Supplemental Figure I. SM-specific Akt2−/− mice exhibit severe intimal hyperplasia after vascular injury. (A-B) Akt2floxflox mice (Control) or SM-Akt2−/− mice were subjected to femoral artery wire injury. EVG-stained cryosections (left) and quantitation of intima/media (right) are shown at (A) 21, and (B) 7 days post-injury. Scale bars = 100 μm. Data are presented as mean ± SEM; **P<0.01, ***P<0.001
Suppl Figure II

A

WT

Akt2^-/-

Vehicle

Rapamycin

Vehicle

Rapamycin

% Ki67 Positive Cells

Vehicle Rap.

B

Control

SM-Akt2^-/-

Vehicle

Rapamycin

Vehicle

Rapamycin

% Ki67 Positive Cells

Vehicle Rap.

C

Control

SM-Akt2^-/-

Ki67 Positive Cells

Vehicle Rap.
Supplemental Figure II. *Akt2*^−/−^ and *SM-Akt2*^−/−^ mice exhibit increased, rapamycin-insensitive proliferation after vascular injury. (A) WT or *Akt2*^−/−^, (B-C) *Akt2*^flox/flox^ (Control) or *SM-Akt2*^−/−^ mice were subjected to femoral artery wire injury. Immunohistochemical staining for Ki67 at (A-B) 21, and (C) 7 days post-injury (left) and quantitation (right) are shown. Six different sections per mouse were quantified. (A-B: n=7, C: n=6 mice per group). Scale bar = 100μm. Data are presented as mean ± SEM; **P<0.01, ***P<0.001.
Supplemental Figure III. Fasting blood glucose in WT vs Akt2⁻/⁻ mice. A drop of blood was extracted from the mouse tail tip after 8 hour fasting. Blood glucose was measured using a glucometer. Age of mice in months is indicated on x axis. WT (6 months of age) n=4, Akt2⁻/⁻ n=3 at each age. Data are presented as mean ± SEM; *P<0.05, **P<0.01
Supplemental Figure IV. WT and Akt2\(^{-/-}\) mice exhibit similar level of ECM deposition after vascular injury. WT or Akt2\(^{-/-}\) mice were subjected to femoral artery wire injury for 21 days. Representative Masson’s Trichrome staining from two mice per group are shown. Scale bar = 100\(\mu\)m.
Suppl Figure V

A

<table>
<thead>
<tr>
<th></th>
<th>ACTA2</th>
<th>AKT2</th>
<th>Merged</th>
<th>EVG staining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-Akt2<sup>-/-</sup></td>
<td><img src="image5" alt="Image of ACTA2 expression in SM-Akt2<sup>-/-</sup>" /></td>
<td><img src="image6" alt="Image of AKT2 expression in SM-Akt2<sup>-/-</sup>" /></td>
<td><img src="image7" alt="Image of Merged expression in SM-Akt2<sup>-/-</sup>" /></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Protein</th>
<th>Control</th>
<th>SM-Akt1<sup>-/-</sup></th>
<th>SM-Akt2<sup>-/-</sup></th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKT2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAGLN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>ACTA2</th>
<th>DAPI</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-Akt2<sup>-/-</sup></td>
<td><img src="image39" alt="Image of ACTA2 expression in SM-Akt2<sup>-/-</sup>" /></td>
<td></td>
<td></td>
<td><img src="image42" alt="Image of ACTA2 expression in SM-Akt2<sup>-/-</sup>" /></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>ACTA2</th>
<th>DAPI</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-Akt2<sup>-/-</sup></td>
<td><img src="image51" alt="Image of ACTA2 expression in SM-Akt2<sup>-/-</sup>" /></td>
<td></td>
<td></td>
<td><img src="image54" alt="Image of ACTA2 expression in SM-Akt2<sup>-/-</sup>" /></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Figure V. AKT isoform and contractile protein expression in SM-Akt1⁻/⁻ and SM-Akt2⁻/⁻ mice. (A) Akt²floxflox (Control) or SM-Akt2⁻/⁻ mice were subjected to femoral artery wire injury. EVG staining or immunostaining for ACTA2, AKT2, and DAPI is shown at 7 days post-injury. Scale bar = 100μm. (Note that while not every cell in the media is stained positive for AKT2 in the upper panel, because these images are from samples 7 days post-injury, it is not possible to determine whether AKT2 may be down regulated in some cells post-injury, or whether there may be a mosaic expression pattern at baseline. Nevertheless, AKT2 staining is completely absent in the medial layer of the SM-Akt2⁻/⁻ vessel section.) (B) Adventitias were removed from Control or SM-Akt1⁻/⁻, and from Control or SM-Akt2⁻/⁻ aortas one week after 5-day vehicle or tamoxifen treatment. Whole-cell lysates were prepared and western blots were performed for the indicated proteins. Representative blots are shown (left); quantitation of four biological replicates are also shown (right). Data are presented as mean ± SEM; **P<0.01, ***P<0.001. (C-D) ACTA2 and DAPI staining is shown for SM-Akt2⁻/⁻ and SM-Akt1⁻/⁻ mice and their respective controls at 21 days post-injury.
Supplemental Figure VI. Proliferation in SM-Akt1−/− femoral arteries after injury, relative to Controls. Akt1^{flox/flox} (Control) or SM-Akt1^{−/−} mice were subjected to femoral artery wire injury. Immunostaining for Ki67, and ACTA2 is shown at 21 days post-injury. Scale bar = 100μm.
Suppl Figure VII

