Macrophages are versatile cells capable of adapting to different environmental stimuli to perform required tasks. Polarization of macrophages is induced by specific cytokines and dependent on tissue and context. Macrophage polarization responses can influence inflammatory reactions in opposite ways.\(^1\) Polarization involving IFN (interferon)-\(\gamma\) with a TLR (Toll-like receptor) agonist such as LPS (lipopolysaccharide) is termed classical activation\(^2\) and usually associated with a proinflammatory phenotype characterized by the secretion of TNF (tumor necrosis factor)-\(\alpha\), IL (interleukin)-1, IL-6, and surface receptors including the T-cell costimulatory receptors CD80 and CD86.\(^3\) In these polarization conditions, proinflammatory macrophages are considered to be potent effector cells that kill intracellular microorganisms and tumor cells.\(^4\) In addition, proinflammatory macrophages are present in the early phase of tissue injury and get replaced by a wound healing macrophage subset termed alternatively activated macrophages after the early inflammatory phase subsides.\(^6\) These macrophages are characterized by increased expression of anti-inflammatory IL-10 and increased expression of scavenger receptors.

Received on: March 16, 2017; final version accepted on: August 8, 2017.

From the Department of Internal Medicine II, Division of Cardiology (P.J.H., J.B., B.E., B.T., K.D., S.S., S.D., W.S.S., J.W.), Center for Physiology and Pharmacology, Institute of Physiology (J.B.K.-P., P.U., G.S.), Department of Laboratory Medicine (S.D.), Clinic for Blood Group Serology and Transfusion Medicine (M.B.F.), and Core Facilities (J.W.), Medical University of Vienna, Austria; Department for Health Science and Biomedicine, Danube University Krems, Austria (M.B.F.); 3rd Medical Department, Wilhelminenspital, Vienna, Austria (K.H.); and Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria (K.H., J.W.).

The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBAHA.117.309383/-/DC1.

Correspondence to Johann Wojta, Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria. E-mail johann.wojta@meduniwien.ac.at

© 2017 The Authors. Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerives License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

Arterioscler Thromb Vase Biol is available at http://atvb.ahajournals.org DOI: 10.1161/ATVBAHA.117.309383
Besides scavenging debris, promoting angiogenesis, tissue remodeling, and repair, alternatively activated macrophages are able to fine-tune inflammatory responses and adaptive Th2 immunity. The classic activation pattern for alternative activation includes the Th2 cytokines IL-4 and IL-13. To stimulate macrophage polarization in vitro, a proinflammatory macrophage phenotype is achieved by stimulating with LPS and IFN-γ; whereas alternative activation is achieved by stimulation with IL-4 and IL-13. After the proposed nomenclature by Murray et al., LPS-treated and IFN-γ–treated macrophages are termed M(LPS+IFN), and alternatively activated macrophages are termed M(IL-4+IL-13) throughout this article. Classification of macrophages to M(LPS+IFN) and M(IL-4+IL-13) polarized conditions is an oversimplification considering the dynamic nature of macrophage plasticity, but allows a reductionist approach of defining specific functions for macrophages under controlled conditions.

Polarized macrophage subsets are well established to have a prominent role in tissue remodeling and wound repair. Depending on the context, macrophage polarization can be beneficial or detrimental. In atherosclerotic lesions, proinflammatory macrophages dominate the rupture-prone shoulder regions of the plaque over alternatively activated macrophages, whereas the fibrous caps of lesions showed no significant differences between subsets. This is further supported by the association of Th1-associated cytokines with symptomatic plaques. Alternatively activated macrophages are positively connoted with wound healing and tissue repair. However, overactivation of a wound healing phenotype can have detrimental consequences as in pulmonary fibrosis.

Tissue degradation requires the expression and activation of matrix metalloproteinases (MMPs). MMPs are mediators of change and physical adaption, whether developmentally regulated, environmentally induced, or disease associated. These enzymes can degrade structural components of the extracellular matrix allowing space for cells to migrate or proliferate. In addition, MMP cleavage of proteins can produce fragments with various biological activities. Even though macrophages have been already prominently associated with modulated MMP expression, little functional data are available for polarization conditions.

MMPs are secreted in a pro-MMP form that needs to be cleaved to be activated, hence allowing a tight and spatial control of MMP activation patterns. Membrane-bound MMPs can be cleaved and activated within the trans-Golgi network by furins. Some soluble MMPs can then be cleaved by those membrane-bound and activated MMPs as demonstrated for the activation of secreted MMP-2 by membrane-bound MMP-14. In addition, serine proteases have been reported to activate several MMPs. Among them, particularly plasmin has been associated with in vivo activation of MMPs. Another serine protease demonstrated to activate MMPs is uPA (urokinase plasminogen activator), either indirectly via cleavage of plasminogen to plasmin or directly. Interestingly, uPA is under tight control of its inhibitor PAI-1 (plasminogen activator inhibitor 1). In addition, the catalytic domain of MMPs can be targeted by the inhibitory TIMPs (tissue inhibitors of MMPs). These different activation systems allow for a wide range of control options to ensure proper activation and deactivation of tissue remodeling.

The purpose of this study was to identify proteolytic capacities of polarized macrophage subsets. We found a strong proteolytic activity in M(LPS+IFN) polarized macrophages, whereas M(IL-4+IL-13) polarization did not change the matrix degrading capacity compared with unpolarized macrophages. Whereas M(LPS+IFN) macrophages use a combination of cell surface activators including MMP-14 and the serine protease uPA, proteolytic activity of M(IL-4+IL-13) macrophages is inhibited by the uPA inhibitor PAI-1. By removing PAI-1 from M(IL-4+IL-13) macrophages, proteolytic activity increased to levels comparable with M(LPS+IFN) macrophages.

Materials and Methods
Materials and Methods are available in the online-only Data Supplement.

