Perivascular Adipose Tissue and Coronary Vascular Disease

Meredith Kohr Owen, Jillian N. Noblet, Daniel J. Sassoon, Abass M. Conteh, Adam G. Goodwill, Johnathan D. Tune

Abstract—Coronary perivascular adipose tissue is a naturally occurring adipose tissue depot that normally surrounds the major coronary arteries on the surface of the heart. Although originally thought to promote vascular health and integrity, there is a growing body of evidence to support that coronary perivascular adipose tissue displays a distinct phenotype relative to other adipose depots and is capable of producing local factors with the potential to augment coronary vascular tone, inflammation, and the initiation and progression of coronary artery disease. The purpose of the present review is to outline previous findings about the cardiovascular effects of coronary perivascular adipose tissue and the potential mechanisms by which adipose-derived factors may influence coronary vascular function and the progression of atherogenesis.

Key Words: adipokines ▪ adipose tissue ▪ obesity

Coronary perivascular adipose tissue (PVAT) is a visceral adipose tissue of mesothelial origin that normally surrounds the major coronary arteries on the surface of the heart. Coronary PVAT is functionally distinct from the adipose tissue found on the surface of the myocardium, which is defined as myocardial epicardial adipose tissue. In addition to adipocytes and preadipocytes, coronary PVAT contains fibroblasts, macrophages, leukocytes, as well as blood vessels and autonomic nerves. With no fascia separating PVAT from the coronary circulation and myocardium, these essential components of the heart share the same microcirculation. Originally perceived as a relatively ubiquitous and benign tissue that largely provides structural support and insulation, it is becoming clear that factors derived from PVAT (adipokines) are capable of influencing a variety of key (patho)physiological parameters. In particular, recent data support that cardiac adiposity expands with obesity, that atherosclerotic plaques occur predominantly in coronary arteries that are encased in PVAT, and that coronary PVAT volume is positively associated with underlying plaque burden. Patients with high myocardial epicardial adipose tissue volume have also been shown to have a higher incidence of atrial fibrillation, independent of left atrium enlargement. As such, cardiac adiposity has been identified as an independent risk factor for coronary artery disease, and a predictor of future coronary events. Although specific adipokines can serve to promote vascular health and integrity, evidence is mounting in support of marked upregulation of proatherogenic mRNA and protein expression profiles in coronary PVAT and myocardial epicardial adipose tissue in the setting of obesity.

This aberrant regulation of coronary PVAT also correlates with underlying vascular dysfunction and disease in obesity. Thus, there is growing evidence to support the hypothesis that local alterations in PVAT-derived factors contribute to the initiation, progression, and expansion of coronary disease, independent of changes in visceral adipose tissue and systemic adipokine levels that may occur in the setting of obesity. The purpose of the present review is to outline current data about the cardiovascular effects of coronary PVAT and the potential mechanisms by which adipose-derived factors may influence coronary endothelial and smooth muscle function and the progression of atherogenesis.

Vascular Effects of Peripheral Versus Coronary PVAT

Initial studies into the vascular effects of peripheral (noncardiac) PVAT demonstrated significant reductions in contractile responses to a variety of agonists in aorta, mesenteric, and human internal thoracic arteries. This anticontractile (or adipose-derived relaxing factor) vasodilator effect has been attributed to PVAT-derived adiponectin, hydrogen sulfide, hydrogen peroxide, and angiotensin-(1–7)-mediated vasodilation via the opening of voltage-dependent K_V7 channels, BK channels, and Kir channels. In contrast, the presence of peripheral PVAT has also been shown to potentiate contraction of mesenteric arteries to electric field stimulation via increased production of angiotensin II and superoxide. Recent data from Watts et al implicate hemerin as a PVAT-derived...
constricting factor in aortic and mesenteric vascular beds. Thus, noncardiac PVAT is capable of producing factors that illicit both vasodilation and vasoconstriction.

