Original Article

Targeted Phosphotyrosine Profiling of Glycoprotein VI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation

Objective—Platelet adhesion to subendothelial collagen is dependent on the integrin αβ3 and glycoprotein (GP) VI receptors. The major signaling routes in collagen-dependent platelet activation are outlined; however, crucial detailed knowledge of the actual phosphorylation events mediating them is still limited. Here, we explore phosphotyrosine signaling events downstream of GPVI with site-specific detail.

Approach and Results—Immunoprecipitations of phosphotyrosine-modified peptides from protein digests of GPVI-activated and resting human platelets were compared by stable isotope-based quantitative mass spectrometry. We surveyed 214 unique phosphotyrosine sites >2 time points, of which 28 showed a significant increase in phosphorylation on GPVI activation. Among these was Tyr370 of oligophrenin-1 (OPHN1), a Rho GTPase–activating protein. To elucidate the function of OPHN1 in platelets, we performed an array of functional platelet analyses within a small cohort of patients with rare oligophrenia. Because of germline mutations in the OPHN1 gene locus, these patients lack OPHN1 expression entirely and are in essence a human knockout model. Our studies revealed that among other unaltered properties, patients with oligophrenia show normal P-selectin exposure and αβ3 activation in response to GPVI, as well as normal aggregate formation on collagen under shear conditions. Finally, the major difference in OPHN1-deficient platelets turned out to be a significantly reduced collagen-induced filopodia formation.

Conclusions—In-depth phosphotyrosine screening revealed many novel signaling recipients downstream of GPVI activation uncovering a new level of detail within this important pathway. To illustrate the strength of such data, functional follow-up of OPHN1 in human platelets deficient in this protein showed reduced filopodia formation on collagen, an important parameter of platelet hemostatic function. (Arterioscler Thromb Vasc Biol. 2013;33:00-00.)

Key Words: hemostasis, oligophrenin-1 deficiency, platelet GPVI signaling, proteomics, tyrosine phosphorylation

The response of platelets to vessel injury is essential to prevent bleeding, but hyperreactivity underlies the pathophysiology of various thrombotic diseases. Exposure of the extracellular matrix to flowing blood induces platelet activation, including the release of the contents of α- and β-granules. In addition, a conformational change in αβ3 increases its affinity for its ligands (eg, fibrinogen) and an active reorganization of the actin cytoskeleton accommodates shape change and the formation of filopodia.1 Collagen, the most abundant matrix protein in the subendothelium, provides a primary activation stimulus and a surface for adhesion.2 Glycoprotein (GP) VI is considered the predominant receptor responsible for collagen-induced platelet activation.3,4 The GPVI-mediated signaling pathway is a promising target for novel antiplatelet therapies because individuals with reduced GPVI expression have a mild increase in bleeding tendencies, whereas inhibition of the GPVI pathway may reduce thrombosis risk.2,5–7 Therefore, it is important to improve our knowledge of the GPVI-mediated signaling pathway in platelet activation.

GPVI is a 62-kDa type I transmembrane receptor of the immunoglobulin superfamily of surface receptors, which
Arterioscler Thromb Vasc Biol July 2013

is exclusively expressed in platelets and megakaryocytes. The signaling capacity of GPVI depends on its association with the Fc receptor γ-chain homodimer. Each Fc receptor γ-chain monomer contains a conserved immunoreceptor tyrosine–based activation motif, which is characterized by 2 conserved YXXL motifs separated by 6 to 12 amino acids. On receptor cross-linking by the ligand collagen these 2 conserved immunoreceptor tyrosine–based activation motif tyrosine residues are phosphorylated by the Src family tyrosine kinases Fyn and Lyn, which localize to a conserved proline-rich region of GPVI. This phosphorylation then leads to recruitment and activation of the tyrosine kinase Syk, which regulates a complex downstream pathway that involves the adapter proteins LAT, Gads, and SLP-76; the Tec family tyrosine kinases Btk and Tec; the GTP exchange factors Vav1 and Vav3; PI 3-kinase isoforms; and PLCγ2.

A handful of proteins that participate in GPVI signaling in human platelets are known, but our understanding of the tyrosine signaling events downstream of GPVI activation is far from complete. This information is considered crucial for understanding the fine molecular details of platelet activation and their clinical implications. Here, we aimed to identify novel GPVI signaling proteins by obtaining site-specific and quantitative information on tyrosine residues being phosphorylated on stimulation. To this end, a quantitative analysis of immunoprecipitated tyrosine phosphorylated proteins was performed to compare resting and cross-linked collagen-related peptide (CRP-XL)-stimulated human platelets. We identified 214 unique phosphotyrosine (pTyr) sites of which 30 showed >2-fold increase in tyrosine phosphorylation after stimulation. Next to expected downstream targets of GPVI, we also detected 3 putatively novel ones. One of these, oligophrenin-1 (OPHN1), is a Rho GTPase–activating protein. Subsequent characterization