Results
Proteolytic Capacity of Macrophage Subsets
Macrophage polarization changes the phenotypic behavior and exerts certain functional changes in macrophages. Polarization to a proinflammatory and an alternative phenotype has been widely recognized in different pathological settings. For a simplistic approach, macrophages can be polarized in vitro toward M(LPS+IFN) and M(IL-4+IL-13) phenotypes using specific cytokines and identified with distinct characteristic markers and activation-dependent downstream cytokines. We polarized human macrophages toward M(LPS+IFN) and M(IL-4+IL-13) phenotypes using specific cytokines and identified with distinct characteristic markers and activation-dependent downstream cytokines. We polarized human macrophages toward M(LPS+IFN) and M(IL-4+IL-13) and determined the polarization phenotype. In short, both M(LPS+IFN) and M(IL-4+IL-13) demonstrated expected polarization patterns including increased expression of CD80 and CD86 in M(LPS+IFN) macrophages and high levels of CD206 and IL-10 in M(IL-4+IL-13) macrophages. (Detailed characterization of Materials and Methods is given in Figure I in the online-only Data Supplement.) The role of polarized macrophage subsets in tissue degradation and proteolysis is to date controversially discussed. To analyze the effect of different macrophage subsets on matrix degradation, we used a fluorescence-based assay to determine the lysis of gelatin during polarization. Our results indicated a robust proteolytic capacity of human M(LPS+IFN) polarized macrophages, whereas M(IL-4+IL-13) macrophages showed only a limited degradation potential similar to unpolarized macrophages (Figure 1A). Matrix degradation can usually be associated with changes in MMP and TIMP expression profiles. We applied an antibody...
array capable of detecting multiple MMPs and TIMPs. Of the analyzed proteins, only MMP-8 was not detectable in the supernatant of polarized macrophages (Figure IIA in the online-only Data Supplement). Surprisingly, most of the MMPs were not differentially produced from polarized macrophage subsets after 48 hours of polarization (Figure IIB in the online-only Data Supplement). The 2 main MMPs for degrading gelatin substrates are MMP-2 and MMP-9, but polarization did not change total protein expression of these MMPs (Figure 1B).

In contrast, only MMP-10 was significantly upregulated after polarization under both M(LPS+IFN) and M(IL-4+IL-13) polarizing conditions (Figure IIB in the online-only Data Supplement). However, upregulation was statistically not significantly different between different polarization conditions. Another way of shifting the proteolytic balance of MMPs is via downregulation of TIMPs. Of the 3 analyzed TIMPs, TIMP1 was only slightly, albeit significantly downregulated in M(IL-4+IL-13) macrophages, whereas TIMP2 was downregulated in M(LPS+IFN) polarizing conditions (Figure 1C).

Membrane-Bound MMP-14 Is Increased in M(LPS+IFN) Macrophages

MMPs are usually produced as a pro-form that needs further activation. For membrane-bound MMPs, this activation usually occurs in the trans-Golgi via a furin-mediated mechanism. Soluble MMPs can be activated via several mechanisms including cleavage by membrane-bound and previously activated MMP-14 or by serine proteases. A key feature for macrophages during matrix degradation is the ability to form filopodia and localize MMPs to these cell protrusions. Filopodia, especially in endothelial cells, were associated with not only tissue degradation but also migration. To determine if increased matrix degradation might be related to increased cell mobility and hence a larger area covered, we analyzed the migratory speed of macrophage subsets in a transwell assay. M(LPS+IFN) and M(IL-4+IL-13) macrophages showed similar and faster migration patterns compared with M0 macrophages. We therefore suggest that matrix degradation is independent from migration capacity of macrophages (Figure IIIA in the online-only Data Supplement).

Filopodia were stained for MMP-14, which can locally activate MMPs at the cellular surface. Whereas M0 and M(IL-4+IL-13) macrophages showed prominent staining mainly around the nucleus, M(LPS+IFN) filopodia stained positive for MMP-14 (Figure 2B). This increased localization of MMP-14 to filopodia is in no relation to total MMP-14.
protein, as M0 macrophages have the highest MMP-14 overall content (Figure 2C). MMP-14 is activated from the pro-MMP to the active form by furin in the trans-Golgi network. Of note, furin protein amount was not changed under polarizing conditions (Figure IIIB in the online-only Data Supplement). We assessed the amount of furin-bound MMP-14 in cellular lysates of macrophage subsets. M(LPS+IFN) polarized macrophages had increased intracellular MMP-14/furin complexes indicating increased MMP-14 activation (Figure 2D).

uPA/uPA Receptor Availability in Polarized Macrophages

In addition to matrix-bound MMPs, certain cell receptors can contribute to localized activation of matrix degradation. The serine protease uPA has been associated with activation of MMPs.16 Localized to its receptor uPAR (uPA receptor), uPA can activate MMPs at cell filopodia and hence govern a directed matrix degradation.24 We identified human M(LPS+IFN) macrophages as having significantly higher uPAR receptor surface density levels compared with M0 and M(IL-4+IL-13) polarized macrophages (Figure 3A). Furthermore, M(LPS+IFN) macrophages showed increased localization of uPAR to cellular protrusions (Figure 3B). This increase of cellular uPAR was accompanied by increased uPA localization to the membrane in M(LPS+IFN) macrophages (Figure 3C).