Experiments to elucidate the vascular effects of coronary PVAT are rather limited and somewhat conflicting. Studies in isolated coronary arteries from lean or hypercholesterolemic swine show little to no effect of coronary PVAT on endothelial-dependent vasodilatation or coronary contractile responses to endothelin-1, angiotensin II, or the thromboxane A2 mimetic U46619.47–49 Alternatively, coronary PVAT has been found to diminish endothelial-dependent dilation in dogs50 and to significantly exacerbate underlying endothelial dysfunction in obese swine.48 Further studies in clean (PVAT free) conduit coronary arteries revealed that the addition of coronary PVAT from lean swine augments contractile responses to KCl-induced depolarization and to prostaglandin F2α in proportion to the amount of PVAT added to the bath.22 Interestingly, this effect was also observed in response to mesenteric PVAT but not subcutaneous PVAT. Furthermore, the constricting effect of coronary PVAT was markedly exaggerated in endothelium intact and denuded coronary arteries from obese swine. Additional findings support that these enhanced effects are associated with substantial alterations in the protein expression of obese coronary PVAT23,24 and with inherent differences in the phenotype of obese smooth muscle cells.51,52 Taken together, these findings indicate that factors derived from coronary PVAT can act to impair endothelial-dependent dilation and potentiate contractions of coronary vascular smooth muscle, especially in the setting of obesity. Potential mediators and mechanisms of these influences are discussed below.

In summary, the findings to date indicate that the vascular effects of PVAT are highly dependent on anatomic location of the artery/adipose tissue depot, the species being studied, the pharmacological agonist(s) used, and the underlying phenotype of the endothelium and smooth muscle in relation to the overall health status of the studied model.23,53 Generally, PVAT from peripheral beds exerts vasodilator anticontractive influences, whereas coronary PVAT tends to induce vasoconstrictor effects, which includes attenuation of endothelial-dependent dilation. It is important to recognize that the experimental evidence thus far derives from in vitro examination of isolated arteries. Thus, the functional (physiological) relevance of these vascular influences on the regulation of blood pressure, organ blood flow, and progression of disease remains a critical and experimentally difficult question to address moving forward. In addition, more careful examination of the precise cell types and mediators responsible for these effects is also warranted.

Expression Profiles in Coronary PVAT

Recent evidence supports that there are substantial differences in gene and protein expression in different adipose tissue depots (eg, subcutaneous versus coronary) and that these profiles are significantly altered in the setting of disease. Examination of PVAT surrounding the major coronary arteries suggests that this adipose depot is phenotypically consistent with both white and brown adipose tissue.54–55 Data from the Weintraub laboratory indicate that adipocytes from human coronary PVAT exhibit a reduced state of adipogenic differentiation compared with adipocytes from other depots from the same subjects (eg, subcutaneous or perirenal–visceral)56 and that expression of proinflammatory genes and secretion of cytokines such as interleukin-6, interleukin-8, and monocyte chemoattractant protein are markedly elevated in coronary PVAT versus other adipose tissue depots and in the presence of coronary artery disease.50,56 (Table). Furthermore, recent findings from our laboratory, as well as others, support that this heightened proinflammatory environment of coronary PVAT is markedly exacerbated by obesity and with the progression of coronary artery disease.21–23,26,31,48,57–59 In particular, increased expression of proatherogenic factors including leptin, resistin, tumor necrosis factor-α, interleukin-6, chemerin, and calpastatin have been documented to date.9,23,26,46,48,57,58–64 Diminished expression of potentially vasculoprotective proteins such as adiponectin, which has been associated with improvements in endothelial function,58 has also been demonstrated in human coronary PVAT in the setting of obesity and coronary artery disease26,31,58,66–68 (Figure). Interestingly, augmented expression of the osteogenic factors osteoprotegerin20 and osteoglycin23 was also recently identified in coronary PVAT. These factors have been previously linked with atherosclerosis and the severity of coronary artery disease.56,69 Accordingly, strong and growing evidence supports that coronary PVAT displays a distinct phenotype relative to other adipose tissue depots and is capable of locally producing factors with the potential to influence the initiation and progression of coronary vascular dysfunction and disease. Within the context of coronary PVAT expression profiles, it is important to consider how factors produced in the coronary adventitia are able to traverse the arterial wall to influence the endothelium and vascular smooth muscle. The current hypothesis is that the vasa vasorum, a network of small vessels that supply blood to the walls of large blood vessels, is interspersed within the PVAT and thus is capable of delivering adventitial-derived factors to conduit coronary arteries.71–73 This hypothesis is supported by prior studies that have demonstrated that neovascularization of the coronary vasa vasorum precedes the development of overt endothelial dysfunction in swine fed a high-cholesterol diet and by experiments which found increases in blood flow through the vasa vasorum to the intima of atherosclerotic coronary arteries of monkeys.74 Neovascularization originating from the adventitia has also been associated with the extent of inflammation and coronary disease in humans.75 Although the temporal association between expansion of the coronary vasa vasorum and the development endothelial dysfunction and atherosclerosis is intriguing, further studies to examine directly this hypothesis for the transit of PVAT-derived factors across the coronary wall are needed.
Obesity.76–79 Prior studies have also implicated leptin in other β
have documented increased activation of protein kinase C-
comings are corroborated by data from other laboratories which
Coronary arteries in the setting of obesity.48 This endothelial
mechanisms of PV AT-induced coronary vascular dysfunction.
are recent investigations that provide insight about potential
for the vascular effects of coronary PV AT. However, there
Journal of the American College of Cardiology
396:1820–1826