Figure 1. Targeted tyrosine phosphorylation profiling in stimulated platelets. A. Platelet stimulation with 2.5 μg/mL cross-linked collagen-related peptide (CRP-XL) as monitored by P-selectin expression on the plasma membrane. B. Overview of the experimental quantitative proteomics workflow. In parallel, resting (left) and CRP-XL–activated (5 and 30 minutes, right) platelets were lysed, proteins extracted and subsequently digested with trypsin. The peptides were differentially labeled using stable isotope dimethyl labeling. For each time point, 2 differentially labeled digests were combined, followed by enrichment of tyrosine-phosphorylated peptides using immobilized phosphotyrosine–specific antibodies. The enriched fraction was analyzed by nanoflow liquid chromatography–mass spectrometry (MS/MS). C. Proteomics data representation (30-minute experiment is shown as an example). Using MSQuant software, the ratio (heavy/light)=(CRP-XL/Ctrl) was calculated for immunoprecipitated phosphotyrosine (pY)-containing peptides (dark grey dots) and normalized on the ratio of nonphosphorylated peptides (white dots), based on the extracted ion chromatograms of the differentially labeled isotopomers of each peptide. Peptide ratios (log values) were plotted against peptide abundance (intensity, log values).
of platelets obtained from 4 patients with X-linked intellectual disability caused by germline mutations in the OPHN1 gene (OMIM 300486) revealed the specific involvement of OPHN1 in platelet filopodia formation on collagen, substantiating our data obtained from the targeted pTyr proteome profiling approach.

Materials and Methods
Materials and Methods are available in the online-only Supplement.

Results
Tyrosine Phosphoproteome Analysis of CRP-XL–Stimulated Platelets
Platelets need to respond rapidly to changes in vascular integrity to prevent excessive blood loss. Signaling pathways leading to platelet activation are therefore rapidly activated on stimulation. To capture most detail, optimal time points of GPVI stimulation for our in-depth targeted and quantitative analysis were evaluated on the kinetics of CRP-XL–dependent platelet activation. To this end, quantification of platelet membrane P-selectin expression, a general marker of activation, was used (Figure 1A). Two time points were selected: 5 minutes to represent the onset and 30 minutes to represent maximal activation. The chosen proteomics approach, which uses specific immune enrichment of peptides carrying a tyrosine phosphorylation is schematically depicted in Figure 1B.11,12,15 After analysis of both the 5- and 30-minute time point, in total 214 pTyr sites on 148 proteins were identified (Table I in the online-only Data Supplement).

The quantitative data, based on stable isotope dimethyl labeling, revealed that, as expected, overall protein abundance levels (reflected in the [CRP-XL/Ctrl] ratios of nonphosphorylated peptides) remained identical when comparing resting and activated platelets at both the 5- and 30-minute time point (Figure 1C and Figure 1A and IB in the online-only Data Supplement). In contrast, many tyrosine-containing peptides showed >2-fold increased phosphorylation on CRP-XL stimulation (28 unique tyrosine sites on 27 proteins), the majority being detected at both time points (Figure 2 and Figure IC in the online-only Data Supplement). Among these were several expected proteins and tyrosine phosphorylation sites belonging to the presumed core GPVI response proteome (Figure 2 and Figure II in the online-only Data Supplement): one of the Fc receptor γ-chain immunoreceptor tyrosine–based activation motif domains (FCER1G; Tyr65), SYK (Tyr629/Tyr630), GRAP2 (GADS; Tyr45), and other proteins comprising the LAT signalosome.9 Twenty-two (80%) of the regulated tyrosine sites with increased phosphorylation on GPVI activation are novel in platelets (Figure 2, black stars), according to the Uniprot and PhosphoSitePlus human databases and several key references.16–18 Three particular sites were present on proteins not earlier shown to be involved in platelet collagen signaling: the protein tyrosine kinase ABL1/ABL2 (Tyr393/Tyr439), the non-receptor type protein tyrosine phosphatase 18 (Tyr389), and the Rho GTPase–activating protein OPHN1 (Tyr370).

Characterization of OPHN1-Deficient Platelets
Deficiency of OPHN1 (OPHN1−/y) is associated with a rare form of X-linked mental retardation known as oligophrenia, a syndrome characterized by defects in neuronal dendrite formation and synaptic plasticity.19,20 Despite the fact that oligophrenia is

Figure 2. Tyrosine sites undergoing increased phosphorylation downstream of glycoprotein (GP)VI activation. Tyrosine phosphorylation sites with increased phosphorylation downstream of GPVI in platelets activated with cross-linked collagen-related peptide (CRP-XL). Twenty-eight phosphotyrosine (pTyr) sites on 27 proteins showed at least 2-fold increase in phosphorylation in response to platelet activation through GPVI after 5 minutes (grey bars) and 30 minutes (black bars). A substantial part of these sites belongs to the GPVI core response proteome (Figure II in the online-only Data Supplement). Novel pTyr sites in platelet activation are marked with black stars.
a rare disorder, we were able to obtain blood from 4 OPHN1-deficient patients. As far as we know, no bleeding disorders are reported in relation to loss of OPHN1. In line, the patients did not have a bleeding phenotype, and there were no indications of thrombotic complications. Although each patient had a different gene variant, Western blotting confirmed the absence of OPHN1 in the platelets of each patient (Figure 3A), whereas 2 control individuals showed robust expression of OPHN1 in their isolated platelet lysates (apparent molecular mass 91 kDa).

The mean platelet count±SD (434±56×10⁹/L), mean platelet volume±SD (7.3±0.6 fL), and the expression of the platelet surface receptors GPIbα, GPIX, β₃-integrin, and the β₃-integrin were within the normal range in OPHN1−/y platelets (Figure 3B).