To evaluate the importance of uPAR-dependent gelatin degradation, we added a uPA antibody to the gelatin degradation assay. Inhibition of uPA did not change the proteolytic capacity of M0 and M(IL-4+IL-13) macrophages. However, after uPA blockade, M(LPS+IFN) macrophages had reduced proteolytic capacities indicating at least a partial role for uPA-dependent activation of matrix degradation (Figure 3D).

uPA/PAI-1 expression in Polarized Macrophages

uPA is a serine protease usually secreted from cells. Macrophages have been described to express uPA.25 To identify whether a macrophage polarizing condition would increase uPA protein levels, we used an ELISA to quantify uPA levels in supernatants of human M0, M(LPS+IFN), and M(IL-4+IL-13) macrophages. Surprisingly, uPA levels were highest in M(IL-4+IL-13) macrophages and lowest in M(LPS+IFN) macrophages (Figure 4A). However, when assessing uPA activity, we found only a statistically relevant significance between uPA activity in M0 and M(LPS+IFN) macrophages, where M(LPS+IFN) macrophages showed significantly more activity in cleaving a uPA substrate (Figure 4B). uPA can be inhibited by PAI-1. Determining the levels of PAI-1 in cell culture supernatants of human M0, M(LPS+IFN), and M(IL-4+IL-13) macrophages revealed the by far highest levels of PAI-1 to be associated with M(IL-4+IL-13) macrophages (Figure 4C).
Intracellular PAI-1 levels were also increased in M(IL-4+IL-13) macrophages, however, not statistically significant (Figure IV A in the online-only Data Supplement). Induction of PAI-1 via IL-4 and IL-13 is dependent on STAT6 signaling, as pharmacological inhibition of STAT6 abrogated the induction of PAI by M(IL-4+IL-13) polarization (Figure IVB in the online-only Data Supplement). Although PAI-1 can inhibit uPA extracellularly, it can also inhibit furin and subsequent MMP activation in the trans-Golgi intracellularly. To determine if PAI-1 would be involved in intracellular furin inhibition, we performed a furin/PAI-1 complex ELISA. We did not observe a difference in furin/PAI-1 complexes in any subtype suggesting a solely extracellular role for PAI-1 (Figure IVC in the online-only Data Supplement). PAI-1 active antigen was still slightly but significantly increased in M(IL-4+IL-13) macrophages compared with unpolarized macrophages supporting the complete uPA activity blockade observed (Figure 4D). To determine the proteolytic potential of uPA produced by the respective macrophages, we used a PAI-1 blocking monoclonal antibody MA-MP6H6 described previously in the gelatin degrading assay.28 Under PAI-1 blockade, M(IL-4+IL-13) macrophages had similar matrix degrading capacities to M(LPS+IFN) polarized macrophages (Figure 4E). Results were confirmed in M(IL-4+IL-13) macrophages using an siRNA-mediated PAI-1 knockdown (Figure IVD in the online-only Data Supplement). In contrast, adding PAI-1 protein during polarization of M(LPS+IFN) macrophages leads to reduced matrix degradation (Figure IVE in the online-only Data Supplement). To analyze whether polarized macrophages of PAI-1 knockout mice would reproduce our blocking antibody results in human macrophages, we isolated and polarized mouse macrophages. Polarized macrophages from PAI-1–deficient mice did not display a different polarization profile concerning M(LPS+IFN) induced TNF-α and IL-1 levels and M(IL-4+IL-13) induced arginase 1 compared with wild-type polarized macrophages (Figure V in the online-only Data Supplement). Results obtained with macrophages from PAI-1–deficient mice confirmed our initial finding that M(IL-4+IL-13) macrophages regain gelatin degradation...
capacities on loss of PAI-1 and exert similar degradation capacities as M(LPS+IFN) macrophages (Figure 4F).

In Vivo Expression and Epigenetic Changes of PAI-1 in Macrophages

The long-term effects of macrophage polarization are currently under debate, and polarization could only be a transient and reversible effect of certain conditions.27 We analyzed tissue sections of 18 human atherosclerotic plaques to determine whether the observed PAI-1 expression can be found in a pathological setting as well. Our results indicated a strong correlation of the M(IL-4+IL-13) marker CD206 with PAI-1 protein levels supporting our initial hypothesis of a PAI-1 producing M(IL-4+IL-13) macrophage subset (Figure 5A).

To further analyze the influence of an initial M(IL-4+IL-13) polarization on future PAI-1 expression, we restimulated polarized macrophages with IL-1β to stimulate an inflammatory milieu. PAI-1 only remained inducible by proinflammatory stimulation in M(IL-4+IL-13) macrophages (Figure 5B). Induction of PAI-1 in M(IL-4+IL-13) macrophages was dependent on NF-κB signaling, as the NF-κB inhibitor dimethyl fumarate was able to abolish IL-1β–induced PAI-1 induction (Figure VIA in the online-only Data Supplement). However, nuclear levels of p65, a key NF-κB component, after IL-1β stimulation were elevated in all macrophages including M0, M(LPS+IFN), and M(IL-4+IL-13) macrophages (Figure VIB in the online-only Data Supplement). Epigenetic changes in a promoter region have the potential to change the expression of genes.28 To analyze if M(IL-4+IL-13) polarization might have effects on DNA substructure organization, we determined the accessibility of the PAI-1 promoter in polarized macrophages. Primers for the PAI-1 promoter were designed according to the previously published PAI-1 promoter sequence.29 After polarization, the PAI-1 promoter was on average 4-fold more accessible in M(IL-4+IL-13) polarized macrophages compared with M0 and M(LPS+IFN) polarization conditions (Figure 5C).

In Vivo Deletion of PAI-1 Increases Fibrosis and MMP Activity in Lung Tissue

Alternatively activated macrophages are associated with a tissue remodeling phenotype. To determine the consequences of a PAI-1 loss in macrophages in a setting of tissue remodeling, we used a bleomycin-induced lung injury model after reconstituting mice with either wild-type bone marrow or bone marrow from PAI-1−/− mice. This model is characterized by an initial infiltration of proinflammatory macrophages followed by a phase of tissue remodeling subsequently leading to fibrosis.30 After bleomycin treatment, there is a significant weight loss of treated animals compared with untreated ones. However, there was no difference between mice receiving either wild-type bone marrow or PAI−/− bone marrow (data not shown). Macrophages in mouse recipients of wild-type bone marrow stained positive for PAI-1, whereas
macrophages of PAI-1−/− reconstituted bone marrow stained negative for PAI-1 (Figure 6A). When analyzing morphological parameters of the lung, we found a reduction of remaining alveolar space in mice receiving PAI-1−/− bone marrow compared with mice receiving WT bone marrow indicating a higher degree of tissue fibrosis (Figure 6B). In addition, MMP activity measured in lung tissue was increased in PAI-1−/− bone marrow recipients, supporting our previous findings (Figure 6C). Overall, bleomycin-induced lung fibrosis was increased together with increased MMP activity in mice negative for PAI-1 in macrophages.