Table. Comparison of Coronary Perivascular and Subcutaneous Adipose Tissue Adipokine Expression

<table>
<thead>
<tr>
<th>Adipokine</th>
<th>Condition</th>
<th>Coronary PVAT Expression Relative to Subcutaneous</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin</td>
<td>NCAD</td>
<td>↓ mRNA</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>NCAD</td>
<td>↓ mRNA, ↓ protein secretion</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ protein secretion</td>
<td>26</td>
</tr>
<tr>
<td>TNF-α</td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA, ↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ protein secretion</td>
<td>26</td>
</tr>
<tr>
<td>IL-6</td>
<td>NCAD</td>
<td>↑ mRNA</td>
<td>60, 20</td>
</tr>
<tr>
<td></td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td>IL-1β</td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA</td>
<td>63</td>
</tr>
<tr>
<td>MCP-1</td>
<td>NCAD</td>
<td>↑ protein secretion</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA</td>
<td>63</td>
</tr>
<tr>
<td>PAI-1</td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
</tbody>
</table>

CAD indicates coronary artery disease; IL-1β, interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; NCAD, no coronary artery disease; NCAD+CAD, grouped population of NCAD and CAD; PAI-1, plasminogen activator inhibitor-1; PVAT, perivascular adipose tissue; and TNF-α, tumor necrosis factor-α.

Pathways Influenced by Coronary PVAT
As outlined above, initial studies on the vascular effects of coronary PVAT have shown that factors produced by this depot can impair endothelial-dependent vasodilation and augment coronary smooth muscle constriction, especially in the setting of obesity.90,91 At present, we are far from understanding the precise factors and signaling pathways responsible for the vascular effects of coronary PVAT. However, there are recent investigations that provide insight about potential mechanisms of PVAT-induced coronary vascular dysfunction.

Data from our laboratory support that coronary PVAT significantly attenuates endothelial-dependent dilation of isolated coronary arteries in the setting of obesity.48 This endothelial dysfunction was associated with elevated expression of the adipokine leptin, which we have demonstrated induces significant reductions in coronary endothelial nitric oxide production via a protein kinase C-β–dependent phosphorylation of endothelial nitric oxide synthase at the Thr595 inhibitory site.48,50,62 This hypothesis is supported by additional studies that found that the endothelial effects of obese coronary PVAT are abrogated by the inhibition of leptin receptors with a recombinant, pegylated leptin antagonist or by the inhibition of protein kinase C-β with ruboxistaurin.48 These findings are corroborated by data from other laboratories which have documented increased activation of protein kinase C-β in obesity.76–78 Prior studies have also implicated leptin in other key aspects of atherogenesis, including (1) monocyte chemotraction,80 (2) promotion of cholesterol ester accumulation in foam cells,81 (3) reduction of plasma high-density lipoprotein cholesterol and apolipoprotein A-I concentrations,82,83 (4) activation of acute phase reactants,84,85 (5) elevation of oxidative stress and modification of plasma lipoproteins,86 and (6) augmented DNA-binding activity of proinflammatory transcription factors.87

Alternatively, reductions in adiponectin expression in obese coronary PVAT could facilitate inflammation, endothelial dysfunction, and atherogenesis, as recent data from Karastergiou et al61 indicate that administration of recombinant adiponectin successfully reversed PVAT-mediated increases in endothelial adhesion molecule expression (intercellular adhesion molecule-1) and adhesion of monocyctic cells to human coronary artery endothelial cells. PVAT-derived adiponectin has also been shown to improve the bioavailability of nitric oxide in gluteal arteries obtained from healthy but not obese humans.41 Prior studies also demonstrate that adiponectin administration diminishes oxidative stress and inflammation and improves endothelial function via adenosine monophosphate–activated protein kinase–induced phosphorylation of endothelial nitric oxide synthase at Thr578.42,68,69 Taken together, these findings suggest that an imbalance between proatherogenic versus antiatherogenic PVAT-derived adipokines could serve to activate several key regulatory pathways to promote obesity-induced coronary artery disease at a local level. Alterations in these pathways, along with other adipokines such as resistin and tumor necrosis factor-α that are known to negatively affect endothelial function and vascular remodeling,90–95 should be further explored.