A

Wild Type

Akt2−/−

Lumen Area

WT

Akt2−/−

Medial Area

ns

Control

SM-Akt1−/−

B

Lumen Area

ns

Control

SM-Akt1−/−

Medial Area

ns

Control

SM-Akt1−/−

C

Control

SM-Akt2−/−

Lumen Area

* ns

Control

SM-Akt2−/−

Medial Area

ns
Supplemental Figure VII. Morphometry of Akt2−/−, SM-Akt1−/−, and SM-Akt2−/− femoral arteries at baseline, relative to Controls. Sections of naive femoral arteries from (A) WT or Akt2−/−, (B) Control or SM-Akt1−/−, and (C) Control or SM-Akt2−/− were stained for EVG; vessel lumen and medial area were quantified. Data are presented as mean ±SEM; *P<0.05.
Supplemental Figure VIII. Contractile protein expression in WT, Akt1−/−, and Akt2−/− femoral arteries at baseline. Sections of naive femoral arteries from mice of the indicated genotypes were immunofluorescently stained for MYH11 or ACTA2. Representative micrographs are shown.
Suppl Figure IX

A

![Western Blot Image]

siCont. siAKT1 siAKT2 siAKT1+2

Vehicle Rapamycin

Protein/GAPDH

n=3, 200 cells/sample

B

![Cell Images]

siCont. siAKT1 siAKT2 siAKT1+2

Vehicle Rapamycin

n=3, 200 cells/sample

C

![Graph A]

WT Akt1^−/− Akt2^−/−

Cell Index

Hours

D

![Graph B]

WT Akt1^−/− Akt2^−/−

Cell Index

Hours
Supplemental Figure IX. Opposing effects of AKT isoforms on SMC differentiated morphology and proliferation. hCASMCs were transfected with either control siRNA or siRNA against AKT1, AKT2 or both for 48hrs. (A) Representative western blot (left) and quantitation (right) of 3 independent experiments are shown to indicate efficient knockdown. (B) Knockdown cells were treated with ethanol (vehicle) or 50nM rapamycin for 24 hours. Representative photographs were taken under phase contrast microscopy to assess cell morphology as quantitated in Figure 2A. Insets show higher power. (C-D) Cell proliferation was measured using the xCELLigence system. 2,000 aortic SMCs isolated from WT, Akt1−/− and Akt2−/− mice cells were plated per well (n=3 biological replicates were each assayed in duplicate). After starvation for 8-12 hours, proliferation in 10% FBS medium was recorded at the indicated times. (D) SMC were plated and measured as in C but were pre-treated with 50nM rapamycin for 24 hours. (n=3). Data are presented as mean ± SEM; *P<0.05, **P<0.01, ***P<0.001.
Supplemental Figure X. Opposing effects of AKT isoforms on SMC migration. (A-B) hCASMCs were transfected with control siRNA or siRNA against AKT1, AKT2 or both for 48hrs, then analyzed for cell migration. (A) Control and knockdown cells were subjected to scratch migration. Area migrated (mm²) was measured after 8-hour incubation in media containing 0.5% FBS, 10% FBS, or 0.5% FBS plus 10ng/ml PDGF-BB. The white box indicates the area of the original wound. The black boxes indicate the borders of the wound after 8 hours. Area within black boxes is quantified in Figure 2C. (B) hCASMC migration in response to 8-hour PDGF-BB (10ng/ml) was detected by xCELLigence (Boyden chamber method) following control or AKT siRNA knockdown. 30,000 cells/well were loaded in duplicate. (n=3 independent experiments). (C) Aortic SMCs isolated from WT, Akt1−/− and Akt2−/− mice were plated in xCELLigence Boyden chamber wells and pretreated with 50nM Rapamycin for 8 hours prior to treatment with vehicle or 10ng/ml PDGF-BB. n=4. Data are presented as mean ± SEM; **P<0.01, ***P<0.001.
Supplemental Figure XI. Opposing effects of AKT isoforms on PAK1 phosphorylation and its association with RAC1. hCASMCs were transfected with control siRNA or siRNA against AKT1 or AKT2 for 48hrs, then treated with vehicle or PDGF-BB for 10min. Lysates were subjected to western blots. Active RAC1 in lysates was measured by pulldown with a GST-PAK1/PBD fusion protein followed by immunoblotting for RAC1 and normalized to a western blot of total RAC1 in input. Data are presented as mean ± SEM; *P<0.05, **P<0.01, ***P<0.001.
Supplemental Figure XII. Opposing effects of AKT isoforms on hAoSMC proliferation and differentiation in vitro. (A-B) hAoSMCs were transfected with either control siRNA or siRNA against AKT1, AKT2 (Dharmacon) or both for 48hrs. (A) 60,000 cells were plated per well in 6-well plates (n=3 biological replicates) in 10% FBS medium. Cells in each well were trypsinized and counted using a Cellometer (Nexcelom) after 72 hours. Cell proliferation was presented as the fold change of cell number normalized to input. (B) qPCR for indicated mRNAs normalized to GAPDH mRNA expression is shown (n=3). Data are presented as mean ±SEM; *P<0.05, ***P<0.001.
Suppl Figure XIII