Figure 5. In vivo expression and epigenetic changes of PAI-1 (plasminogen activator inhibitor 1) in macrophages. A, Atherosclerotic plaques of 18 patients were stained for PAI-1 and the alternative activation marker CD206 ex vivo as described under Materials and Methods and a total of 333 macrophages were analyzed. Macrophages with a high fluorescence intensity of CD206 (red) displayed also high levels of PAI-1 (yellow). A representative picture given to the left shows 3 stained macrophages, whereby the macrophage with the highest CD206 signal (red) also displays the highest PAI-1 (yellow) fluorescence. Statistical analysis revealed a significant correlation with a Pearson Correlation Factor r=0.683, P<0.0001. B, Polarized macrophages were stimulated with IL (interleukin)-1β, and PAI-1 protein was determined after 24 h by ELISA. Data are given as x-fold change vs unpolarized M0 macrophages and represent mean±SD of five independent donors. C, Openness of the PAI-1 promoter was evaluated using nuclease digestion as indicated under Materials and Methods. Data are given as x-fold change in promoter accessibility vs unpolarized M0 macrophages and represent mean±SD of 5 independent donors. IFN indicates interferon; IL, interleukin; and LPS, lipopolysaccharide.

Figure 6. Bleomycin lung injury model. A, Macrophages were stained in mouse lung tissue paraffin sections using F4/80 (green) and costained for expression of PAI-1 (red). Macrophages in wild-type bone marrow reconstituted lungs stained positive for F4/80 and PAI-1 (yellow overlay), whereas PAI−/− bone marrow reconstituted mice did not show staining for PAI-1 in macrophages. B, Fibrosis was evaluated in paraffin sections of mouse lung tissue using H&E staining. To determine degree of fibrosis, the remaining unstained alveolar volume was determined. Data are given as remaining alveolar volume of the total lung section in mm² ±SD from 12 mice per group. C, Matrix metalloproteinase (MMP) activity was measured in lung tissue from mice reconstituted either with wild-type bone marrow or PAI-1−/− bone marrow before bleomycin-induced injury. Data are given as relative MMP activity per total protein extract±SD of 4 lung tissue samples per group. MMP activity was calculated as a ratio to total protein extracted from the respective tissue.
Discussion
Macrophages are important contributors in extracellular matrix remodeling. Whereas tissue remodeling is positive in wound healing and repair, it can be detrimental in diseases as atherosclerosis or rheumatoid arthritis. Macrophage function is tightly regulated by the tissue environment leading to differentially polarized macrophages. This polarization can be, in a simplified approach, mimicked in vitro allowing to study specific polarization conditions. Previously, inflammatory polarized macrophages were associated with increased tissue degradation, although a clear mechanism for increased proteolytic activity was missing. In this article, we demonstrated to have a different expression profile of MMPs and TIMPs compared with M2-polarized macrophages. We suggest that PAI-1 is a quiescence factor for alternatively activated macrophages, controlling excessive remodeling behavior of this polarization condition.

Previously, proinflammatory macrophages were demonstrated to have a different expression profile of MMPs and TIMPs compared with M2-polarized macrophages. However, these data relied on quantification of MMPs solely by mRNA and did not include functional assays. In our current study, we demonstrate increased proteolytic activity in M(LPS+IFN) macrophages in a matrix degrading assay. However, protein data did not show massive changes in MMP and TIMP expression levels indicating different activation pathways of tissue degradation rather than sole increase of MMP protein levels or reduction of TIMP protein levels.

Macrophages can sense their environment by membrane protrusions or filopodia. By localizing membrane-bound proteins to certain cellular areas, a spatial organization can be acquired. We showed increased filopodia formation in M(LPS+IFN) macrophages. These filopodia were also increasingly occupied by MMP-14, a membrane-bound MMP. MMP-14 is activated in the trans-Golgi by furin and exerts its proteolytic activity as soon as it anchors in the cell membrane. Besides its role in collagen proteolysis, MMP-14 was reported to further activate soluble MMPs including MMP-2 and MMP-9. Even though we found slightly reduced overall MMP-14 protein levels in M(LPS+IFN) polarized macrophages compared with M0 and M(IL-4+IL-13) macrophages, furin/MMP-14 complexes were increased indicating more availability of active MMP-14 in M(LPS+IFN) macrophages compared with other polarization conditions. Another membrane anchored MMP activation system is the uPA/uPAR axis. Activation via uPA can occur either directly or indirectly via plasmin-mediated MMP activation. Again, by localizing uPAR to filopodia, cells can direct the proteolytic activity to a certain location. Similar to MMP-14, we could show that uPAR is increasingly localized to M(LPS+IFN) macrophage filopodia. This increased localization is accompanied by increased protein concentration at the cellular membrane, rendering uPAR a possible M(LPS+IFN) macrophage marker protein. Together with increased receptor localization, the ligand uPA can also be found at higher levels on the filopodia of M1 macrophages. Using a uPA inhibitory antibody, we were able to show a partial reduction of matrix degradation capacity in M(LPS+IFN) macrophages with no changes in proteolytic activity for other polarization conditions. In addition, adding PAI-1 protein to M(LPS+IFN) polarization had similar effects on matrix degradation capacities. Our data suggest the importance of membrane-bound protease activity for tissue degradation for M(LPS+IFN) polarized macrophages that is lacking completely in M(IL-4+IL-13) polarized macrophages.

uPA is a secreted protein that can exert its proteolytic function either bound to uPAR or in solution. uPA levels detected in the conditioned media were highest in M(IL-4+IL-13) macrophages, whereas M(LPS+IFN) macrophages showed the lowest production. However, this increased uPA production did not lead to increased proteolytic capacity of M(IL-4+IL-13) macrophages as overall uPA activity present in conditioned media was similar in M(LPS+IFN) and M(IL-4+IL-13) macrophages. The lack of uPA activity in M(IL-4+IL-13) macrophages can be explained by the robust amount of simultaneously produced PAI-1, which renders uPA inactive. Indeed, inhibiting PAI-1 either via an antibody, siRNA or genetically, we could restore the tissue degradation capacity of M(IL-4+IL-13) macrophages to a similar level as observed in M(LPS+IFN) macrophages. We were able to confirm the association of PAI-1 with alternatively activated macrophages in human atherosclerotic plaques in vivo as levels of the alternative activation marker CD206 correlated significantly with levels of PAI-1 expression in plaque macrophages.

