \]

\[\text{DPI}: \quad 0 \quad 10 \quad c \]