OPHN1-Deficient Platelets Are Hemostatically Normal

To determine whether the absence of OPHN1 affects platelet function, we assessed the response of OPHN1-deficient platelets to stimulation of P2Y₁₂, PAR-1, and GPVI (Figure III in the online-only Data Supplement). OPHN1-deficient platelets showed no significant differences in P-selectin expression or α₃β₃ activation compared with healthy controls.

We then assessed the influence of OPHN1 on platelet adhesion to collagen under conditions of high shear flow (1600/s; Figure IV in the online-only Data Supplement) and found that OPHN1−/y platelets adhered and formed aggregates on a collagen-coated surface to a similar extent as healthy controls. Moreover, the absence of OPHN1 did not affect clot retraction in thrombin-stimulated platelet-rich plasma (Figure V in the online-only Data Supplement).

OPHN1-Deficient Platelets Show Defective Filopodia Formation

Because deficiency of OPHN1 is reported to be associated with decreased neuronal dendrite formation,²⁰,²¹ we looked into the role of OPHN1 in platelet spreading using real-time microscopy. Because OPHN1 phosphorylation was increased on stimulation of the collagen-dependent activation pathway, we also studied platelet spreading on a mixture of the collagen peptides that bind GPVI (CRP-XL) and α₃β₃ (GFOGER).²² CRP-XL is a potent activator of platelets and causes rapid aggregate formation. Because this obscures the spreading process, we prevented aggregate formation with 0.2 mmol/L of RGD peptide, thereby blocking α₃β₃-ligand interactions. Under these conditions, OPHN1−/y platelets showed equal lamellipodia formation but significantly less filopodia formation during spreading (Figure 4A and 4B, Movies I and II in the online-only Data Supplement). OPHN1−/y platelets form filopodia (OPHN1−/y, 100±SEM 0%; controls, 99±SEM 1%; not significant) and spread normally on fibrinogen (OPHN1−/y, 68±SEM 11%; controls, 88±SEM 7%; not significant) which is mainly α₃β₃-dependent. In addition, we did not observe differences in filopodia length between OPHN1−/y platelets and control platelets spreading on surfaces coated with CRP-XL and GFOGER (Figure 4C) or on fibrinogen-coated surfaces (data not shown).

Discussion

To study the nature of GPVI signaling specifically in human platelets, we used anti-pTyr immunoprecipitation of peptides, directly from primary human platelet digests. The quantitative proteomics data show immediately that GPVI signaling was rapidly engaged because of the highly increased phosphorylation of the immunoreceptor tyrosine–based activation motif domain at Tyr65 after 5 minutes. In addition, the phosphorylation of other known downstream targets was prominent (Syk, GADS, etc), confirming the validity of our approach.

García et al²⁶ have used pTyr immunoprecipitation at the protein level to identify several proteins that are implicated in GPVI signaling in human platelets. In our study, immunoprecipitation of tyrosine phosphorylation at the peptide level combined with stable isotope labeling-based quantitation adds much additional detail. For instance, we were able to identify the specific phosphorylation sites on the earlier implicated proteins (DOK2 [Tyr299], MAPK14 [Tyr182], and nonreceptor type protein tyrosine phosphatase 6/SHP-1 [Tyr64]), and quantified their relative upregulation on GPVI stimulation. The 3 novel platelet proteins with increased tyrosine phosphorylation downstream of GPVI seem valid novel additions to the downstream GPVI signaling cascades. ABL1 (Tyr393) and
ABL2 (Tyr439; the observed tyrosine-phosphorylated peptide is present in both isoforms) regulate cytoskeletal reorganization in several myeloid cell types and known ABL interactors such as Src family kinases, GADS, NCK1, and SLP-76 are also found regulated in this study. Given the importance of cytoskeletal rearrangement in platelet activation, the presence of ABL and its phosphorylation in platelets are not unexpected.

Nonreceptor type protein tyrosine phosphatase 18 is a member of the PEST family of protein tyrosine phosphatases. Little is known about its biological function, although overexpression studies suggested a role in neurite outgrowth and actin cytoskeleton reorganization. Nonreceptor type protein tyrosine phosphatase 18 is regulated by tyrosine phosphorylation, including the GPVI downstream target site discovered in the present study (Tyr389).

Our attention was drawn to the potential impact of OPHN1 deficiency on platelet function. In patients with OPHN1 mutations, loss or dysfunction of OPHN1 is associated with reduced dendritic spine and filopodia length of neurons, the molecular explanation of their neurological phenotype. In neurons, OPHN1 localizes to filopodia, lamellipodia, and stress fibers to regulate the actin cytoskeleton. Nonreceptor type protein tyrosine phosphatase 18 is regulated by tyrosine phosphorylation, including the GPVI downstream target site discovered in the present study (Tyr389).