Macrophage polarization is a transient process allowing the macrophage to respond to a changed environment. Previous reports showed a possible beneficial effect of prior M(IL-4) polarization ex vivo followed by transfection in a murine model of pancreatic and renal injury. Interestingly, a recent report suggested a transient repolarization of M(IL-4) macrophages to proinflammatory macrophages. However, M(LPS+IFN) macrophages were no longer repolarizable to M(IL-4) macrophages because of a mitochondrial dysfunction. In contrast, alternatively polarized macrophages were demonstrated to have altered reprogramming capabilities because of increased p50 availability. We observed in vitro that only macrophages polarized previously toward the M(IL-4+IL-13) lineage were capable of upregulating PAI-1 expression after a proinflammatory stimulus. This upregulation was dependent on the transcription factor NF-kB. However, even though translocation of NF-kB to the nucleus after IL-1β stimulation was observed regardless of previous polarization, induction of PAI-1 was limited to macrophages previously polarized with IL-4 and IL-13. We found that the promoter region for PAI-1 in M(IL-4+IL-13) polarized macrophages showed a loosened chromatin structure as analyzed by promoter accessibility. Hence, we suggest that a previously alternatively activated macrophage retains its capacity to upregulate PAI-1 expression via changes to the PAI-1 promoter region.

Alternative activation of macrophages is largely associated with tissue remodeling. Furthermore, alternative activation of macrophages in atherosclerotic plaques is associated with plaque regression and smaller plaque size. In addition, tumor-associated macrophages were able to promote...
cancer cell invasion via MMP modulation. To determine a role of PAI-1 under remodeling conditions, we used a murine bleomycin-induced lung injury model characterized by a fibrotic phase including IL-4-mediated macrophage activation. We observed that lungs from mice reconstituted with PAI-1−/− bone marrow showed increasing signs of tissue fibrosis and had increased levels of MMP activation. This observation is in line with wound healing phenotypes observed in PAI-1 knockout mice, where loss of PAI-1 leads to increased wound healing. Therefore, we suggest that PAI-1 expression in vivo can modulate the invasiveness and capacity of macrophages and reduce the overall potential of the cell toward tissue degradation.

In conclusion, we suggest that polarization differentially affects the proteolytic activity of macrophages. M(LPS+IFN) polarization leads to increased proteolytic activity mainly via membrane-bound proteins including MMP-14 and uPAR/uPA localized to filopodia. In contrast, proteolytic activity in M(IL-4+IL-13) polarized macrophages is controlled by increased PAI-1 expression. In addition, M(IL-4+IL-13) polarized macrophages retain the capacity to upregulate PAI-1 and thus inhibit proteolytic activity dependent on uPA also in a proinflammatory setting via changes in the PAI-1 promoter structure. Our data indicate a complex and variable regulation of proteolytic activity in macrophage subsets.

Sources of Funding

This work was supported by a grant from the FWF (SFB-54) to G. Schabbeiner, W.S. Speidl and J. Wojta.

Disclosures

None.

References

Highlights

- M(LPS [lipopolysaccharide]+IFN [interferon]) macrophages use membrane-bound matrix metalloproteinases and uPA (urokinase plasminogen activator)/uPAR (urokinase plasminogen activator receptor) for matrix degradation.

- M(IL [interleukin]-4+IL-13) macrophages have a forced protelytical quiescence because of PAI-1 (plasminogen activator inhibitor 1) expression.

- PAI-1 expression can be confirmed in macrophages from atherosclerotic tissue and is epigenetically controlled.

- PAI-1 loss leads to increased fibrosis and matrix metalloproteinase activation in a mouse model in vivo.
PAI-1 (Plasminogen Activator Inhibitor-1) Expression Renders Alternatively Activated Human Macrophages Proteolytically Quiescent
Philipp J. Hohensinner, Johanna Baumgartner, Julia B. Kral-Pointner, Pavel Uhrin, Benjamin Ebenbauer, Barbara Thaler, Konstantin Doberer, Stefan Stojkovic, Svitlana Demyanets, Michael B. Fischer, Kurt Huber, Gernot Schabbauer, Walter S. Speidl and Johann Wojta

Arterioscler Thromb Vasc Biol. published online August 17, 2017;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2017/08/17/ATVBAHA.117.309383
Free via Open Access

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2017/08/16/ATVBAHA.117.309383.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
Materials and Methods

