Inhibition of FOXO1/3 Promotes Vascular Calcification

Liang Deng,* Lu Huang,* Yong Sun,* Jack M. Heath, Hui Wu, Yabing Chen

Objective—Vascular calcification is a characteristic feature of atherosclerosis, diabetes mellitus, and end-stage renal disease. We have demonstrated that activation of protein kinase B (AKT) upregulates runt-related transcription factor 2 (Runx2), a key osteogenic transcription factor that is crucial for calcification of vascular smooth muscle cells (VSMC). Using mice with SMC-specific deletion of phosphatase and tensin homolog (PTEN), a major negative regulator of AKT, the present studies uncovered a novel molecular mechanism underlying PTEN/AKT/FOXO (forkhead box O)-mediated Runx2 upregulation and VSMC calcification.

Approach and Results—SMC-specific PTEN deletion mice were generated by crossing PTEN floxed mice with SM22α-Cre transgenic mice. The PTEN deletion resulted in sustained activation of AKT that upregulated Runx2 and promoted VSMC calcification in vitro and arterial calcification ex vivo. Runx2 knockdown did not affect proliferation but blocked calcification of the PTEN-deficient VSMC, suggesting that PTEN deletion promotes Runx2-dependent VSMC calcification that is independent of proliferation. At the molecular level, PTEN deficiency increased the amount of Runx2 post-transcriptionally by inhibiting Runx2 ubiquitination. AKT activation increased phosphorylation of FOXO1/3 that led to nuclear exclusion of FOXO1/3. FOXO1/3 knockdown in VSMC phenocopied the PTEN deficiency, demonstrating a novel function of FOXO1/3, as a downstream signaling of PTEN/AKT, in regulating Runx2 ubiquitination and VSMC calcification. Using heterozygous SMC-specific PTEN-deficient mice and atherogenic ApoE−/− mice, we further demonstrated AKT activation, FOXO phosphorylation, and Runx2 ubiquitination in vascular calcification in vivo.

Conclusions—Our studies have determined a new causative effect of SMC-specific PTEN deficiency on vascular calcification and demonstrated that FOXO1/3 plays a crucial role in PTEN/AKT-modulated Runx2 ubiquitination and VSMC calcification. (Arterioscler Thromb Vasc Biol. 2015;35:00-00.)

Key Words: AKT • FOXO1/3 • PTEN • Runx2 • ubiquitination • vascular calcification

Vascular calcification, namely aberrant calcium deposition in the vessel wall, reduces elasticity and compliance of the vessel wall. It is a well-known predictive risk factor of subsequent cardiovascular mortality.3–5 Vascular calcification has now been recognized as an active cell-regulated process resembling bone modeling, rather than simply passive calcium deposition.6–10 Several cell types are involved in this process, including vascular smooth muscle cells (VSMC), which undergo osteogenic differentiation and calcification.4–10 We have demonstrated that runt-related transcription factor 2 (Runx2), the key osteogenic regulator for osteoblast differentiation and chondrocyte maturation,11,12 plays an essential role in regulating osteogenic differentiation of VSMC in vitro and vascular calcification in atherosclerosis in vivo.13 Furthermore, we have determined that activation of protein kinase B (AKT) is crucial for oxidative stress-induced VSMC calcification through upregulation of Runx2,13 and enforced expression of constitutively activated AKT promotes VSMC calcification.13 However, the molecular mechanisms underlying AKT-regulated upregulation of Runx2 and VSMC calcification are unknown. Activation of AKT is regulated by 2 major upstream signals: phosphatidylinositol 3-kinase and lipid phosphatase, which was originally discovered as a tumor suppressor.14,15 PTEN inactivates AKT by hydrolyzing phosphatidylinositol-3,4,5-trisphosphate.16 PTEN has been implicated in regulating neointimal smooth muscle cell proliferation and migration.17,18 PTEN deficiency in smooth muscle cells activates AKT in the mouse vasculature,19–21 which contributes to increased smooth muscle cell proliferation that leads to intimal hyperplasia in mouse vascular development22,23 and in response to injury.21 In atherosclerosis studies, partial inactivation of PTEN does not seem to affect high-fat diet-induced atherosclerosis of the atherogenic ApoE−/− mice,24 but chemical-induced expression of PTEN was found to be associated with inhibition of high-cholesterol diet-induced atherosclerosis in a rabbit model.25 It is unknown whether PTEN plays a role in regulating vascular calcification. Using

Received on: April 18, 2014; final version accepted on: October 27, 2014.
From the Departments of Pathology (L.D., L.H., Y.S., J.M.H.) and Pediatric Dentistry (H.W.), University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center; and Department of Research Service (Y.C.), University of Alabama at Birmingham.
*These authors contributed equally to this article.
Current address for L.D.: Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China.
The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBHA.114.304786/-/DC1. Correspondence to Yabing Chen, PhD, 1825 University Blvd, 630 Shelby Biomedical Research Building, Birmingham, AL 35294; E-mail ybchen@uab.edu
© 2014 American Heart Association, Inc.
Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBHA.114.304786
the SMC-specific PTEN deletion mice, we determined a causative effect of the PTEN deficiency on vascular calcification, independent of cell proliferation, and elucidated the underlying molecular mechanisms.

