Subcutaneous Adipocyte Lipolysis Contributes to Circulating Lipid Levels

Mikael Rydén, Peter Arner

Objective—Fatty acids released via fat cell lipolysis can affect circulating lipid levels. However, the contribution of different lipolysis measures in adipose tissue is unknown and was presently examined in isolated subcutaneous adipocytes.

Approach and Results—One thousand and sixty-six men and women were examined for lipolysis regulation in subcutaneous abdominal fat cells. Results were compared with fasting plasma levels of total cholesterol, high-density lipoprotein (HDL) cholesterol (HDL-C) and triglycerides. Spontaneous (basal) lipolysis and the effects of the major hormones stimulating (catecholamines and natriuretic peptides) and inhibiting lipolysis (insulin) were examined. Several statistically significant (P<0.0001) correlations between the different lipolysis parameters and plasma lipids were observed. However, physiologically relevant correlations (adjusted r≥0.05) were only evident between basal or insulin-inhibited lipolysis and plasma triglycerides or HDL-C. Together, these lipolysis measures explained 14% of the variation in triglycerides or HDL-C, respectively. In comparison, a combination of established factors associated with variations in plasma lipids, that is, age; body mass index; waist circumference; waist-to-hip ratio; sex; nicotine use; fat cell volume; and pharmacotherapy against diabetes mellitus; hypertension; or hyperlipidemia explained 17% and 28%, respectively, of the variations in plasma triglycerides and HDL-C.

Conclusions—Subcutaneous fat cell lipolysis is an important independent contributor to interindividual variations in plasma lipids. High spontaneous lipolysis activity and resistance to the antilipolytic effect of insulin associate with elevated triglyceride and low HDL-C concentrations. Thus, although several other factors also play a role, subcutaneous adipose tissue may have a causal influence on dyslipidemia. (Arterioscler Thromb Vasc Biol. 2017;37:00-00. DOI: 10.1161/ATVBAHA.117.309759.)

Key Words: catecholamines ■ cholesterol ■ insulin ■ natriuretic peptides ■ triglycerides
hyperlipidemia.21–26 These investigations have reported normal basal but blunted pro- and antilipolytic effects of catecholamines and insulin, respectively. One study investigated visceral fat cell lipolysis in 45 subjects who were not selected according to circulating lipid levels.27 An inverse relationship was observed between catecholamine-stimulated lipolysis and HDL-C but not with triglyceride levels.

Although the few published studies discussed above suggest that adipocyte lipolysis might influence circulating lipid levels, several unanswered questions remain. How much does subcutaneous fat cell lipolysis contribute? What are the relative roles of basal lipolysis and lipolysis induced by different hormone systems? What is the influence of important intrinsic and extrinsic factors such as age, sex, body mass index, body fat distribution, nicotine use, or concomitant medication? To answer these questions, we conducted a large study (>1000 subjects) on abdominal subcutaneous fat cells examining the possible relationships between basal and hormone-regulated lipolysis on the one hand and fasting plasma levels of total cholesterol, HDL-C, and triglycerides, on the other hand.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

We first investigated the correlations between each of the fat cell lipolysis and plasma lipid measures by single linear regression (Table 1). The relationship between several circulating lipid and lipolysis measures were statistically significant. In many cases, however, the level of correlation as determined by adjusted r^2 values was low (<0.05) and was not considered to be physiologically relevant. On the contrary, the correlations between antilipolytic insulin sensitivity or basal lipolysis and plasma triglyceride or HDL-C were stronger (adjusted r^2=0.05–0.11) and, therefore, selected for further investigations. Basal lipolysis was negatively correlated with HDL-C and positively with triglycerides (Figure 1A), whereas the opposite relationships were observed for antilipolytic insulin sensitivity (ie, pD2; Figure 1B). When dividing the subjects into tertiles according to HDL-C and triglyceride levels, basal lipolysis and antilipolytic insulin sensitivity were significantly different between the 2 extreme groups (ie, high HDL-C/low triglyceride versus low HDL-C/high triglyceride; Figure 1C and 1D). The cohort included obese (n=599) and nonobese (n=467) subjects. The relationships between HDL-C and triglyceride for basal lipolysis were stronger in nonobese subjects (HDL-C: nonobese r=-0.27, P<0.0001; obese r=-0.10, P=0.012 and triglycerides: nonobese r=0.27, P<0.0001; obese r=0.12, P=0.0035). For antilipolytic insulin sensitivity, the corresponding numbers were for HDL-C: nonobese r=0.17, P=0.044; obese r=0.14, P=0.017 and triglyceride: nonobese r=-0.31, P=0.0003; obese r=-0.21, P=0.0002. Altogether, these results suggest that basal lipolysis is better associated with HDL-C/triglycerides in nonobese compared with obese subjects. In contrast, antilipolytic insulin sensitivity is strongly associated with triglycerides in both nonobese and obese subjects. Twenty-nine individuals were on treatment against antihyperlipidemia, and 61 subjects against type 2 diabetes mellitus. These groups were too small to allow a reliable subgroup analysis. Nevertheless, removing these individuals from the analyses provided similar r and P values as in Table 1 (data not shown). Moreover, there was no sex interaction in the relationships between basal lipolysis or antilipolytic insulin sensitivity and HDL-C or triglycerides (F=0.1–2.4; P=0.12–0.76).