Recently, Elvers et al reported a study on the presence of OPHN1 in human and murine platelets and its Rho-GTPase activity toward RhoA, Cdc42, and Rac1 in an A5-CHO cell culture model system. They showed that on platelet spreading on fibrinogen, OPHN1 colocalized with actin in filopodia, the actin ring, and lamellipodia. In addition, OPHN1 colocalized with Rac1 and Cdc42 in the late phase of platelet spreading on fibrinogen, whereas RhoA colocalization was observed independent of activation and spreading. In our experiments, we could not confirm a role for OPHN1 in platelet spreading on fibrinogen. Given the data of Elvers et al, OPHN1 may have a redundant role in platelet spreading on fibrinogen in human platelets, which becomes apparent when overexpressed. On collagen, we found a more pronounced role for the Rho GTPase–activating protein because its absence leads to reduced filopodia formation during spreading on a collagen-like surface, but not on fibrinogen, indicative of the specific function of OPHN1 in human platelets.

In conclusion, we identified 28 pTyr sites on 27 proteins, which undergo >2-fold increase in phosphorylation on GPVI.
Activation in human platelets. We discovered 3 novel factors that are involved downstream of GPVI signaling after platelet activation, one of which was OPHN1. In response to GPVI stimulation, OPHN1 becomes phosphorylated at Tyr370 and plays a role in the formation of filopodia during platelet spreading on collagen.

Acknowledgments
We thank A.D. Barendrecht, C.A. Koekman, B. Rutten, Dr Angelis, and Z. Igbal for technical assistance, and Dr Watson for critically reviewing our article.

Sources of Funding
This research was performed within the framework of the Center for Translational Molecular Medicine (www.ctmm.nl), project CIRCULATING CELLS (grant 01C-102), and was supported by the Netherlands Heart Foundation (A. Scholten, A.J.R. Heck). The Netherlands Proteomics Center embedded in the Netherlands Genomics Initiative is kindly acknowledged for financial support (A.J.R. Heck, A. Scholten). The Cardiovascular Focus en Massa Programma at Utrecht University is acknowledged for additional financial support (A. Scholten).

Disclosures
None.

References
Targeted Phosphotyrosine Profiling of Glycoprotein VI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation

Arterioscler Thromb Vasc Biol. published online April 25, 2013;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2013/04/25/ATVBAHA.112.300916

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2013/04/25/ATVBAHA.112.300916.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplemental Data

Supplementary to: “Targeted Phosphotyrosine Profiling of GPVI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation” by Bleijerveld et al. (2013)

Supplementary Figure I - Correlation between 5 minutes CRP-XL and 30 minutes CRP-XL experiment
Platelets were kept in a resting state (Ctrl) or stimulated with CRP-XL for 5 or 30 minutes. (A) Using MSQuant software, the ratio [Heavy/Light] = [CRP-XL/Ctrl] was calculated for immunoprecipitated phosphotyrosine (pY)-containing peptides (red dots) and normalized on the ratio of non-phosphorylated peptides (blue dots), based on the extracted ion chromatograms of the differentially labeled isotopomers of each peptide. Peptide ratios (2Log values) were plotted against peptide abundance (intensity, 10Log values). (B) Histogram representation of panel A. Peptides were binned into [CRP-XL/Ctrl] ratio categories and the number of peptides was plotted against the [CRP-XL/Ctrl] ratio. Whereas all non-phosphorylated peptides (blue histogram) exhibit a heavy/light ratio between -1 and +1 (2Log), the pY peptide population (red histogram) clearly contains up-regulated peptides in GPVI-activated platelets. For both time points, pY peptides were considered significantly up-regulated when [CRP-XL/resting] ≥ 2-fold (2Log value of 1). (C) The [CRP-XL/Ctrl] ratio of the 30 minutes CRP-XL experiment was plotted against the [CRP-XL/Ctrl] ratio of the 5 minutes CRP-XL experiment (2LOG scale in both cases) for all pY peptides that were quantified in both experiments. Green dots represent peptides with significantly up- or down-regulated pY sites (i.e. 2Log([CRP-XL/Ctrl]) ≤ -1 or 2Log([CRP-XL/Ctrl] ≥ 1, threshold is indicated with dashed circle).
Supplementary Figure II - GPVI response proteome

Proteins involved in GPVI signaling (adapted from Watson et al. 1). Crosslinking of GPVI by collagen or CRP-XL induces tyrosine phosphorylation of the FcRγ-chain ITAM by the Src family kinases, Fyn and Lyn, which are constitutively bound to the proline-rich region in the GPVI cytosolic tail. This initiates a Syk-dependent signaling cascade that leads to the formation of a LAT signalosome and activation of PLCγ2. PLCγ2 associates directly with LAT, and indirectly via the adapters Gads and SLP-76. PLCγ2 also associates with the membrane via binding of its PH domain to PIP3. Functional homologues from the Tec and Vav families support activation of PLCγ2.
Supplementary Figure III - Oligophrenin-1 deficient platelets respond normal to activation.