One of the known downstream signals regulated by activated AKT is the family of forkhead box O (FOXO) proteins. The FOXO family includes FOXO1, FOXO3, FOXO4, and FOXO6 in mammalian cells. FOXO1, FOXO3, and FOXO4 are ubiquitously expressed, whereas FOXO6 is specifically expressed in brain and liver.26–29 Activated AKT phosphorylates FOXOs and leads to exclusion of the FOXOs from the nucleus, which blocks the transcriptional activity of FOXOs.30 The role of the FOXOs in VSMC calcification is entirely unknown. Previous studies have suggested a potential link between FOXO and Runx2 expression in other cell types.31–34 In osteoblasts and human embryonic stem cells, FOXO1 or FOXO3 increases Runx2 expression, whereas other studies suggest that FOXO1 inhibits Runx2 activity in osteoblasts or prostate cancer cells.31–34 Therefore, the function of FOXOs in regulating Runx2 expression may be cell type–dependent. In this study, we have determined, for the first time, the function of FOXOs in regulating VSMC calcification and elucidated the role of FOXOs in AKT-regulated upregulation of Runx2 and VSMC calcification.

We have determined that SMC-specific PTEN deletion promoted VSMC calcification in vitro, aortic calcification ex vivo and in vivo, via increased activation of AKT that upregulates Runx2. VSMC calcification induced by the PTEN deficiency is independent of VSMC proliferation. Mechanistically, activation of AKT by PTEN deficiency induces inhibition of FOXO1/3 that led to the upregulation of Runx2. The upregulation of Runx2 occurred post-translationally through inhibiting Runx2 ubiquitination. Using heterozygous SMC-specific PTEN-deficient mice and atherogenic ApoE−/− mice, we have also demonstrated AKT activation, FOXO phosphorylation, and Runx2 ubiquitination in vascular calcification in vivo. Altogether, our studies have provided the first evidence demonstrating a causative effect of SMC-specific PTEN deficiency on vascular calcification and identified a novel function of FOXO1/3 in the regulation of the Runx2 ubiquitination and vascular calcification.

Materials and Methods

The smooth muscle–specific PTEN-deficient mice were generated by crossing PTEN floxed mice (PTENf/f) with the SM22α-Cre transgenic mice.14,36 Details of materials and experimental procedures are in the Materials and Methods section in the online-only Data Supplement.
Results

Activation of AKT by PTEN Deficiency Promotes Runx2 Upregulation and VSMC Calcification

We have demonstrated that activation of AKT is associated with VSMC calcification in vitro.\(^{13,15}\) Using mice with SMC-specific ablation of PTEN,\(^{18}\) the key upstream negative regulator for AKT activation, we aimed to determine a direct effect of endogenous AKT activation on VSMC calcification. The SMC-specific PTEN deletion mice (PTEN\(^{\Delta/\Delta}\)) were generated by crossing the PTEN exon 5 floxed mice with SM22Cre transgenic mice. Similar to previous observation,\(^{37}\) the SM22Cre-mediated PTEN deletion resulted in early death of the PTEN\(^{\Delta/\Delta}\) mice. We and others have reported that osteogenic differentiation of VSMC determines vascular calcification\(^{5,6,14}\); therefore, the effect of the PTEN deletion on osteogenic differentiation of VSMC was first characterized using primary VSMC from the PTEN\(^{\Delta/\Delta}\) mice and their control PTEN\(^{f/f}\) littermates.

The deletion of PTEN in VSMC was demonstrated by Western blot analysis (Figure 1Aa). AKT1 was found to be the predominant isoform of AKT in VSMC (Figure 1Ab); however, it increased activation of AKT1, as indicated by AKT phosphorylation at both serine 473 (S473) and threonine 308 (T308) residues in the PTEN\(^{\Delta/\Delta}\) VSMC cultured in growth media (Figure 1Aa).

Marked increase in calcification was also observed in PTEN\(^{\Delta/\Delta}\) VSMC cultured in osteogenic media for 3 weeks compared with the PTEN\(^{f/f}\) VSMC (Figure 1Ba), which was further confirmed by quantitative calcium measurement (Figure 1Bb). Concurrently, the expression of osteogenic transcription factor Runx2 and Runx2-regulated osteogenic marker genes, including osteocalcin and collagen type I, was increased in the PTEN\(^{\Delta/\Delta}\) VSMC (Figure 1Bc). Notably, a dramatic increase in the Runx2 protein level was evident in the PTEN\(^{\Delta/\Delta}\) VSMC (Figure 1Bd). Accordingly, we conclude the PTEN deletion in VSMC constitutively activates AKT and promotes upregulation of Runx2 and osteogenic differentiation of VSMC.

Inhibition of AKT and Runx2 Attenuates Calcification of the PTEN-Deficient VSMC

The definitive role of AKT/Runx2 signaling axis in mediating the PTEN deficiency–induced VSMC calcification was further determined by loss of function studies. Inhibition of AKT activation by an AKT inhibitor abolished calcification of the PTEN\(^{\Delta/\Delta}\) VSMC (Figure 1Ca), which was associated with inhibition of Runx2 upregulation (Figure 1Cb).

Furthermore, we found that knockdown of Runx2 by specific small hairpin RNA blocked calcification of PTEN\(^{\Delta/\Delta}\) VSMC (Figure 1Da). The Runx2 knockdown did not affect AKT phosphorylation (Figure 1Db). These data demonstrated that upregulation of Runx2 by activation of AKT is essential for the PTEN deficiency–induced VSMC calcification. Of note, the Runx2 knockdown blocked calcification but did not affect proliferation of the PTEN\(^{\Delta/\Delta}\) VSMC (Figure I in the online-only Data Supplement), suggesting that the Runx2 upregulation-dependent calcification in the PTEN-deficient VSMC is independent of its effect on VSMC proliferation.