We next investigated whether the relationships between antilipolytic insulin sensitivity/basal lipolysis and triglyceride/HDL-C remained after correction for intrinsic/extrinsic factors known to influence circulating lipid levels (Table 2). This demonstrated that the lipolysis/lipid relationships were still highly significant (r<0.0001) after correction for sex; age; body mass index; waist circumference; waist-to-hip ratio; nicotine use; treatment of type 2 diabetes mellitus, hypertension, or hyperlipidemia; and fat cell size. As expected, several of the cofactors correlated significantly with the plasma lipid levels in Table 2. On the contrary, most of these correlations were weak (adjusted r<0.05). For HDL-C, the only relevant relationships were observed with fat cell size and waist-to-hip ratio (adjusted r=0.14–0.16). For plasma triglycerides, these stronger associations were instead found with body mass index and waist-to-hip ratio (adjusted r=0.07–0.14).

Using different regression models, we also investigated the influence on plasma lipids of combining the cofactors in Table 2 and the 2 lipolysis measures (Table 3). Adjusted r^2 for

Table 1. Correlation Between Subcutaneous Adipose Lipolysis and Fasting Plasma Lipid Levels

<table>
<thead>
<tr>
<th>Adipose Parameter</th>
<th>Total Cholesterol</th>
<th>HDL-C</th>
<th>Triglycerides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r (Adjusted r^2)</td>
<td>P Value</td>
<td>r (Adjusted r^2)</td>
</tr>
<tr>
<td>Basal lipolysis</td>
<td>0.09 (0.007)</td>
<td>0.004</td>
<td>-0.25* (0.06)</td>
</tr>
<tr>
<td>Maximum noradrenaline-induced lipolysis</td>
<td>0.008 (0)</td>
<td>0.80</td>
<td>-0.20 (0.037)</td>
</tr>
<tr>
<td>Noradrenaline lipolytic sensitivity</td>
<td>-0.07 (0.004)</td>
<td>0.054</td>
<td>0.02 (<0.001)</td>
</tr>
<tr>
<td>Maximum atrial natriuretic peptide-induced lipolysis</td>
<td>0.02 (0)</td>
<td>0.79</td>
<td>-0.13 (0.01)</td>
</tr>
<tr>
<td>Atrial natriuretic peptide lipolytic sensitivity</td>
<td>0.05 (<0.001)</td>
<td>0.59</td>
<td>0.006 (<0.001)</td>
</tr>
<tr>
<td>Antilipolytic insulin sensitivity</td>
<td>0.20 (0.036)</td>
<td><0.0001</td>
<td>0.30* (0.09)</td>
</tr>
</tbody>
</table>

Linear regression was used. Triglyceride values were log$_{10}$ transformed. HDL-C indicates high-density lipoprotein cholesterol.
antilipolytic insulin sensitivity and basal lipolysis put together was 0.14 for both triglycerides and HDL-C. In this model, each of the lipolysis measures contributed significantly ($P<0.0001$) to the variation in lipid levels. All cofactors combined but without lipolysis measures yielded adjusted r^2 of 0.17 for triglycerides and 0.28 for HDL-C. These values increased to 0.29 and 0.36, respectively, when basal lipolysis and antilipolytic insulin sensitivity were included in the model.