A

-2000

-1561 to -1396
-1363 to -1163

#1

#2

:primer

+1

MYOCD

B

FOXO4 Primer #1

Fold Enrichment

0.0

0.5

1.0

1.5

Vehicle
Rapamycin

ns

FOXO4 Primer #2

Fold Enrichment

0.0

0.5

1.0

1.5

Vehicle
Rapamycin

ns

C

Truncated Myocd-promoter Luciferase

-654

-1664

TGTCTTC

Full length Myocd-promoter luciferase

-1036

-771

TGGTGTA

MYOCD
Supplemental Figure XIII. Schematics and controls for Chromatin immunoprecipitation (ChIP) and Luciferase assays. (A) Schematic of the human $MYOCD$ promoter showing the location of the ChIP primers (numbered) flanking FOXO binding elements (black boxes) used in the ChIP assay shown in Fig. 5A and in (B). (B) Negative control ChIP assay conducted on siControl samples with above FOXO element primers. Cross-linked DNA from hCASMC treated with vehicle or rapamycin for 4 hours immunoprecipitated with IgG, normalized to input. Data are presented as mean ± SEM, n=3. (C) Schematic of mouse $Myocd$ promoter-reporter luciferase constructs1 employed in Fig. 5C-D.
Suppl Figure XIV

A

Rapamycin

\[\text{AKT1} \]

\[\text{AKT2} \]

proliferation, migration

contractile protein expression

B

\[\text{AKT2} \]

\[\text{FOXO4} \]

\[\text{FOXO4} \]

\[\text{MYOCD} \]

\[\text{MYH11, TAGLN, ACTA2, etc.} \]

\[\text{SRF} \]

\[\text{CARG} \]
Supplemental Figure XIV. Schematic Models of Rapamycin/AKT signaling in SMC phenotypic modulation. (A) AKT1 and AKT2 have opposing effects on SMC phenotype. AKT1 is required for proliferation and migration, but opposes contractile protein expression and contractile morphology. AKT2 is required for rapamycin to inhibit VSMC proliferation and migration, and to induce contractile protein expression and morphology. AKT2 is selectively activated by rapamycin treatment, and AKT2 is sufficient to promote contractile phenotype. (B) AKT2 regulates SMC phenotype through inhibition of FOXO4. AKT2, but not AKT1, phosphorylates FOXO4, leading to its nuclear exclusion. This relieves the FOXO4 inhibitory binding to the MYOCD promoter, increasing MYOCD transcription. The MYOCD protein, in turn, promotes contractile protein expression through binding to SRF at CArG elements in SMC-specific promoters. FOXO4 protein has also been shown to bind to MYOCD and SRF, antagonizing their functions at CArG-dependent genes.
SUPPLEMENTAL MATERIAL

Opposing actions of AKT isoforms in vascular smooth muscle injury and therapeutic response

Jin: Akt isoforms in injury response

Supplemental Figure Legends

Supplemental Figure I. SM-specific Akt2−/− mice exhibit severe intimal hyperplasia after vascular injury. (A-B) Akt2flox/flox mice (Control) or SM-Akt2−/− mice were subjected to femoral artery wire injury. EVG-stained cryosections (left) and quantitation of intima/media (right) are shown at (A) 21, and (B) 7 days post-injury. Scale bars = 100 µm. Data are presented as mean ± SEM; **P<0.01, ***P<0.001.