Figure 2. Smooth muscle cell (SMC)–specific phosphatase and tensin homolog (PTEN) deletion promotes ex vivo aortic calcification. A, SMC-specific PTEN deficiency increased phosphorylated AKT in the media. Consecutive sections from descending aortas from PTEN\(^{f/f}\) and PTEN\(^{\Delta/\Delta}\) mice were stained with H&E (histology), VVG (elastin), or specific antibodies for PTEN, smooth muscle α-action (SMA), and phosphorylated protein kinase B (pAKT). Representative images from 5 pairs of littermates are shown. B, SMC-specific PTEN deficiency promoted aortic calcification. Aorta rings from PTEN\(^{f/f}\) and PTEN\(^{\Delta/\Delta}\) mice were cultured in osteogenic medium containing H\(_2\)O\(_2\) (0.3 mmol/L) for 2 weeks. Consecutive sections were stained by H&E, Alizarin Red (calcium), Von Kossa (calcium phosphate), and specific antibodies for pAKT and runt-related transcription factor 2 (Runx2). Representative images from 5 independent experiments are shown.
SMC-Specific PTEN Deletion Promotes Ex Vivo Aortic Calcification

The effect of SMC-specific PTEN deletion on calcification of VSMC in their natural milieu was characterized in an ex vivo aortic ring culture system using descending aortas from PTEN\(^{-/-}\) mice and their control littermates. Immunohistochemical staining with a PTEN-specific antibody demonstrated specific deletion of PTEN in the media, but not in the endothelium (Figure 2A, PTEN arrows). Histological analysis demonstrated increased medial thickness and decreased smooth muscle \(\alpha\)-action, a SMC marker in the PTEN\(^{-/-}\) aortas (Figure 2A), which is consistent with the previous findings that PTEN regulates proliferation of SMCs.\(^{39,23,25}\)

On the other hand, sustained increased phosphorylation of AKT was demonstrated in the PTEN\(^{-/-}\) aorta (Figure 2A). Similar to the observation with isolated VSMC, aortas from PTEN\(^{-/-}\) mice exhibited intensive calcification after cultured in osteogenic media for 2 weeks (Figure 2B, Alizarin red and Von Kossa), which was associated with decreased smooth muscle \(\alpha\)-action and elevated Runx2 (Figure 2B). By contrast, vascular calcification was not evident in aortas from the control PTEN\(^{+/+}\) littermates under the same conditions (Figure 2B). These results demonstrated a direct effect of endogenous activation of AKT by the PTEN deletion in VSMC on upregulation of Runx2 and VSMC calcification.

PTEN Deficiency Upregulates Runx2 by Inhibiting Runx2 Ubiquitination

To determine the molecular mechanism underlying activation of AKT in promoting upregulation of Runx2 and VSMC calcification, we first characterized Runx2 expression in the PTEN\(^{-/-}\) VSMC. The amount of the Runx2 protein was increased during calcification of the PTEN\(^{-/-}\) VSMC (Figure 1Bd), which was associated with a modest increase in expression of the Runx2 mRNA (Figure 1Bc). These observations led us to examine the amount of both Runx2 mRNA and protein in PTEN\(^{-/-}\) VSMC cultured in normal growth media, a basal condition. Under the basal condition, marked increase in the Runx2 protein level was also evident in the PTEN\(^{-/-}\) VSMC (Figure 3Aa), whereas expression of the Runx2 mRNA is not altered significantly (Figure 3Ab). Inhibition of de novo protein synthesis by cycloheximide decreased the amount of Runx2 in the control PTEN\(^{+/+}\) VSMC (Figure 3B) in a time-dependent manner. In contrast, the amount of the Runx2 protein was sustained in the PTEN\(^{-/-}\) VSMC after exposure to cycloheximide for 12 hours, indicating that the PTEN deletion stabilized Runx2 by preventing Runx2 protein from degradation. As ubiquitination mediates degradation of Runx2,\(^{38,39}\) we determined the effect of the PTEN deficiency on the Runx2 ubiquitination. The PTEN deletion did not affect the overall expression profile of poly-ubiquitin in VSMC (Figure 3C, input). However, modification of Runx2 by poly-ubiquitin was markedly decreased in the PTEN\(^{-/-}\) VSMC (Figure 3C, IP:Runx2), indicating that ubiquitination-mediated degradation of Runx2 was inhibited, which rendered Runx2 stable in the PTEN\(^{-/-}\) VSMC.

AKT Activation Promotes Cytosolic Translocation of FOXO1/FOXO3

The FOXO protein family, one of several known downstream targets of activated AKT, has been associated with expression of Runx2 in osteoblasts, human embryonic stem cells, and prostate cancer cells, although data from these studies are not compelling.\(^{31–34}\) We found that FOXO1 and FOXO3a are highly expressed in VSMC compared with FOXO4 (Figure II in the online-only Data Supplement). The PTEN deficiency in VSMC did not affect the expression of FOXOs mRNA (Figure II in the online-only Data Supplement) or production of FOXO1/3 proteins (Figure 4A). In contrast, phosphorylation of FOXO1 and 3 was dramatically increased in the PTEN\(^{-/-}\) VSMC (Figure 4A). As phosphorylation of FOXO has been shown to be associated with nuclear exclusion,\(^{36}\) we examined the cellular localization of FOXO1/3 in PTEN\(^{-/-}\) VSMC and control PTEN\(^{+/+}\) VSMC. The PTEN deletion in VSMC increased cytosolic translocation and decreased nuclear localization of FOXO1/3, which was associated with increased Runx2 in the nuclear (Figure 4B). Furthermore, activation of AKT using a lentivirus carrying a constitutively activated AKT similarly promoted cytosolic translocation of FOXO1/3 and abolished their nuclear localization (Figure 4C), which was again associated with increased amount of Runx2. These data demonstrate that activation of AKT, either by PTEN deficiency or by overexpression of...
constitutively activated AKT, leads to nuclear exclusion of FOXO1/FOXO3 in VSMC, which was associated with upregulation of Runx2.