We finally made some further studies of basal lipolysis (Figure 1). The rate in isolated fat cells was strongly and positively correlated with the spontaneous rate of lipolysis in pieces of adipose tissue (Figure 2A). Basal rate of lipolysis and pD_2 for insulin were negatively correlated (Figure 2B).

The impact of basal lipolysis on fasting serum FFA levels was also analyzed. When subjects were divided into tertiles according to circulating FFA levels, the basal rate of lipolysis expressed per fat cell number (Figure 2C) or corrected for total body fat mass (Figure 2D) was significantly higher in the highest compared with the lowest tertile. Similar results were observed when basal lipolysis was expressed per tissue fat weight (24% higher in the highest tertile; $P=0.0045$; graph not shown). There was a linear relationship between total body

Table 2. Relationship Between Fasting Plasma Lipid Levels and Lipolysis in Subcutaneous Fat Cells Corrected for Cofactors

<table>
<thead>
<tr>
<th>Cofactor</th>
<th>Triglycerides</th>
<th>HDL-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Partial r</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>Waist circumference</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>Nicotine use</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus treatment</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>Antihypertensive treatment</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>Hyperlipidemia treatment</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>Fat cell volume</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>HDL-C or triglyceride</td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

Multiple regression was used. Triglyceride values were log$_{10}$ transformed. BMI indicates body mass index; and HDL-C, high-density lipoprotein cholesterol.
fat cell lipolysis and circulating FFAs ($r=0.19$; $P<0.0001$; Figure 2E, top). Although this association was more evident in men ($r=0.34$; $P<0.0001$; Figure 2E, bottom) than in women ($r=0.15$; $P<0.0001$; Figure 2E, middle), there was no sex interaction ($F=2.6$; $P=0.11$). None of these relationships were observed for insulin pD2 (graphs not shown).

Discussion

This study sheds new light on the role of subcutaneous fat cell lipolysis in influencing circulating lipid levels. When examining several relevant measures of lipolysis (basal activity or effect of different hormones), only the basal rate and the antilipolytic effect of insulin displayed clinically relevant relationships. Furthermore, the influence of adipocyte lipolysis was only important for plasma HDL-C and triglycerides. These results indicate that resistance to the antilipolytic effect of insulin and a high rate of basal lipolysis are associated with low HDL-C and high triglycerides levels. This dyslipidemic pattern confers increased risk for atherosclerotic cardiovascular disease. Importantly, the observed relationships were independent of classical risk factors influencing plasma lipids such as sex; age; body mass index; body shape; use of nicotine; treatment of hypertension, diabetes mellitus, or hyperlipidemia; and fat cell size.

Is increased lipolytic activity in fat cells clinically important for dyslipidemia? Our results would suggest so. When put together, the 2 lipolytic measures contributed independently and explained 14% of the variations in plasma triglycerides or HDL-C. The influence of lipolysis can be compared with that of the combined risk factors listed in Table 2. Together, they explained only 17% of the variation in triglycerides and 28% of that in HDL-C. When combined with the lipolysis measures, the influence rose to 29% and 36%, respectively. Thus, the impact of subcutaneous adipocyte lipolysis on plasma lipid levels can be regarded as physiologically relevant.

Fat cell lipolysis is subjected to regional variations as reviewed. The influence of lipolysis can be compared with that of the combined risk factors listed in Table 2. Together, they explained only 17% of the variation in triglycerides and 28% of that in HDL-C. When combined with the lipolysis measures, the influence rose to 29% and 36%, respectively. Thus, the impact of subcutaneous adipocyte lipolysis on plasma lipid levels can be regarded as physiologically relevant.

Table 3. Influence of Cofactors and Lipolysis Parameters Put Together on Plasma Lipid Levels

<table>
<thead>
<tr>
<th>Models</th>
<th>HDL-C</th>
<th>Triglycerides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted r^2</td>
<td>P Value</td>
</tr>
<tr>
<td>Antilipolytic insulin sensitivity and basal lipolysis put together</td>
<td>0.14</td>
<td><0.0001</td>
</tr>
<tr>
<td>All cofactors in Table 2 put together</td>
<td>0.28</td>
<td><0.0001</td>
</tr>
<tr>
<td>All cofactors plus antilipolytic insulin sensitivity and basal lipolysis put together</td>
<td>0.36</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Multiple regression analysis was performed. Plasma triglyceride values were log$_{10}$ transformed. HDL-C indicates high-density lipoprotein cholesterol.