Recently, Owen et al23 documented that coronary PVAT is capable of releasing factors that initiate and potentiate coronary contraction via activation of voltage-dependent ion channels (ie, CaV1.2 channels). This effect of PVAT was substantially augmented in tissues obtained from obese relative to

Owen et al Coronary Perivascular Adipose Tissue 3

Table. Comparison of Coronary Perivascular and Subcutaneous Adipose Tissue Adipokine Expression

<table>
<thead>
<tr>
<th>Adipokine</th>
<th>Condition</th>
<th>Coronary PVAT Expression Relative to Subcutaneous</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin</td>
<td>NCAD</td>
<td>↓ mRNA</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>NCAD</td>
<td>↓ mRNA, ↓ protein secretion</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ protein secretion</td>
<td>26</td>
</tr>
<tr>
<td>TNF-α</td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA, ↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ protein secretion</td>
<td>26</td>
</tr>
<tr>
<td>IL-6</td>
<td>NCAD</td>
<td>↑ mRNA</td>
<td>60, 20</td>
</tr>
<tr>
<td></td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td>IL-1β</td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA</td>
<td>63</td>
</tr>
<tr>
<td>MCP-1</td>
<td>NCAD</td>
<td>↑ protein secretion</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA</td>
<td>63</td>
</tr>
<tr>
<td>PAI-1</td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
</tbody>
</table>

CAD indicates coronary artery disease; IL-1β, interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; NCAD, no coronary artery disease; NCAD+CAD, grouped population of NCAD and CAD; PAI-1, plasminogen activator inhibitor-1; PVAT, perivascular adipose tissue; and TNF-α, tumor necrosis factor-α.

Pathways Influenced by Coronary PVAT
As outlined above, initial studies on the vascular effects of coronary PVAT have shown that factors produced by this depot can impair endothelial-dependent vasodilation and augment coronary smooth muscle constriction, especially in the setting of obesity.90,91 At present, we are far from understanding the precise factors and signaling pathways responsible for the vascular effects of coronary PVAT. However, there are recent investigations that provide insight about potential mechanisms of PVAT-induced coronary vascular dysfunction.

Data from our laboratory support that coronary PVAT significantly attenuates endothelial-dependent dilation of isolated coronary arteries in the setting of obesity.48 This endothelial dysfunction was associated with elevated expression of the adipokine leptin, which we have demonstrated induces significant reductions in coronary endothelial nitric oxide production via a protein kinase C-β–dependent phosphorylation of endothelial nitric oxide synthase at the Thr595 inhibitory site.48,50,62 This hypothesis is supported by additional studies that found that the endothelial effects of obese coronary PVAT are abrogated by the inhibition of leptin receptors with a recombinant, pegylated leptin antagonist or by the inhibition of protein kinase C-β with ruboxistaurin.48 These findings are corroborated by data from other laboratories which have documented increased activation of protein kinase C-β in obesity.76–78 Prior studies have also implicated leptin in other key aspects of atherogenesis, including (1) monocyte chemotraction,80 (2) promotion of cholesterol ester accumulation in foam cells,81 (3) reduction of plasma high-density lipoprotein cholesterol and apolipoprotein A-I concentrations,82,83 (4) activation of acute phase reactants,84,85 (5) elevation of oxidative stress and modification of plasma lipoproteins,86 and (6) augmented DNA-binding activity of proinflammatory transcription factors.87

Alternatively, reductions in adiponectin expression in obese coronary PVAT could facilitate inflammation, endothelial dysfunction, and atherogenesis, as recent data from Karastergiou et al61 indicate that administration of recombinant adiponectin successfully reversed PVAT-mediated increases in endothelial adhesion molecule expression (intercellular adhesion molecule-1) and adhesion of monocyctic cells to human coronary artery endothelial cells. PVAT-derived adiponectin has also been shown to improve the bioavailability of nitric oxide in gluteal arteries obtained from healthy but not obese humans.41 Prior studies also demonstrate that adiponectin administration diminishes oxidative stress and inflammation and improves endothelial function via adenosine monophosphate–activated protein kinase–induced phosphorylation of endothelial nitric oxide synthase at Thr578.42,68,69 Taken together, these findings suggest that an imbalance between proatherogenic versus antiatherogenic PVAT-derived adipokines could serve to activate several key regulatory pathways to promote obesity-induced coronary artery disease at a local level. Alterations in these pathways, along with other adipokines such as resistin and tumor necrosis factor-α that are known to negatively affect endothelial function and vascular remodeling,90–95 should be further explored.