FOXO1/3 Knockdown Inhibits Runx2 Ubiquitination and Promotes VSMC Calcification

We further determined whether inhibition of FOXO1/3 directly affect Runx2 and VSMC calcification by knocking down FOXO1 or FOXO3 in VSMC using specific small hairpin RNA. Knockdown of FOXO1 decreased the expression of FOXO3 in VSMC, and vice versa (Figure 5A). Such an observation is consistent with a previous report that FOXO1 and FOXO3 regulate each other in human fibroblasts.41 Knockdown ofFOXO1 or FOXO3 markedly increased the amount of Runx2 detected, without affecting expression of the Runx2 mRNA (Figure 5A and B). The effects of FOXO1/3 knockdown on ubiquitination of Runx2 were further determined. Similar to the PTEN deletion, FOXO1 or FOXO3 knockdown in VSMC did not affect the general expression profile of poly-ubiquitin, but inhibited Runx2-bound poly-ubiquitin (Figure 5C). Furthermore, knockdown of FOXO1 or FOXO3 promoted VSMC calcification, as determined by Alizarin red staining (Figure 5D) and quantitative calcium measurement (Figure 5E). These data demonstrate that FOXO1/3 negatively regulates the Runx2 stability in VSMC and knockdown of FOXO1/3 phenocopies the PTEN deficiency.

SMC-Specific PTEN Reduction Promotes Vascular Calcification in Mice

The role of AKT/FOXO/Runx2 signaling axis in vascular calcification was further determined in vivo. As the early death of the homozygous SMC-specific PTEN^∆/∆ mice prevented us from carrying out long-term in vivo vascular calcification studies, the heterozygous SMC-specific PTEN-deficient mice (PTEN^∆/+) were utilized. The PTEN^∆/+ mice appeared normal.
as their control littermates (PTENf/+). Decreased PTEN expression was evident in the vasculature of the heterozygous mice (Figure 6A). Importantly, the heterozygous SMC-specific PTEN mice fed on a normal chow diet spontaneously developed vascular calcification at 6 months of age (Figure 6A and B). Alizarin red staining revealed apparent calcium deposition in aortas from the PTENΔ/+ mice, whereas no calcification was detected in the aortas from control littermates (Figure 6A). Quantitative measurement of total calcium content in the aortic tissues further demonstrated increased vascular calcification in the PTENΔ/+ mice (Figure 6B). Moreover, increased vascular calcification in the PTENΔ/+ mice was associated with increased AKT activation, FOXO phosphorylation, and Runx2 upregulation in the vasculature, as determined by immunostaining (Figure 6C) as well as Western blot analyses (Figure 6D).

In addition, we determined the AKT/FOXO/Runx2 signaling axis in the atherogenic ApoE−/− mice, which developed atherosclerotic vascular calcification as we demonstrated previously.34,35 Consistently, HFD induced upregulation of Runx2 and vascular calcification (Figure IV in the online-only Data Supplement). Similar to the observation with the PTENΔ/+ mice (Figure 6), Runx2 upregulation was associated with increased AKT activation and FOXO phosphorylation in calcified vasculature of the ApoE−/− mice (Figure IVA and IVBa in the online-only Data Supplement). Furthermore, decreased Runx2 ubiquitination was also evident in aortas from the HFD-fed ApoE−/− mice (Figure IVB in the online-only Data Supplement). Taken together, results from these 2 animal models supported the important role of AKT/FOXO/Runx2 signaling axis in vascular calcification in vivo.

Discussion

Runx2 is a key transcriptional regulator required for vascular calcification in vitro and in vivo. Activation of AKT also promotes calcification of VSMC. To uncover underlying mechanisms connecting activation of AKT and upregulation of Runx2 in the development of vascular calcification, we generated a mouse model with sustained AKT activation in VSMC by selective deletion of PTEN, an upstream phosphatase that negatively regulates AKT activation. Our studies reveal a novel causative effect of the SMC-specific PTEN deficiency in promoting vascular calcification. Using VSMC from the SMC-specific PTEN deletion mice, we have also elucidated a new function of PTEN/AKT/FOXO1/3 signaling axis in regulating ubiquitination of Runx2 and vascular calcification. The important role of the AKT/FOXO/Runx2 signaling axis in vascular calcification in vivo has been further demonstrated with the heterozygous SMC-specific PTEN deletion mice and the atherogenic ApoE−/− mice.