![Figure 2](http://atvb.ahajournals.org/)

Figure 2. Findings with basal lipolysis. Relationship between lipolysis (determined by glycerol release in isolated fat cells and corrected for fat cell number) and (A) pieces of adipose tissue, (B) insulin pD2, and (C) circulating free fatty acid (FFA) levels subdivided into tertiles. (D) There was a similar relationship between basal lipolysis corrected for total body fat mass and circulating FFA levels subdivided into tertiles. (E) Basal lipolysis corrected for total fat mass correlated with circulating FFA levels in the entire cohort (top), in women (middle) and men (bottom). Linear regression analysis was used in (A), (B), and (E). r and P values are indicated. Data in (C) and (D) were compared by ANCOVA, overall P value is given.
colleagues, demonstrating that subcutaneous WAT is a much more important contributor to hepatic fatty acids than visceral fat. Our present findings on serum FFAs are in line with these results showing that high levels were strongly correlated with a high rate of basal lipolysis in subcutaneous fat cells irrespec-
tively of how basal lipolysis was expressed. It would never-
theless have been interesting to compare the results obtained herein with lipolysis measures in visceral fat cells from the same individuals. Unfortunately, such a study would be diffi-
cult to perform. Visceral fat can only be obtained in connection with general surgery, and it would be impossible to standardize patient selection and surgical or anesthetic procedures for a long period of time. In our investigation, we used the same methods that were performed by the same staff throughout the study.

Lipolysis was measured in isolated fat cells, and it might be argued that at least basal lipolysis in this cell preparation does not measure a clinically relevant form of lipolysis. This is, how-
ever, unlikely because we observed a strong correlation between the rate of basal lipolysis in isolated fat cells and adipose tis-

europathy (n=1052) 6.4±5.8 0.0–38.6

Maximum noradrenaline-induced lipolysis* (n=1032) 16.1±10.9 1.3–75.9

Noradrenaline sensitivity, pD2* (n=722) 7.9±1.3 1.1–12.0

Maximum atrial natriuretic peptide-induced lipolysis* (n=132) 12.9±7.3 0.4–41.0

Atrial natriuretic peptide sensitivity, pD2* (n=130) 9.1±1.6 3.5–14.7

Antipoly insulin sensitivity, pD2* (n=447) 14.2±1.6 6.5–17.0

Adipose tissue spontaneous lipolysis* (n=634) 5.3±3.1 0.4–18.6

Medication against T2D/hyperlipidemia/ hyper tension 61/249/45 ...

BMI indicates body mass index; HDL-C, high-density lipoprotein cholesterol; P, fasting plasma; S, fasting serum; and T2D, type 2 diabetes mellitus.

Values are for isolated fat cells or adipose tissue and expressed as µmol of glycerol/2 h/10^7 fat cells or negative log10 molar concentration for half-maximum hormone effect (pD2).

FFA-mediated insulin resistance and altered cholesteryl ester transfer protein activity.

In summary, this study suggests that lipolysis in subcu-
taneous fat cells is an important and independent contributor to variations in plasma triglycerides and HDL-C levels. This relationship pertains specifically to spontaneous (basal) and insulin-inhibited lipolysis.

Acknowledgments

The skillful assistance of research nurses Britt-Marie Lejonhufvud, Katarina Hertel, and Yvonne Widlund, as well as of laboratory tech-

icians Eva Sjölin, Kerstin Wahlén, and Elisabeth Dungner is gratefully acknowledged.

Sources of Funding

This study was supported by grants from the Swedish Research Council, Novo Nordisk Foundation including the Tripartite Immuno-

metabolism Consortium (TriC) Grant Number NNF15CC0018486

Disclosures

None.

References

Highlights

- The impact of subcutaneous fat cell lipolysis on circulating lipid levels is not known.
- In a cohort of >10,000 individuals, we demonstrate that basal and insulin-inhibited lipolysis correlates with circulating triglyceride and high-density lipoprotein cholesterol levels.
- The 2 lipid measures explained almost 15% of the interindividual variations in triglyceride and high-density lipoprotein cholesterol.
Subcutaneous Adipocyte Lipolysis Contributes to Circulating Lipid Levels
Mikael Rydén and Peter Arner

Arterioscler Thromb Vasc Biol. published online June 29, 2017;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2017/06/29/ATVBAHA.117.309759
Free via Open Access

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/