Supplemental Figure II. Akt2−/− and SM-Akt2−/− mice exhibit increased, rapamycin-insensitive proliferation after vascular injury. (A) WT or Akt2−/−, (B-C) Akt2flox/flox (Control) or SM-Akt2−/− mice were subjected to femoral artery wire injury. Immunohistochemical staining for Ki67 at (A-B) 21, and (C) 7 days post-injury (left) and quantitation (right) are shown. Six different sections per mouse were quantified. (A-B: n=7, C: n=6 mice per group). Scale bar = 100 µm. Data are presented as mean ± SEM; **P<0.01, ***P<0.001.

Supplemental Figure III. Fasting blood glucose in WT vs Akt2−/− mice. A drop of blood was extracted from the mouse tail tip after 8 hour fasting. Blood glucose was measured using a glucometer. Age of mice in months is indicated on x axis. WT (6 months of age) n=4, Akt2−/− n=3 at each age. Data are presented as mean ± SEM; *P<0.05, **P<0.01.

Supplemental Figure IV. WT and Akt2−/− mice exhibit similar level of ECM deposition after vascular injury. WT or Akt2−/− mice were subjected to femoral artery wire injury for 21 days. Representative Masson’s Trichrome staining from two mice per group are shown. Scale bar = 100 µm.

Supplemental Figure V. AKT isoform and contractile protein expression in SM-Akt1−/− and SM-Akt2−/− mice. (A) Akt2flox/flox (Control) or SM-Akt2−/− mice were subjected to femoral artery wire injury. EVG staining or immunostaining for ACTA2, AKT2, and DAPI is shown at 7 days post-injury. Scale bar = 100 µm. (B) Adventitias were removed from Control or SM-Akt1−/−, and from Control or SM-Akt2−/− aortas one week after 5-day vehicle or tamoxifen treatment. Whole-cell lysates were prepared and western blots were performed for the indicated proteins. Representative blots are shown (left); quantitation of four biological replicates are also shown (right). Data are presented as mean ± SEM; **P<0.01, ***P<0.001. (C-D) ACTA2 and DAPI staining is shown for SM-Akt2−/− and SM-Akt1−/− mice and their respective controls at 21 days post-injury.

Supplemental Figure VI. Proliferation in SM-Akt1−/− femoral arteries after injury, relative to Controls. Akt1flox/flox (Control) or SM-Akt1−/− mice were subjected to femoral artery wire injury. Immunostaining for Ki67, and ACTA2 is shown at 21 days post-injury. Scale bar = 100 µm.

Supplemental Figure VII. Morphometry of Akt2−/−, SM-Akt1−/−, and SM-Akt2−/− femoral arteries at baseline, relative to Controls. Sections of naive femoral arteries from (A) WT or Akt2−/−, (B) Control or SM-Akt1−/− and (C) Control or SM-Akt2−/− were stained for EVG; vessel lumen and medial area were quantified. Data are presented as mean ±SEM; *P<0.05.

Supplemental Figure VIII. Contractile protein expression in WT, Akt1−/−, and Akt2−/− femoral arteries at baseline. Sections of naive femoral arteries from mice of the indicated genotypes were immunofluorescently stained for MYH11 or ACTA2. Representative micrographs are shown.
Supplemental Figure IX. Opposing effects of AKT isoforms on SMC differentiated morphology and proliferation. hCASMCs were transfected with either control siRNA or siRNA against AKT1, AKT2 or both for 48hrs. (A) Representative western blot (left) and quantitation (right) of 3 independent experiments are shown to indicate efficient knockdown. (B) Knockdown cells were treated with ethanol (vehicle) or 50nM rapamycin for 24 hours. Representative photographs were taken under phase contrast microscopy to assess cell morphology as quantitated in Figure 2A. Insets show higher power. (C-D) Cell proliferation was measured using the xCELLigence system. 2,000 aortic SMCs isolated from WT, Akt1−/− and Akt2−/− mice cells were plated per well (n=3 biological replicates were each assayed in duplicate). After starvation for 8-12 hours, proliferation in 10% FBS medium was recorded at the indicated times. (D) SMC were plated and measured as in C but were pre-treated with 50nM rapamycin for 24 hours. (n=3). Data are presented as mean ± SEM; *P<0.05, **P<0.01, ***P<0.001.