Isolation and generation of human macrophages

Blood was obtained from healthy volunteers according to the recommendations of the ethical board of the Medical University of Vienna including informed consent. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood via density gradient centrifugation using lymphocyte separation medium (PromoCell, Germany). Monocytes were isolated via adherence to plastic culture dishes as suggested previously\(^1\). Cells were cultivated in RPMI 1640 medium (Sigma Aldrich, MO, USA) supplemented with 100ng/ml macrophage colony stimulating factor (MCSF, Affymetrix, CA, USA), 10% fetal bovine serum (FBS, Biochrome Millipore, Germany), 100U/ml penicillin, 100U/ml streptomycin, 0.25µg/ml fungizone and 2mM L-glutamine (all Life Technologies, CA, USA) in a humidified atmosphere at 37°C. Cells were cultivated for 7d with 2 medium changes yielding 98.9±0.01% CD68 positive macrophage cells as determined by fluorescence microscopy (Suppl. Fig. 1A). To obtain M(LPS+IFN) polarized macrophages cells were stimulated for 48h with 100ng/ml LPS (Sigma Aldrich) and 100ng/ml IFN-γ (Affymetrix), M(IL4+IL13) macrophages were generated using 20ng/ml IL4 (Life Technologies) and 20ng/ml IL13 (Santa Cruz, CA, USA). M(LPS+IFN) macrophages were characterized by increased mRNA expression of CD80, CD86, TNF-alpha and IL1alpha compared to M0 and M(IL4+IL13) macrophages whereas M(IL4+IL13) macrophages displayed reduced levels of TNF-alpha and IL1alpha and increased levels of CD206 compared to M0 and M(LPS+IFN) macrophages (Suppl. Fig. 1B). Protein levels of CD80 and CD206 were further characterized by flow cytometry showing a similar distribution as already observed by qPCR (Suppl. Fig. 1C). In addition, protein levels of IL6, a cytokine induced by M(LPS+IFN) polarization, were increased in M(LPS+IFN) macrophages and reduced in M(IL4+IL13) macrophages compared to undifferentiated macrophages (Suppl. Fig. 1D). Conversely, the M(IL4+IL13) marker cytokine IL10 was induced in M(IL4+IL13) macrophages and reduced in M(LPS+IFN) macrophages (Suppl. Fig. 1D). Additionally, polarized macrophages were further stimulated with IL1-beta (100ng/ml; Affymetrix) in order to determine the effect of proinflammatory stimulation on polarized macrophages. NF-κB pathway was inhibited using dimethylfumerate (Sigma Aldrich) as published previously in a concentration of 200µM\(^2\). STAT6 was inhibited using a commercially available STAT6 inhibitor (Axon, The Netherlands) at a concentration of 250µM.

Isolation and generation of mouse macrophages

Mouse macrophages were generated from murine bone marrow-derived cells. Bone marrow cell suspensions were isolated from mice by flushing femurs and tibias with complete RPMI1640 (+10% FCS, +1% Pen/Strep). Aggregates were dislodged by gentle pipetting, washed once with medium, transferred to culture plates and cultured in a humidified incubator at 37°C and 5% CO2 in medium supplemented with M-CSF for 7d with 2 medium changes in between. Polarization conditions were the same as for human macrophages.

RNA isolation and qPCR

RNA was isolated using simplyRNA kit for Maxwell (Promega, WI, USA) as described by the manufacturer. cDNA was generated from equal amounts of RNA per experiment using a Promega GoScript reverse transcription system (Promega, WI, USA). Quantitative PCR was performed on a Roche Light Cycler 480 system (Roche, Switzerland) using the universal probe library system (UPL) and GoTaq® Probe qPCR Master Mix (Promega). All experiments were performed in triplicates. Primers were designed using the online UPL tool (Roche). Used primers and UPL probes are given in Supplementary Table 1. PCR
conditions consisted of an initial step of 10 min at 95°C followed by 50 cycles of 95°C for 15s and 60°C for 30s.

Matrix degradation assay

To determine matrix degradation capacities of macrophage subsets we used a commercially available QCM gelatin invadopodia assay (Merck, Germany). In short, Cy3-labeled gelatin was coated onto poly-l-lysine and glutaraldehyde pretreated chamber slides (Thermo Scientific, USA). Macrophages were seeded onto slides prior to polarization, 48 h after polarization cells were fixed in 3.7% formaldehyde (Sigma Aldrich) and visualized on a Zeiss Axio Imager microscope and ZEN blue software (Zeiss, Germany). For uPA inhibition we used a commercially available antibody (Sekisui clone 3471) at a concentration of 1 µg/ml. PAI-1 inhibition was achieved using the monoclonal antibody MA-MP6H6 described previously (1 µg/ml) with a respective control antibody. Recombinant PAI-1 protein was purchased from Biolegend and used at a concentration of 200 ng/ml. PAI-1 knockdown by siRNA (smartPool, Dharmacon, USA) was done as published previously at 100 nM for both control and PAI-1 siRNA, by electroporation at 200 V and 1200 µF with a Gene Pulser Xcell system (BioRad, USA). Degradation area was evaluated in a blinded manner by ImageJ (NIH, USA).

Soluble protein determination

IL6 (R&D, MN, USA), IL10 (Affymetrix), uPA (R&D) and PAI (Technoclone, Austria) were determined using commercially available ELISAs as indicated by the manufacturer’s instructions. To determine multiple MMPs and TIMPs we used a commercially available MMP antibody array (Abcam, UK) as suggested. PAI-1 active antigen was quantified using an ELISA assay coated with tPA and using an anti-PAI-1 antibody as secondary antibody (Technoclone).

uPA activity assay

To determine uPA activity we used a commercially available assay according to the manufacturer’s instructions (Abcam). In short, the ability of uPA to cleave plasminogen was evaluated by measuring the cleavage of a highly specific plasmin substrate releasing a yellow para-nitroaniline chromophore that is measured at 405 nm.

Intracellular PAI-1/furin and MMP14/furin determination

PAI-1/furin and MMP14/furin complexes were determined as suggested previously in Triton X-100 (Sigma Aldrich) lysed cellular extract. Either anti-PAI-1 (Santa Cruz CA, USA; dilution 1:4000, mouse antibody) or anti-MMP14 primary antibody (Santa Cruz, dilution 1:1000, mouse antibody) was used to coat a 96 well plate. After overnight incubation at 4°C wells were washed and unspecific binding sites were blocked using a 5% BSA solution. Blocked wells were incubated with sample for 2 h at room temperature. Following a washing step, wells were incubated with an anti-furin antibody (Santa Cruz, dilution 1:1000, rabbit antibody) for 2 h followed by 1 h of a biotinylated antibody (Abcam; dilution 1:1000, donkey antibody) versus furin antibody at room temperature. Biotin was applied at the manufacturer’s recommended dilution (R&D Systems) for 30 min. After an additional washing step TMB substrate (Roche) was applied until satisfactory color development and stopped using 1 M H2SO4 (Sigma Aldrich). Wells were read on a plate reader (Tecan, Switzerland). To correct for different protein
concentrations, total protein was measured using a NanoDrop system (Thermo Fisher, USA) and results were calculated accordingly.