As a protein/lipid phosphatase, PTEN has diverse functions in different type of cells; most notable one is its tumor
repression activity. In the vasculature, PTEN has been implicated in proliferation, differentiation, and migration of smooth muscle cells,16-23,37 however, the role of PTEN in vascular calcification is entirely unknown. Our studies with comprehensive approaches using the SMC-specific PTEN deletion VSMC in vitro, aortas ex vivo, and the heterozygous SMC-specific PTEN deletion mice in vivo have strongly supported a causative effect of the PTEN inhibition on vascular calcification. Using an AKT inhibitor, we confirmed that activation of AKT is crucial for calcification of the PTEN-deficient VSMC. Furthermore, we demonstrated that upregulation of Runx2 was required for the calcification of VSMC from the PTEN-deficient mice. Importantly, the Runx2 knockdown was found to only block calcification but not proliferation of the PTEN-deficient VSMC, suggesting that PTEN deficiency-induced Runx2 upregulation promotes osteogenic differentiation of VSMC, which may be independent of its previously reported function in regulating VSMC proliferation, differentiation, and migration.19-23,37 In normal VSMC, the amount of Runx2 detected is low.42,43 In the PTEN-deficient VSMC, however, markedly increased Runx2 was evident even under the basal condition. Since we have shown that upregulation of Runx2 is essential and sufficient to induce VSMC calcification,13,14 AKT activation-induced elevation of the Runx2 protein in the PTEN-deficient VSMC may predispose the cells to undergo osteogenic differentiation. As a result, the PTEN deficiency promoted calcification of the PTEN\textlessVSMC cultured in osteogenic medium without any additional stimuli. Runx2-regulated osteogenic marker genes, including osteocalcin and collagen type I,13,14,44 increased concurrently. This finding is also supported by the data from the in vivo studies with SMC-specific reduction of PTEN. Apparently, increased AKT activation by the PTEN reduct contributes to Runx2 upregulation and the spontaneous development of vascular calcification in these mice.

The elevated amount of Runx2 protein in the PTEN-deficient VSMC under basal conditions was not caused by increased expression of Runx2 at the transcriptional level. Instead, the PTEN deficiency in VSMC stabilizes the Runx2 protein by inhibiting Runx2 degradation, an important mechanism that has been demonstrated to stabilize the Runx2 protein in bone cells.38 In bone cells, post-translational modulation by the ubiquitin-proteasome pathway regulates stability and degradation of Runx2 protein.39 Our studies have provided the first evidence that the PTEN deficiency increases the Runx2 stability by inhibiting ubiquitination of Runx2 in the PTEN\textlessVSMC. Studies in osteoblasts have identified several molecules that contribute to Runx2 degradation, including Smad ubiquitin regulatory factor 1 and cyclin-D1.41-46 Smad ubiquitin regulatory factor 1 is an E3-ligase that binds to Runx2 and mediates ubiquitin binding to Runx2 that leads to Runx2 degradation.41 Cyclin-D1, on the other hand, contributes to pro teaseosome-dependent degradation of Runx2 by cyclin D1/Cdk4-induced Runx2 phosphorylation in the C-terminus of Runx2, which is critical for Runx2 protein stability.46 Additionally, other factors have been implicated in mediating Runx2 degradation by recruiting E3-ligases, such as Smad 6, which binds to Runx2 and serves as an adaptor for Smad ubiquitin regulatory factor 1–induced Runx2 degradation.47,48 However, the PTEN deficiency in VSMC did not affect the expression of the previously characterized regulators of Runx2 ubiquitination in the bone cells, such as Smad ubiquitin regulatory factor 1 and cyclin-D1. Therefore, the molecular regulators that modulate Runx2 degradation and ubiquitination in VSMC may be novel, which warrant further exploration.

Our studies have also demonstrated that the FOXO1/3 signaling axis is responsible for the inhibition of the Runx2 ubiquitination, thereby upregulates Runx2 which then promotes VSMC calcification. Specifically, AKT-regulated phosphorylation and cytosolic translocation of FOXO1/3 uncreased Runx2 in VSMC. The phosphorylation and subsequent nuclear exclusion of the FOXO family of proteins has been associated with neointimal hyperplasia in a rat balloon injury model.49 Upregulation of AKT/FOXO signaling has been found in the vasculature in an aging rat atherosclerosis model.50 However, the function of SMC-expressed FOXO family proteins in regulating vascular calcification is unknown. Using FOXO1/3-specific small hairpin RNA, we determined that FOXO1/3 regulates upregulation of Runx2 and subsequent calcification of VSMC. FOXO1 and 3 have been found to increase Runx2 in osteoblasts and human embryonic stem cells; however, other studies indicate that FOXO1 inhibits the Runx2 activity in osteoblasts or prostate cancer cells.31-34 Our studies have delineated a novel function of FOXO1/3 in regulating the Runx2 protein stability in VSMC. Consistent with the cross-regulation of FOXO1/3 in human fibroblasts,41 knockdown of FOXO1 decreases the expression of FOXO3 in VSMC and vice versa, implying a positive feedback loop controlling the expression of FOXO1/3. Knockdown of FOXO1/3 phenocopied the PTEN deficiency in terms of Runx2 ubiquitination and VSMC calcification, which support a novel function of FOXO1/3 in the process. More importantly, increased FOXO phosphorylation and Runx2 upregulation are associated with AKT activation in vascular calcification in the heterozygous SMC-specific PTEN deletion mice as well as the atherogenic ApoE\textlessmice in vivo. Decreased Runx2 ubiquitination has been found in the vasculature of the HFD-fed ApoE\textlessmice, which may lead to decreased Runx2 degradation and thus increase Runx2 and promote vascular calcification. These animal studies have further supported an important role of AKT activation, FOXO phosphorylation, and Runx2 ubiquitination in vascular calcification in vivo.

In summary, the current studies have demonstrated a causative effect SMC-specific PTEN deficiency on vascular calcification via activation of AKT and upregulation of Runx2 in vitro and in vivo. We have further determined a novel function of the AKT/FOXO1/3 signaling axis in regulating Runx2 ubiquitination and stability. These studies have provided the first evidence demonstrating the role of FOXO1/3 in mediating activation of AKT-induced VSMC calcification and identified that FOXO1/3-modulated ubiquitination of Runx2 as a novel mechanism in regulating vascular calcification. The new molecular insights gained in the present
studies in the regulation of Runx2 in the development of VSMC calcification may lead to identification of novel therapeutic targets.