Recently, Owen et al23 documented that coronary PVAT is capable of releasing factors that initiate and potentiate coronary contraction via activation of voltage-dependent ion channels (ie, CaV1.2 channels). This effect of PVAT was substantially augmented in tissues obtained from obese relative to
lean swine, thus suggesting that obesity increases production of adipose-derived constricting factors from coronary PVAT. A global proteomic assessment of coronary PVAT supernatant from lean and obese swine revealed substantial alterations in key regulatory pathways, including cellular growth and proliferation (51 molecules) and cellular movement (39 molecules). Of particular interest were increases in RhoA (2.9-fold) and calpastatin (1.6-fold) which are directly linked to smooth muscle contraction, Ca²⁺ sensitization, and the progression of hypertension.⁹⁶,⁹⁷ Further studies to examine the effects of calpastatin, a known endogenous calpain inhibitor,⁹⁷,⁹⁸ revealed that this protein dose dependently augments contractions of isolated coronary arteries similarly to that of coronary PVAT. Interestingly, interrogation of the Rho kinase pathway revealed that coronary contractions to lean PVAT are largely mediated via a Rho dependent pathway, whereas enhanced coronary contractions to obese coronary PVAT occurred independent of Rho kinase signaling (was unaffected by the inhibition of Rho kinase). These data, along with concurrent evidence that PVAT-derived factors significantly impair coronary vasodilation of hydrogen peroxide-sensitive K⁺ channels,²³ indicate that the effects of coronary PVAT are related not only to inherent alterations in coronary PVAT expression profiles but also to underlying mechanistic differences in obese coronary artery smooth muscle cells. This hypothesis is supported by earlier studies from our laboratory and others which have demonstrated that obesity decreases the functional expression of coronary K⁺ channels⁹⁹–¹⁰³ and increases coronary Ca$_{1.2}$ channel current, expression, and contraction.⁵¹,⁵²,¹⁰⁴

Implications and Conclusions

Taken together, there is a growing body of evidence to support that changes in the phenotypic expression patterns in coronary PVAT occur concomitantly with mechanistic alterations in endothelium and vascular smooth muscle. These changes seem to be dependent on the unique characteristics of the cell types involved and the underlying environment/milieu in which they reside. However, the extent to which PVAT-derived factors causally contribute to changes in vascular expression of K⁺ channels, Ca²⁺ channels, Rho signaling, macrophage/foam cell formation, and regional heterogeneity of smooth muscle differentiation/proliferation and atheroma progression has not been determined. Future research to delineate the involvement of specific adipose tissue cell types, how adipose tissue–derived factors are delivered to the vascular wall and possibly systemic circulation (ie, vasa vasorum), identity of precise mediators, as well as signaling pathways and end-effector mechanisms influenced by coronary perivascular and epicardial adipose tissue beds, remain central questions moving forward.

Sources of Funding

This publication was made possible by funding from National Institutes of Health HL092245, HL117620, and by the Indiana University Health-Indiana University School of Medicine Strategic Research Initiative (J.D. Tune). Additional support was also provided by the American Heart Association 13POST1681001813 (A.G. Goodwill), HL117620-S1 (A.M. Conteh), and TL1 TR000162 (D.J. Sassoon).
Disclosures

None.

References

36. Lynch PM, Withers SB, Yao Z, Werner ME, Edwards G, Weston AH, Heagerty AM. Perivascular adipose tissue-derived adiponectin activates...
Arterioscler Thromb Vasc Biol
July 2014

Significance

There is a growing body of evidence to support that changes in the phenotypic expression patterns in coronary perivascular adipose tissue occur concomitantly with mechanistic alterations in endothelium and vascular smooth muscle in the setting of cardiovascular disease. These changes seem to be dependent on the unique characteristics of the cell types involved and the underlying environment/milieu in which they reside. This review summarizes current findings on the cardiovascular effects of coronary perivascular adipose tissue and outlines potential mechanisms by which adipose-derived factors may influence coronary disease.
Perivascular Adipose Tissue and Coronary Vascular Disease
Meredith Kohr Owen, Jillian N. Noblet, Daniel J. Sasoon, Abass M. Conteh, Adam G. Goodwill and Johnathan D. Tune

Arterioscler Thromb Vasc Biol. published online May 1, 2014;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2014/04/30/ATVBAHA.114.303033

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/