Protein determination via FACS

Cell surface proteins CD80 (Affymetrix) and CD206 (Affymetrix) were stained using standard protocols as reported previously and quantified using a FACS Canto II system and FACS Diva software (both BD, CA, USA). Total protein levels of MMP14 (Santa Cruz) and furin (Santa Cruz) were determined using permeabilized cells according to Krutzik et al. In short, macrophages were scratched from the surface and fixed in 1.5% formaldehyde (Sigma Aldrich) and permeabilized with methanol (Sigma Aldrich). Afterwards, cells were washed with PBS containing 1% BSA and stained with the respective antibody. To obtain fluorescence labeled MMP14 and furin antibodies we used an antibody conjugation kit with a FITC label (Abcam).

Fluorescence microscopy

In vitro staining was performed as published previously. Filopodia on macrophages were evaluated using a phalloidin staining (Abcam). In short, macrophages were seeded on chamber slides and polarized for 48h. Afterwards cells were fixed using 1.5% formaldehyde and stained. To evaluate the distribution of MMP14, uPAR and uPA, cells were stained using an MMP14 antibody (Santa Cruz), an uPAR antibody (Sekisui) or an uPA antibody (Sekisui) with a secondary CY3 labeled antibody. Slides were embedded in ProLong Gold antifade (Life Technologies) and visualized on a Zeiss Axiovision microscope equipped with an AxioCam MRC5 and ZEN blue software after blinding (Zeiss). Paraffin embedded human plaque tissue from explanted carotid arteries from 18 patients were stained for CD206 and PAI-1 as reported previously. Plaque tissue was derived from patients undergoing carotid endarterectomy (mean age 71±6.4 years, 72% male, 27% symptomatic). Specimens were collected according to the recommendations of the ethical board including informed consent. Tissue was processed in a boiling water bath in antigen retrieval buffer (Agilent, CA, USA) for ten minutes followed by a blocking step using 2.5% BSA. Primary antibodies were applied over night at 4°C and after three washing steps secondary antibodies (Affymetrix) were applied again over night. DAPI (Sigma Aldrich) was applied for nuclear staining and slides were embedded in ProLong Gold antifade. Images were taken on a Zeiss Axio observer microscope equipped with a Hamamatsu Orca Flash (Hamamatsu, Japan) using TissueGnostics software (TissueGnostic, Austria). Mouse lung tissue sections were stained using for F4/80 (Thermo Fisher) and PAI-1 (Santa Cruz) using the same protocol. Images were taken on a Zeiss LSM 700 (Zeiss) and visualized using ZEN software (Zeiss).

Cell migration assay

Transmigration assays were performed as described previously using Costar Transwell® Permeable Supports, pore size of 5.0 µm (Corning, Maine, USA), according to the manufacturer’s protocol. In short, 4x105 macrophages/ml were seeded after 48h of polarization in serum free medium into the transwell and migration was quantified after 1h towards full growth medium by removing all inner cells of the transwell. The membrane was then cut from the plastic tray and mounted on a glass slide using Prolong® Gold Antifade mounting reagent with DAPI (Life Technologies, Oregon, USA). The nuclei of transmigrated cells were documented with a fluorescence microscope (Axio Imager.M2, Zeiss, AxioCam MRC5) and counted using ImageJ (NIH).
Nuclear NF-kB determination

In order to determine the amount of the NF-kB component p65 translocation to the nucleus we isolated nuclei from previously polarized macrophages using a nuclear extraction kit (Thermo Fisher) according to the manufacturer’s instruction. p65 levels were determined using a commercially available ELISA with the DNA binding sequence of p65 as bait according to the manual (Abcam).

Promotor accessibility assay

Chromatin accessibility was analyzed using a commercially available kit (Abcam) according to the published protocol. In short, macrophages were polarized for 48h followed by cell lysis and chromatin extraction. Chromatin was thereafter digested using a nuclease mix. Following a DNA cleanup, samples were analyzed by qPCR using a PAI-1 promoter specific primer (Supplementary Table 1). Results were calculated by fold enrichment using a ratio of amplification efficiency of nuclease treated samples over that of untreated nuclease free control samples as suggested in the protocol.

Bleomycin mouse model

WT C57BL/6J mice (8-wk-old) were irradiated (9 gray) to ablate endogenous bone marrow-derived cells. Irradiated mice were injected with 9x10^6 bone marrow cells from wild type or PAI^{-/-} mice. Pulmonary fibrosis was induced by a single intra nasal application of bleomycin sulfate (0.5 iu BLM/50μl/mouse; Merck, Germany) seven weeks after bone marrow transfer as published^{11}. Mice were sacrificed and tissue was harvested for histochemical analysis (n=12/group) and MMP activity determination (n=4/group). For sections, lung tissue was embedded in paraffin. To determine lung fibrosis H&E staining was performed as suggested by the manufacturer (Sigma Aldrich). Images were taken on a Zeiss Axio observer microscope using TissueGnostics software (TissueGnostic, Austria). For analysis, free alveolar space was defined as regions in the lung without H&E staining and the whole section was automatically analyzed.

MMP activity assay

MMP activity was determined in lung tissue of mice receiving either wild type or PAI-1^{-/-} bone marrow using a commercially available activity assay kit (Anaspec, CA, USA). In short, tissue was homogenized in provided lysis buffer using a ball mill (Retsch, Germany). For MMP activity determination a 5-FAM (fluorophore) and QXL520™ (quencher) labeled FRET peptide substrate was used and measured at excitation/emission = 490 nm/520 nm using a fluorescence plate reader (Biotek, VT, USA).