Acknowledgments
We thank Jay M. McDonald, MD (University of Alabama at Birmingham, UAB), for critical review and Kaiyu Yuan, MD (UAB), for technical assistance.

Sources of Funding
This work was supported in part by grants from the National Institutes of Health HL092215 and DK100847 and Veterans Administration BX000369 and BX001591 (project 2) to Y. Chen. J.M. Heath was supported by American Heart Association Grant 12PRE11840009.

Disclosures
None.

References
16. Mourani PM, Garl PJ, Wenzlau JM, Carpenter TC, Stenmark K, Weisner Evans MC. Unique, highly proliferative growth phenotype expressed by embryonic and neonatal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN. Circ Res. 2004;100:1299–1306.
Vascular calcification is emerging as an important risk factor that predicts outcome of cardiovascular diseases. Clinical and experimental studies from our group and others have demonstrated a critical role of the osteogenic transcription factor runt-related transcription factor 2 (Runx2) in regulating vascular calcification. The present studies have determined a new causative effect of smooth muscle cell–specific phosphatase and tensin homolog (PTEN) deficiency on Runx2 upregulation and vascular calcification. The PTEN deficiency upregulates Runx2 through inhibiting Runx2 ubiquitination. Our studies have revealed that FOXO1/3 is the link between AKT activation and Runx2 upregulation because FOXO1/3 knockdown phenocopies the PTEN deficiency, including Runx2 ubiquitination and vascular smooth muscle cell calcification. Using heterozygous smooth muscle cell–specific PTEN deletion mice and the atherogenic ApoE−/− mice, we have demonstrated the important role of AKT/FOXO/Runx2 signaling axis in vascular calcification in vivo. Altogether, our studies have provided the first evidence demonstrating a new role of PTEN in regulating vascular calcification and identified FOXO1/3-regulated Runx2 ubiquitination as a novel underlying mechanism.
Inhibition of FOXO1/3 Promotes Vascular Calcification
Liang Deng, Lu Huang, Yong Sun, Jack M. Heath, Hui Wu and Yabing Chen

Arterioscler Thromb Vasc Biol. published online November 6, 2014;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2014/11/06/ATVBAHA.114.304786

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2014/11/06/ATVBAHA.114.304786.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
Supplemental Figure I. *Runx2 knockdown did not affect VSMC proliferation.* PTEN has been shown to play a role in regulating smooth muscle cell proliferation. Studies in Fig1D demonstrated that upregulation of Runx2 by PTEN deletion was essential to induce calcification of the PTEN^{Δ/Δ} VSMC. To determine whether upregulation of Runx2 may induce VSMC proliferation that contributes to increased calcification of the PTEN^{Δ/Δ} VSMC, we assessed proliferation of PTEN^{f/f} and PTEN^{Δ/Δ} with or without Runx2 knockdown by BrdU incorporation assay. Consistent with previous observations, PTEN deficiency increased VSMC proliferation cultured in growth media as well as osteogenic media (A&B, n=3, *p<0.001, compared with control PTEN^{f/f} VSMC, defined as 1). The Runx2 knockdown did not affect proliferation of the PTEN^{f/f} VSMC (A&B, #NS, not significant, compared with control PTEN^{f/f} VSMC). Importantly, Runx2 knockdown did not affect proliferation of the control PTEN^{Δ/Δ} VSMC (#NS, not significant, compared with control PTEN^{Δ/Δ} VSMC), supporting that PTEN deficiency-induced upregulation of Runx2 promotes VSMC calcification, which is not due to its effect on VSMC proliferation.

Supplemental Figure II. *The PTEN deletion did not affect expression of FOXOs in VSMC.* The effect of the PTEN deficiency on the expression of FOXOs was determined by real-time PCR analysis. We found that the expression of FOXO1 and 3 are more abundant in VSMC cultured in growth media, compared with that of FOXO4 (n=5, #NS, not significant). The expression of FOXO4 in PTEN^{f/f} VSMC is defined as 1). The PTEN deficiency did not affect the expression of FOXO1, FOXO3 and FOXO4.

Supplemental Figure III. *The PTEN deletion did not affect expression of Cyclin-D1 or Smurf1 in VSMC.* Real-time PCR analysis was performed to determine the expression of the known factors that are associated with Runx2 ubiquitination, including Cyclin-D1 and Smurf1. We did not find any significant difference in the expression of Cyclin-D1 and Smurf1 in PTEN^{f/f} and PTEN^{Δ/Δ} VSMC (n=5, #NS, not significant, the expression of each gene in PTEN^{f/f} VSMC is defined as 1).

Supplemental Figure IV. *Increased AKT activation, FOXO phosphorylation and decreased Runx2 ubiquitination in atherogenic ApoE^{−/−} mice.* AKT activation, FOXO phosphorylation and Runx2 ubiquitination was also determined in vascular calcification of the ApoE^{−/−} mice. HFD increased vascular calcification in the aortic roots (A, Alizarin Red), which was associated with increased AKT activation (A, pAKT), FOXO phosphorylation (A, pFOXO) and Runx2. Western blot analysis also demonstrated increased AKT activation, FOXO phosphorylation and Runx2 upregulation in the descending aortas of the HFD-fed ApoE^{−/−} mice (Ba, n=6 mice for each group). Importantly, decreased Runx2 ubiquitination was demonstrated in the descending aortas from the HFD-fed mice (Bb). These studies have further supported the important role of AKT/FOXO/Runx2 signaling axis in vascular calcification in vivo.
MATERIALS AND METHODS

The smooth muscle specific-PTEN deficient mice were generated by crossing PTEN exon 5 floxed mice (PTEN\(^{f/f}\))\(^1\) with the SM22α-Cre transgenic mice\(^2,\)\(^3\). Details of materials and experimental procedures are in the Methods section in the Online Data Supplement.