Oligophrenin-1 deficiency of four OPHN1⁻/⁻ patients (black triangles) is not associated with significantly increased (A) P-selectin expression and (B) $\alpha_{IIb}\beta_{3}$ activation compared to nine controls (white blocks). Platelets were stimulated with increasing concentrations of ADP, TRAP, and CRP-XL. Expression of P-selectin and $\alpha_{IIb}\beta_{3}$ activation was determined by FACS analysis with mouse-anti P-selectin-PE, and fibrinogen-FITC respectively. The mean of the percentage of P-selectin expression, and $\alpha_{IIb}\beta_{3}$ activation with ± SD is shown. Differences between patients and controls for each concentration of agonists were non-significant (Wilcoxon’s rank P > 0.05).
Supplementary Figure IV - Oligophrenin-1 deficient platelets form normal aggregates

(A) Whole blood of an OPHN1⁻/⁻ patient and three healthy controls was perfused over collagen coated coverslips. Pictures were taken every 10 seconds. Representative pictures are shown. (B) Surface coverage of platelets from an OPHN1⁻/⁻ patient (black triangles) and three healthy controls (white squares) on collagen coated cover glasses was determined at the indicated time points by pixel count using Image J. Perfusions were performed in duplicate of which the mean was calculated. Data are expressed as mean ± 95% confidence interval of the mean of duplicate experiments.
Supplementary Figure V - Oligophrenin-1 deficiency is not associated with altered clot retraction compared to healthy controls

(A) PRP of a single OPHN1⁻/⁻ patient was stimulated with a PAR-1 peptide. Pictures were taken at indicated time points. (B) Clot size of an OPHN1⁻/⁻ patient (black triangles) and three healthy controls (white squares) was determined by pixel count using Image J. Experiments were performed in quadruplicate and the mean was taken. Data are represented as mean ± 95% confidence interval of the mean of quadruplicate measurements of three healthy controls.
Supplementary Video 1.
Spreading of an oligophrenin-1 deficient platelet on CRP-XL/GFOGER in presence of 0.5 mM RGD.

Supplementary Video 2.
Spreading of a healthy donor platelet on CRP-XL/GFOGER in presence of 0.5 mM RGD.

References

<table>
<thead>
<tr>
<th>SwissProt Accession</th>
<th>Gene</th>
<th>Protein Name</th>
<th>Phosphotyrosine Peptide</th>
<th>Phospho Sites</th>
<th>Ratio (COP/1x10^5) 1</th>
<th>Ratio (COP/1x10^5) 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>F11942</td>
<td>FLNA</td>
<td>Filamin A</td>
<td>VYKQGKTPRQGTR</td>
<td>Y100</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Q9HBI1</td>
<td>PDHA1</td>
<td>Pyruvate dehydrogenase lipoamide dehydrogenase</td>
<td>MEK92</td>
<td>Y570</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>P08567</td>
<td>LCK</td>
<td>Non-receptor protein tyrosine kinase</td>
<td>Y683</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P09227</td>
<td>LYN</td>
<td>Non-receptor protein tyrosine kinase</td>
<td>Y576</td>
<td>1.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Q84655</td>
<td>PDLC1</td>
<td>Protein-disulfide isomerase</td>
<td>Y675</td>
<td>1.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Q9G440</td>
<td>TFK1</td>
<td>Proteinase K substrate 1</td>
<td>Y128</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q13627</td>
<td>DYRK1A</td>
<td>Dual specificity [lactate dehydrogenase (EC 1.1.1.27)-specific] protein kinase</td>
<td>Y350</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P08569</td>
<td>LIP</td>
<td>Lipid phosphoprotein</td>
<td>Y361</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P08665</td>
<td>FYN</td>
<td>Fyn homologous kinase</td>
<td>Y437</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P09227</td>
<td>LYN</td>
<td>Non-receptor protein tyrosine kinase</td>
<td>Y579</td>
<td>1.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Q11646</td>
<td>TPK1</td>
<td>Protein tyrosine phosphatase non-receptor type 1A</td>
<td>Y193</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q7F440</td>
<td>14-3-3 alpha</td>
<td>Multimerin 1</td>
<td>Y59</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q96125</td>
<td>TNFAIP5</td>
<td>Tumor necrosis factor alpha inhibitor 5</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P08665</td>
<td>FYN</td>
<td>Fyn homologous kinase</td>
<td>Y437</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Q91057</td>
<td>MAP2K1</td>
<td>Mitogen-activated protein kinase kinase 1</td>
<td>Y220</td>
<td>1.2</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Table 1: Phosphotyrosine peptides identified and quantified after CRP treatment. Supplemental to Bolijn et al. 2012

List of all phosphotyrosine peptides identified (manually curated) and quantified after CRP treatment. pT, phosphotyrosine; pS, phosphoserine; pY, phosphothreonine.

In some cases, MS/MS fragments were not sufficient for site localization, these are indicated with /.

(CoP with increased tyrosine phosphorylation upon IL-1 treatment)
Materials and Methods

Supplementary to: “Targeted Phosphotyrosine Profiling of GPVI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation” by Bleijerveld et al. (2013)

Reagents
Cross-linked collagen related peptide (CRP-XL) and α2β1 binding peptide glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) were synthesized and cross-linked as necessary in one of our labs as described 1, but using a CEM Liberty microwave synthesizer. Acetylsalicylic acid was purchased from Sigma; AR-C69931MX was a kind gift from Astra Zeneca. All chemicals used for proteomics experiments were purchased from commercial sources and were of analytical grade. Trypsin (sequencing grade), Complete Mini protease inhibitor and PhosSTOP phosphatase inhibitor cocktails were purchased from Roche Diagnostics; Lys-C was obtained from Wako Chemicals. Microcon YM-30 spin columns were obtained from Millipore; mouse monoclonal anti-phosphotyrosine agarose (PY99, sc-7020) was obtained from Santa Cruz Biotechnology. Adenosine diphosphate (ADP) was purchased from Roche, SFLLRN-trifluoroacetate salt, thrombin receptor activating peptide (TRAP) specific for PAR-1 was purchased from Bachem.