Supplemental Figure X. Opposing effects of AKT isoforms on SMC migration. (A-B) hCASMCs were transfected with control siRNA or siRNA against AKT1, AKT2 or both for 48hrs, then analyzed for cell migration. (A) Control and knockdown cells were subjected to scratch migration. Area migrated (mm²) was measured after 8-hour incubation in media containing 0.5% FBS, 10% FBS, or 0.5% FBS plus 10ng/ml PDGF-BB. The white box indicates the area of the original wound. The black boxes indicate the borders of the wound after 8 hours. Area within black boxes is quantified in Figure 2C. (B) hCASMC migration in response to 8-hour PDGF-BB (10ng/ml) was detected by xCELLigence (Boyden chamber method) following control or AKT siRNA knockdown. 30,000 cells/well were loaded in duplicate. (n=3 independent experiments). (C) Aortic SMCs isolated from WT, Akt1−/− and Akt2−/− mice were plated in xCELLigence Boyden chamber wells and pretreated with 50nM Rapamycin for 8 hours prior to treatment with vehicle or 10ng/ml PDGF-BB. n=4. Data are presented as mean ± SEM; **P<0.01, ***P<0.001.

Supplemental Figure XI. Opposing effects of AKT isoforms on PAK1 phosphorylation and its association with RAC1. hCASMCs were transfected with control siRNA or siRNA against AKT1 or AKT2 for 48hrs, then treated with vehicle or PDGF-BB for 10min. Lysates were subjected to western blots. Active RAC1 in lysates was measured by pulldown with a GST-PAK1/PBD fusion protein followed by immunoblotting for RAC1 and normalized to a western blot of total RAC1 in input. Data are presented as mean ± SEM; *P<0.05, **P<0.01, ***P<0.001.

Supplemental Figure XII. Opposing effects of AKT isoforms on hAoSMC proliferation and differentiation in vitro. (A-B) hAoSMCs were transfected with either control siRNA or siRNA against AKT1, AKT2 (Dharmacon) or both for 48hrs. (A) 60,000 cells were plated per well in 6-well plates (n=3 biological replicates) in 10% FBS medium. Cells in each well were trypsinized and counted using a Cellometer (Nexcelom) after 72 hours. Cell proliferation was presented as the fold change of cell number normalized to input. (B) qPCR for indicated mRNAs normalized to GAPDH mRNA expression is shown (n=3). Data are presented as mean ±SEM; *P<0.05, ***P<0.001.

Supplemental Figure XIII. Schematics and controls for Chromatin immunoprecipitation (ChIP) and Luciferase assays. (A) Schematic of the human MYOCD promoter showing the location of the ChIP primers (numbered) flanking FOXO binding elements (black boxes) used in the ChIP assay shown in Fig. 5A and in (B). (B) Negative control ChIP assay conducted on siControl samples with above FOXO element primers. Cross-linked DNA from hCASMC treated with vehicle or rapamycin for 4 hours immunoprecipitated with IgG, normalized to input. Data are presented as mean ± SEM, n=3. (C) Schematic of mouse Myocd promoter-reporter luciferase constructs employed in Fig. 5C-D.
Supplemental Figure XIV. Schematic Models of Rapamycin/AKT signaling in SMC phenotypic modulation. (A) AKT1 and AKT2 have opposing effects on SMC phenotype. AKT1 is required for proliferation and migration, but opposes contractile protein expression and contractile morphology. AKT2 is required for rapamycin to inhibit VSMC proliferation and migration, and to induce contractile protein expression and morphology. AKT2 is selectively activated by rapamycin treatment, and AKT2 is sufficient to promote contractile phenotype. (B) AKT2 regulates SMC phenotype through inhibition of FOXO4. AKT2, but not AKT1, phosphorylates FOXO4, leading to its nuclear exclusion. This relieves the FOXO4 inhibitory binding to the MYOCD promoter, increasing MYOCD transcription. The MYOCD protein, in turn, promotes contractile protein expression through binding to SRF at CArG elements in SMC-specific promoters. FOXO4 protein has also been shown to bind to MYOCD and SRF, antagonizing their functions at CArG-dependent genes.

REFERENCES