Online Supplemental Methods

Generation of SMC-specific PTEN deletion mice. PTEN exon5 floxed mice (PTEN\(^{f/f}\))\(^1\) and SM22α-Cre transgenic mice\(^2,\)\(^3\) were obtained from The Jackson Laboratory. The SM22α-Cre mice were bred with PTEN\(^{ff}\) to generate smooth muscle-specific PTEN deletion mice (PTEN\(^{\Delta\Delta}\)). Exon 5 encodes the phosphatase domain of PTEN\(^1\), which is the functional domain. As most of the smooth muscle-specific PTEN deletion mice died around 4-5 weeks of age, all experiments were performed with aortas or smooth muscle cells isolated from 25-30 days old littermates. Primer sets for genotyping are: Cre: F-5’-GCGGTCTGGCAGTAAAAACTATC-3’ and R-5’-GTGAAACAGCATTGCTGTCACTT-3’; PTEN: F-5’ - CAAGCACTCTGCGAACTGAG- 3’ and R-5’-AAGTTTTTGAAGGCAAGATGC- 3’.

In vivo calcification of the heterozygous SMC-specific PTEN deletion mice. The effects of smooth muscle-expressed PTEN on vascular calcification was determined in 6-months old heterozygous SMC-specific PTEN deletion mice and their control littermates on normal chow diet. Aortic calcification was determined by Alizarin red staining as well as calcium content measurement Arsenazo III method as described before\(^3,\)\(^4\).

Immunohistochemistry. Frozen aortic sections were processed for histology and immunohistochemistry as we described\(^3,\)\(^4\). In brief, Hematoxylin & Eosin (H&E) and Verhoeff-Van Gieson (VVG) was used for histological analysis. Antibody for PTEN, SMA, Runx2 and phosphorylated-AKT was applied to acetone-fixed cryosections. The sections were washed and exposed to a secondary antibody (horseradish peroxidase-conjugated antibodies), and antibody binding was visualized with diaminobenzidine. Sections were counterstained with hematoxylin.

Aortic ring culture. Descending aortas were cut into 2-3 mm rings, which were cultured in osteogenic medium containing 1% FBS with 0.3mM H\(_2\)O\(_2\) for 2 weeks with medium changed every 3 days. At the end of experiments, aortic rings were harvested, fixed and embedded in paraffin.

Aortic calcification. Consecutive sections from the cultured aortic rings were stained with H&E for histology. Alizarin Red staining or Von Kossa staining (Sigma Aldrich) were used to detect calcification as we previously described\(^3,\)\(^4\).

VSMC culture. Primary VSMC were isolated from mouse aorta and cultured in growth medium as we described previously\(^5\). All experiments were performed with VSMC at passages 3 to 5.

In vitro VSMC calcification\(^5\). VSMC calcification was induced as we previously described in osteogenic media containing 0.25 mmol/L L-ascorbic acid and 10 mmol/L β-glycerophosphate (Sigma Aldrich) with or without H\(_2\)O\(_2\) (0.3 mmol/L). Calcification was determined by Alizarin Red staining or quantified by measuring total calcium in the cell lysates by the Arsenazo III method\(^4\).

In vitro VSMC proliferation\(^6\). Proliferation was assayed by the incorporation of 5-bromo-2-deoxyuridine (BrdU Proliferation Assay Kit, Calbiochem) as we reported\(^6\). VSMC were cultured in growth media in 96 well plates. BrdU incorporation in 24 hours was identified with a fluorescein-labeled anti-BrdU antibody (Calbiochem) and fluorogenic peroxidase secondary antibody using the Synergy 2 plate reader (BioTek).
Lentivirus transduction of VSMC. Lentiviral constructs carrying short hairpin RNA (shRNA) for Runx2, FOXO1 or FOXO3 were purchased from Open Biosystems and packaged into lentiviral particles as previously described\(^5\). Lentiviral vector expressing constitutively active AKT protein was obtained from Dr. Hongju Wu (Tulane University). Viral transductions were performed by incubating VSMC with recombinant lentiviruses in growth media supplemented with 10μg/mL Polybrene (Sigma). After 12 hours, virus-containing medium was changed to fresh medium and cultured for another 36 to 48 hours. 5μg/ml puromycin was used to select stably infected cells.

Real-time polymerase chain reaction (PCR)\(^4\). Total RNA was isolated using Trizol (Invitrogen) and reverse transcribed into cDNA. SYBR Green-based PCR was performed using specific primers for mouse Runx2, osteocalcin (OC), type I collagen (Col Ia), AKT1/2/3 and FOXO1/3 or 4 (Primer sequences are listed in table 1), using iQ SYBR Green Supermix on an iCycler Thermal Cycler (Bio-Rad).