Patients
Although rare, platelets could be obtained from four male Oligophrenin-1 deficient patients. Their legal representatives had given informed consent for drawing blood samples and performing the experiments described in this paper. None of the patients had a history of abnormal haemostasis nor easy bruising. Moreover, patient 1, a 9 year old boy, underwent several orthodontic and surgical procedures (correction of phymosis, strabismus and an adenotomy) without any haemostatic problems. Patients 2 and 3 comprised two affected brothers. The patients had moderate to severe intellectual disability (ID) and in patient 2 and 4 cerebral imaging was performed which revealed vermis hypoplasia and enlarged ventricles. Genetics: Patient 1 showed normal G-banded karyotyping (46) with XY chromosome complement. Array-CGH with the Agilent 105K oligo-array (Oxford design) showed a de novo ~137Kb X:67,249,563-67,386,688(hg18) deletion in Xq12, deleting a large part (exons 6 through 17) of the OPHN1 gene (total 25 exons). The adult brother pair (patients 2 and 3) had a missense mutation (c.16658A>T;p.Val533Glu) in OPHN1. The clinical and molecular characteristics of adult patient 4 have been published previously 2; he had a loss-of-function mutation (c.556C>T; p.Gln186X) in OPHN1. Controls were healthy volunteers.

Blood sample preparation
Venous blood was collected from the patients and healthy volunteers after obtaining informed consent. Blood for mass spectrometry (MS) analysis was collected with an open system, anti-coagulated with 3.2% tri-sodium citrate (Merck). Blood for other experiments was collected using vacuum tubes with 3.2% tri-sodium citrate (BD). Platelet rich plasma (PRP) was prepared by centrifugation of whole blood at 160g for 15 minutes at room temperature, no brake. Washed platelets for mass spectrometry analysis were prepared by adding PRP with ACD (8.5 mM tri-sodium citrate, 7.1 mM citric acid, 5.5 mM D-glucose; final concentration) and centrifugation for 15 minutes with 340g at room temperature, no brake. The platelet pellet was resuspended in Tris-buffer (145 mM NaCl, 5 mM KCl, 260 mM NaH2PO4, 1 mM MgSO4, 100 mM Tris, 5.5 mM D-glucose, pH 6.5) with 10 ng/mL prostacyclin. Platelets were centrifuged for 15 minutes with 340g at room temperature and resuspended up to 200 x 10^9/L in Tris-buffer (pH 7.3), with 100 μM acetylsalicylic acid, and 1 μM AR-C69931MX. Platelets were not used until 30 minutes after isolation. Washed platelets for other experiments were prepared, by adding ACD to PRP and subsequent centrifugation at 340g at room temperature, no brake. The platelet pellet was resuspended in Hepes-Tyrode (HT) buffer (145 mM NaCl, 5mM KCl, 0.5 mM NaH2PO4, 1mM MgSO4, 10 mM Heps, 5.5 mM D-glucose, pH 6.5) with 10 ng/mL prostacyclin. Platelets were centrifuged for 15 minutes at 340g at
room temperature and resuspended to 200 x 10^9/L in HT-buffer (pH 7.3). Platelets were not used until 30 minutes after isolation.

GPVI stimulation for mass spectrometry analysis
Platelet suspensions were stimulated with 2.5 μg/mL CRP-XL for 5 and 30 minutes. Unstimulated platelet suspensions were taken as control for the same time points. After the indicated incubation times, platelet suspensions were centrifuged at 4000g for 2 minutes, the supernatant aspirated and subsequently the pellet was snap-frozen in liquid nitrogen.

Protein extraction, digestion and stable isotopic labeling of peptides
Mock- or CRP-XL-treated platelet pellets, stored at -80ºC, were rapidly thawed and subsequently lysed on ice in 8M urea in 100 mM Tris pH 8.5, 10 mM DTT, 1 mM sodium orthovanadate and 1X PhosSTOP in the presence of protease inhibitors. Efficient lysis was ensured by sonication on ice using a tip sonicator (3 x 30seconds at full power with interval 0.8, followed by 30 seconds continuous sonication) and proteins were further reduced at 56°C for 20 minutes on a shaker (600rpm). Protein concentration was determined using a Bradford Assay (BioRad, Veenendaal, The Netherlands). The total protein lysate from each condition (3 mg total protein) was alkylated with iodoacetamide and subsequently taken for proteolytic digestion using the Filter-Aided Sample Preparation (FASP) procedure (protocol 2), essentially as described in 7. Lysates were mixed with 0.2 mL of 8 M urea in 0.1 M Tris/HCl pH 8.5 (buffer UA), loaded into Microcon YM30 filtration devices (Millipore), and centrifuged at 14,000g for 15 minutes. The concentrates were diluted in the devices with 0.2 mL of buffer UA and centrifuged again. After centrifugation, the concentrates were mixed with 0.1 mL of 50mM iodoacetamide in UA solution and incubated at room temperature for 30 minutes in the dark. Following centrifugation for 15 minutes, the concentrate was diluted with 0.2mL of UA solution and concentrated again. This step was repeated twice. Next, the concentrate was diluted with 0.1 mL of 8 M urea in 0.1M Tris/HCl pH 8.0 (buffer UB). This step was repeated once. Subsequently, LysC (1:100 w/w) in 30 μL UB was added to the filter and the samples were incubated at 37°C for 4 hours. Then 120 μL ammonium bicarbonate with trypsin (1:50 w/w) was added, followed by overnight incubation at 37°C. The peptides were collected by centrifugation of the filter units, followed by two additional 30 μL filter washes with 0.5M NaCl. Peptides eluted from the FASP-filter unit were desalted and stable isotope dimethyl labeled on a Sep-Pak C18 column (Waters, USA, Massachusetts) as described previously 4, 5. Control samples were labeled with “light”, and CRP-XL-treated samples with “heavy” label (See Figure 1). For both the 5 minutes and the 30 minutes time point, the light and intermediate sample were mixed in a 1:1 ratio, lyophilized and stored at -80ºC until immunoprecipitation.