Statistics

Sample groups were compared using Student’s T-Test using SPSS 21 (IBM, CA, USA). p-values of p≤0.05 were considered statistically significant. For correlations a Pearson correlation coefficient (r) was determined. A p-value of p≤0.05 was considered statistically significant.
References

Suppl. Table 1: Primer Sequences

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward Primer (5'-3')</th>
<th>Reverse Primer (5'-3')</th>
<th>UPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAI promoter</td>
<td>taacccctgtccgcttc</td>
<td>caacaaccttgctgtggctga</td>
<td>77</td>
</tr>
<tr>
<td>CD80</td>
<td>gaagcaaggggctgaagaag</td>
<td>ggaagttcccagaagaggtca</td>
<td>10</td>
</tr>
<tr>
<td>CD206</td>
<td>caccatcgagaattggact</td>
<td>acaattcgctattttgctca</td>
<td>14</td>
</tr>
<tr>
<td>TNF</td>
<td>cagcctttctctcctgtgat</td>
<td>gccagagggtcgtgtagaga</td>
<td>29</td>
</tr>
<tr>
<td>IL-1</td>
<td>ggttgagtttaagccaatcca</td>
<td>tgcgtacctaggcttgtatga</td>
<td>6</td>
</tr>
<tr>
<td>CD86</td>
<td>acagcagaagcagccaatt</td>
<td>gaatcttcagaggagcagcac</td>
<td>15</td>
</tr>
<tr>
<td>mouse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>ctgtagccacgcgtcgtgc</td>
<td>ttgagatccagctgcgttgc</td>
<td>25</td>
</tr>
<tr>
<td>IL-1</td>
<td>agtgacgggaccccccacaaag</td>
<td>agctggatgcctcatcagg</td>
<td>38</td>
</tr>
<tr>
<td>Arg1</td>
<td>gaatctgcatgggcaacc</td>
<td>gaatccctgatctctggaac</td>
<td>2</td>
</tr>
</tbody>
</table>
Suppl. Figure I: Macrophage polarization

(A) Monocytes were incubated for 7d with 100ng/ml MCSF as indicated in Materials and Methods. Pictures demonstrate a representative image of CD68 staining (in red).

(B) qPCR was performed for CD80, CD86, CD206, TNF-α and IL-1 as indicated in Materials and Methods. Data is given as x-fold change versus unpolarized M0 macrophages and represents mean ± SD of six independent donors.

(C) Mean fluorescence intensity (MFI) of CD80 and CD206 on polarized macrophages was evaluated by flow cytometry. Data is given in mean fluorescence intensity (MFI) of the indicated receptor and represents mean ± SD of four independent donors.

(D) IL-6 and IL-10 protein concentration was evaluated in the supernatant of polarized macrophages using a specific ELISA. Data is given in pg/ml. Values represent mean ± SD of four independent donors.
Suppl. Fig. II: MMP and TIMP screening assay

(A) An outline of the MMP and TIMP membrane spotting of antibodies as well as a representative picture are shown. In total, membranes of four individual donors were used for the quantification.

(B) Protein array dots were quantified for MMP1, MMP3, MMP10, MMP13 and TIMP4. Data is given as x-fold intensity change versus unpolarized macrophages and represents mean ± SD of four independent donors.
Suppl. Fig. III: Macrophage migratory speed and furin expression in polarized conditions

(A) Macrophage migration was determined in polarized subsets using a transwell migration assay as described under Materials and Methods. Data is given as x-fold change in number of migrated M1 and M2 macrophages versus unpolarized macrophages and represents mean ± SD of five independent donors.

(B) Mean fluorescence intensity (MFI) of furin on polarized macrophages was evaluated by flow cytometry. Data is given in MFI of furin and represents mean ± SD of three independent donors.
Suppl. Fig. IV: PAI-1 in polarized macrophages

(A) PAI-1 protein concentration was evaluated in the cell lysate of polarized macrophages using a specific ELISA. PAI-1 concentration is given in ng/ml. Values represent mean ± SD of five independent donors.

(B) PAI-1 protein levels were evaluated in unpolarized and M(IL4+IL13) polarized macrophages without or with a STAT6 inhibitor. PAI-1 concentration is given as x-fold control. Values represent mean ± SD of three independent donors.

(C) Furin/PAI-1 complexes in cell lysates were measured as described under Materials and Methods. Data is given in arbitrary unit of signal intensity and represents mean ± SD of three independent donors.

(D) Macrophages were seeded onto Cy3-gelatine coated glass slides and polarized with IL4 and IL13 after transfection with a control siRNA (M(IL4+IL13)) or PAI-1 siRNA (M(IL4+IL13)+siRNA). Matrix degradation was evaluated by measuring the degraded black areas under control si-RNA conditions or with PAI-1 si-RNA. DAPI stained nuclei are marked by white arrows on representative pictures. Area of degradation was determined as described under Materials and Methods and is given as arbitrary units. Data represents mean ± SD of three independent donors.

(E) Macrophages were seeded onto Cy3-gelatine coated glass slides and polarized with LPS and IFN with or without recombinant PAI-1. Matrix degradation was evaluated by measuring the degraded black areas. DAPI stained nuclei are marked by white arrows on representative pictures. Area of degradation was determined as described under Materials and Methods and is given as arbitrary units. Data represents mean ± SD of three independent donors.
Suppl. Fig. V: Mouse macrophage polarization

Markers of macrophage polarization in mouse macrophages were evaluated by qPCR. Values for TNF-α (A), IL-1 (B) and Arg-1 (C) are given as x-fold change versus unpolarized M0 macrophages and represents mean ± SD of three independent donor mice per group.
Suppl. Fig. VI NF-κB dependent PAI-1 induction

(A) Macrophages were polarized for 48h to M(IL4+IL13) macrophages and subsequently stimulated with IL1-beta in the absence or presence of dimethylfumerate (DMF). PAI values are given as x-fold control ± SD.

(B) Nuclear extracts were prepared from M0, M(LPS+IFN), or M(IL4+IL13) macrophages stimulated without or with IL1-beta. Translocation of p65 was determined using specific ELISA. p65 nuclear translocation is given as x-fold over control and represents mean ± SD of three independent experiments.