<table>
<thead>
<tr>
<th>Name</th>
<th>Chain</th>
<th>Sequence</th>
<th>Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runx2</td>
<td>Forward</td>
<td>5’-CGGCCCTCCCTGAACCTCT-3’</td>
<td>NM_001145920.1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-TGCCTGCTGGGATCTGTA-3’</td>
<td></td>
</tr>
<tr>
<td>OC</td>
<td>Forward</td>
<td>5’TGGCTTGTGACGAGCTATCAG-3’</td>
<td>NM_007541.2</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GAGGACAGGGAGATCAAGT-3’</td>
<td></td>
</tr>
<tr>
<td>Col1</td>
<td>Forward</td>
<td>5’-CTGCGCAGGTCAGCTTCAAT-3’</td>
<td>NM_007742.3</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-TTCAGGCAATCCAGCAGC-3’</td>
<td></td>
</tr>
<tr>
<td>AKT1</td>
<td>Forward</td>
<td>5’-GACCAACATCTCCGCACCACATGAAG-3’</td>
<td>NM_009652.3</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GACCAACATCTCCGCACCACATGAAG-3’</td>
<td></td>
</tr>
<tr>
<td>AKT2</td>
<td>Forward</td>
<td>5’-GAGGACCCATGGATTACAAG-3’</td>
<td>NM_007434.3</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GACAGCTACCTCCCATCTCAGA-3’</td>
<td></td>
</tr>
<tr>
<td>AKT3</td>
<td>Forward</td>
<td>5’-GAGTACCTGCAACAGAGGT-3’</td>
<td>NM_011785.3</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-AGAAAGGCAACCTTCCACAC-3’</td>
<td></td>
</tr>
<tr>
<td>FOXO1</td>
<td>Forward</td>
<td>5’TACGCCGACCTCATCACCAGAAG-3’</td>
<td>NM_019739.3</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GCACGCCTCTCCACCACACT-3’</td>
<td></td>
</tr>
<tr>
<td>FOXO3</td>
<td>Forward</td>
<td>5’TCCACTGAGGAAAGGGAAATGG-3’</td>
<td>NM_019740.2</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-AAAGGTGTAACGTGTAACAGGA-3’</td>
<td></td>
</tr>
<tr>
<td>FOXO4</td>
<td>Forward</td>
<td>5’-TGACGGTGCTAGCATTTGA-3’</td>
<td>NM_018789.2</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GCAGGAGAGGGATGTTGGG-3’</td>
<td></td>
</tr>
<tr>
<td>Smurfl</td>
<td>Forward</td>
<td>5’-AGCATCAGATCCTGCTGACA-3’</td>
<td>NM_001038627.1</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-CCAGAGCCGTCCACACAAAT-3’</td>
<td></td>
</tr>
<tr>
<td>Cyclin-D1</td>
<td>Forward</td>
<td>5’TCTCTCTCCTTGAATGCGAGAAG-3’</td>
<td>NM_007631.2</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’-GCAGGAGAGGGATGTTGG-3’</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>Forward</td>
<td>5’-AACACGGAAGGCCCATGCGAG-3’</td>
<td>NM_008084.2</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5’TGCATCAGGCTCACCACACT-3’</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Primer sequences (mouse) for real-time PCR

Western blot analysis. Cytosolic and nuclear extracts were prepared and protein concentration was measured as we described\(^3,5\). Western blot analyses were performed with specific antibody for Runx2 (MBL, D130-3), PTEN (Cell Signaling Technology, CST, 9552), Total AKT (CST, 4685), pAKT(Ser473, CST 9271 and Thr308, CST 9275), FOXO1 (CST, 2880), pFOXO1 (CST, 9461), FOXO3 (CST, 2497), pFOXO3 (CST, 2599), poly-ubiquitin (Abcam, ab7780), lamin B (Santa Cruz) and GAPDH (Fitzgerald, 10R-G109a), and detected with a chemiluminescence detection kit (Millipore).

Determination of Runx2 stability. VSMC at 90% confluence were treated with cycloheximide (50 μM) for 0, 4, 6 and 12 hours. Western blot analysis was performed to detect the expression of Runx2. The expression of PTEN was verified in these cells, and the expression of GAPDH was used as a loading control.
Determination of Runx2 ubiquitination. VSMC were pretreated with 50 µM MG132 (Calbiochem) for 6 hours to inhibit proteasomal degradation. Then protein extracts were collected with non-denaturing lysis buffer (20mM Tris.HCl pH 8, 150mM NaCl, 10% Glycerol and 1% Triton X-100). 1000 µg lysates were incubated with 2 µg Runx2 antibody for at least 1h. Immune complexes were recovered from the supernatant by incubation with 50 µL of 1:1 slurry of protein G-agarose beads (Invitrogen) overnight at 4 °C. Beads were washed by cold 1×PBS for 5 times, and resuspended in 20µL 2×loading buffer. Then, the mixture was boiled at 100°C for 10min. After brief centrifugation, proteins in the supernatant were analyzed by Western blot with Runx2 and poly-ubiquitin antibodies.

Characterization of FOXO phosphorylation and Runx2 ubiquitination in atherogenic ApoE−/− mice. 8-week old ApoE−/− mice were fed a normal chow or a high-fat diet for 30 weeks7,8. All experimental protocols were approved by the Institutional Animal Care and Use Committee of the University of Alabama at Birmingham. Consecutive aortic sections were stained with Alizarin Red and antibodies for pAKT, pFOXO1/3/4 and Runx2. Western blot analysis was performed in aortic protein extracts using specific antibodies. Aortic Runx2 ubiquitination was determined as described above by immunoprecipitation with Runx2 antibody, followed by Western blot using poly-ubiquitin antibody.

Statistical analysis. All the data are expressed as means ± SD. Differences between two groups were compared with Student’s paired 2-tailed t test. A p value less than 0.05 was considered statistically significant.

REFERENCES