Immunoprecipitation (IP) of phosphotyrosine peptides
Immunoprecipitation was performed as described earlier 6-8. Differentially labeled peptide mixtures of each time point were reconstituted in IP buffer containing 50 mM Tris (pH7.4), 150 mM NaCl, 1% NOG, and protease inhibitor cocktail (Roche diagnostics). Agarose-conjugated anti-p-Tyr (PY99) antibodies (Santa Cruz) (prewashed three times with IP buffer) were added to the peptide mixture and incubated overnight at 4°C under constant rotation. After incubation, the beads were washed three times with 1 ml of IP buffer and twice with 1ml of water, all at 4°C. Peptides were eluted twice with 0.15% TFA, subsequently desalted and concentrated on stop-and-go extraction (STAGE) tips, dried in vacuo and stored at -80ºC until LC-MS analysis.

On-line nanoflow LC-MS
Nanoflow LC-MS/MS was performed by coupling an Agilent 1100 HPLC system (Agilent Technologies, Waldbronn, Germany) to a LTQ-Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany) as described previously 9. Briefly, dried peptide fractions were reconstituted in 10% formic acid and delivered to a trap column (ReproSil-Pur C18-AQ, 3μm, Dr. Maisch GmbH, Ammerbuch, Germany; 20 mm x 100 μm ID, packed in-house) at 5 μL/min in 100% solvent A (0.1M acetic acid in water).
Subsequently, peptides were transferred to an analytical column (ReproSil-Pur C18-AQ, 3µm, Dr. Maisch GmbH, Ammerbuch, Germany; 40 cm × 50 µm ID, packed in-house) at ~100 nL/min in a 3 hour gradient from 0 to 40% solvent B (0.1M acetic acid in 80% Acetonitrile). The mass spectrometer was operated in data dependent mode, automatically switching between MS and MS/MS. Full scan MS spectra (from m/z 300-1500) were acquired in the Orbitrap with a resolution of 60,000 at m/z 400 after accumulation to target value of 500,000. The ten most intense ions at a threshold above 5000 were selected for collision-induced fragmentation in the linear ion trap at normalized collision energy of 35% after accumulation to a target value of 10,000.

Data analysis

All MS2 spectra were converted to single DTA files and mgf files were created using MSQuant 2.0 at default settings. Runs were searched using an in-house licensed MASCOT search engine (Mascot version 2.2) software platform (Matrix Science, London, UK) against the Swissprot human database (version 56.2, 398181 sequences) with carbamidomethyl cysteine as a fixed modification. Light and intermediate dimethylation of peptide N-terminals and lysine residues, oxidized methionine and phosphorylation of tyrosine, serine and threonine were set as variable modifications. Trypsin was specified as the proteolytic enzyme and up to one missed cleavage was allowed. The mass tolerance of the precursor ion was set to 5 ppm and for fragment ions to 0.6 Da. The assignment of phosphorylation sites of identified phosphopeptides was performed by the PTM scoring algorithm implemented in MSQuant. Individual MS/MS spectra from phosphopeptides were accepted for a Mascot score ≥ 20. The FDR at this score was estimated to be less than 1% by performing a concatenated decoy database search. All identified phosphopeptides that were found to be differentially phosphorylated were manually scrutinized for site localization. Quantification of peptide doublets was performed using an in-house dimethyl-adapted version of MSQuant. Based on the [CRP-XL/Ctrl] ratio distributions of phosphotyrosine (pTyr) containing and non-phosphorylated peptides, tyrosine phosphorylation was considered significantly regulated over a threshold of 2-fold change (see Figure 2 and Supplementary Figure I B and C). A list of all quantified phosphopeptides is available as Supplementary Table I, and all data are available in the PRIDE database under accession numbers 19671 and 19672: http://tinyurl.com/3cx3ppb.

Western blotting

Washed platelets were lysed in SDS sample buffer (1.1 M glycerol, 62 mM Tris-HCl pH 6.8, 70 mM SDS, 29 µM Broom-phenol blue) and heated at 95°C for 5 minutes. Samples were subjected to SDS-PAGE using a NuPAGE 4%-12% gradient Bis-Tris-HCl pH 6.4 gel (Invitrogen) with MOPS running buffer (Invitrogen) and 50 mM dithiothreitol, electrotransferred to PVDF membrane (Millipore), and immunoblotted with goat anti-human oligophrenin-1 polyclonal antibodies (Santa Cruz), or biotin coupled sheep anti-human GPVI polyclonal antibodies (R&D). Blot was probed with donkey anti-goat IRDye 800CW (LI-COR) and streptavidin IRDye 680 (LI-COR) and imaged using a LI-COR Odyssey imager.

Clot retraction

Citrated PRP was recalcified up to 15 mM CaCl₂. Clotting was initiated by adding thrombin up to 0.5 U/mL. Pictures were taken every 3 minutes for 2 hours. Clot surface was manually determined using MacBiophotonics Image J software.

Quantification of platelet membrane proteins

Detection of β₁ receptor was performed with 25 µL APC mouse anti-human CD29 (BD) dissolved in 25µL HEPES buffered saline (HBS; 10 mM HEPES, 150 mMNaCl, 1 mM MgSO₄, 5 mM KCl, pH 7.4). Detection of GPIIX was performed with 50 µL FITC labeled mouse anti-human CD42a (BD). For GPIb and β₃, 2 µL FITC labeled mouse anti-human CD42b (BD), and 2 µL FITC labeled mouse anti-human CD61 (Sanquin) were dissolved in 48 µL HBS, respectively. Labeling was initiated by adding 5 µL fresh, citrate anti-coagulated whole blood to each sample of antibody dilution. After 20 minutes of incubation, the samples were fixed with 500 µL 0.2% formyl saline (0.2% formaldehyde, 0.9% NaCl) and kept at
room temperature until analyses. All samples were analyzed on a FACS Canto II flow cytometer from BD Biosciences on the same day of processing. Single platelets were gated based on forward and side scatter properties. The mean fluorescence intensity (MFI) in the platelet gate was measured with FACS analysis.

Platelet activation and responsiveness

Platelet responsiveness was determined with agonist concentration series for P2Y12 (ADP), GPVI (XL-CRP), and PAR-1 (TRAP). Serial dilutions of ADP (125 μM, 31.25 μM, 7.8 μM, 1.95 μM, 488 nM, 122 nM, 31 nM, 8 nM) were prepared in 50 μL, with 2 μL PE labeled mouse anti-human P-selectin (BD) antibodies and 0.5 μL Alexa-488 fibrinogen (Molecular Probes). Similarly serial dilutions of CRP-XL (2.5 μg/mL, 625 ng/mL, 156.3 ng/mL, 39.1 ng/mL, 9.8 ng/mL, 2.4 ng/mL, 600 pg/mL, 153 pg/mL), and TRAP (625 μM, 156.3 μM, 39.1 μM, 9.8 μM, 2.4 μM, 610 nM, 153 nM, 38 nM) were prepared in 50 μL HBS with 2 μL mouse anti-human P-selectin antibodies and 0.5 μL Alexa-488 fibrinogen. The platelet activation assay was initiated by adding 5 μL fresh, citrate anti-coagulated whole blood to each sample of serial dilutions. Sample incubation, fixation and measurement were performed as described in the ‘Quantification of platelet membrane proteins’ section. Platelets were defined positive for P-selectin expression or positive for αIIbβ3 activation when the MFI exceeded 1% of baseline measurement. Non-parametric tests were used to test the difference in response for each concentration of agonist between the patients and healthy controls.

Collagen response under flow.

Cover glasses were coated with collagen dissolved to 100 μg/ml in HBS pH 7.4 for 90 minutes at room temperature. Collagen coated cover glasses were blocked with 1% human serum albumin (HSA; MP Biomedicals) overnight at 4°C. Whole blood was warmed for 20 minutes at 37°C, and subsequently perfused at 1600/s over collagen coated cover glasses. Pictures were taken every second for 5 minutes. Pictures were taken using a Zeiss Observer.Z1 microscope coupled to an AxioCamMRm camera and Axiovision Rel. 4.8 software. Platelet surface coverage on collagen was determined automatically with MacBiophotonics Image J software.

Platelet filopodia and lamellipodia formation.

Cover glasses 24 x 60 mm (Mariënfeld) were treated with 2% chromosulfaric acid. Cover glasses were coated with CRP-XL dissolved to 100 μg/ml together with GFOGER dissolved to 100 μg/ml in 10 mM acetic acid, or 100 μg/ml fibrinogen in phosphate buffered saline (PBS: 25 mM Na2HPO4, 2.3 mM NaH2PO4, 140 mM NaCl, pH 7.4) overnight at 4°C. Coated cover glasses were blocked with 1% HSA for 90 minutes at room temperature. For perfusion with CRP-XL/GFOGER coated coverslips, PRP was added with 0.2 mM RGD. PRP was warmed for 20 minutes at 37°C, and subsequently perfused at 25/s for 20 minutes. Pictures were taken every 10 seconds with differential interference contrast microscopy (DIC) using a Carl Zeiss Observer Z1 microscope coupled to an AxioCam MRm camera and AxioVision Rel. 4.8 software (Carl Zeiss B.V., Sliedrecht, The Netherlands). For Supplementary Video 1 and 2, frame rates were increased to enhance fluency of the movie. Platelets forming filopodia and lamellipodia were counted and expressed as a percentage of total quantified platelets. Mean filopodia length was determined using Axiovision Rel. 4.8 software using the ‘measure length’ function. Wilcoxon’s rank sum test was used to test the difference between the patients and healthy controls.

References