Chemerin Connects Fat to Arterial Contraction

Stephanie W. Watts, Anne M. Dorrance, Mark E. Penfold, Jillian L. Rourke, Christopher J. Sinal, Bridget Seitz, Timothy J. Sullivan, Trevor T. Charvat, Janice M. Thompson, Robert Burnett, Gregory D. Fink

Objective—Obesity and hypertension are comorbid in epidemic proportion, yet their biological connection is largely a mystery. The peptide chemerin is a candidate for connecting fat deposits around the blood vessel (perivascular adipose tissue) to arterial contraction. We presently tested the hypothesis that chemerin is expressed in perivascular adipose tissue and is vasoactive, supporting the existence of a chemerin axis in the vasculature.

Approach and Results—Real-time polymerase chain reaction, immunohistochemistry, and Western analyses supported the synthesis and expression of chemerin in perivascular adipose tissue, whereas the primary chemerin receptor ChemR23 was expressed both in the tunica media and endothelial layer. The ChemR23 agonist chemerin-9 caused receptor, concentration-dependent contraction in the isolated rat thoracic aorta, superior mesenteric artery, and mesenteric resistance artery, and contraction was significantly amplified (more than 100%) when nitric oxide synthase was inhibited and the endothelial cell mechanically removed or tone was placed on the arteries. The novel ChemR23 antagonist CCX832 inhibited phenylephrine-induced and prostaglandin F2α-induced contraction (+perivascular adipose tissue), suggesting that endogenous chemerin contributes to contraction. Arteries from animals with dysfunctional endothelium (obese or hypertensive) demonstrated a pronounced contraction to chemerin-9. Finally, mesenteric arteries from obese humans demonstrate amplified contraction to chemerin-9.

Conclusions—These data support a new role for chemerin as an endogenous vasoconstrictor that operates through a receptor typically attributed to function only in immune cells. (Arterioscler Thromb Vasc Biol. 2013;33:00-00.)

Key Words: adipose tissue • chemerin • ChemR23 • PVAT • vasoconstriction

Three classic layers, namely intimal, medial, and adventitial, form the blood vessel as we know it. With the report by Solits and Cassis1 in 1991, the perivascular adipose tissue (PVAT) has earned its position as the fourth layer, being called the tunica adiposa. The power of this tissue comes from its ability to synthesize and secrete a multitude of substances that include both vasoconstrictors and vasoexpanders that can act in a paracrine manner on the blood vessel. PVAT is in the unique position of enabling coordination of the inner compartment of the circulatory system to communicate with the external environment it supports. Most vessels, save the cerebral blood vessels and special vessels such as the tail artery, possess some amount and type of PVAT, varying from mostly brown fat (thoracic aorta) to mixed brown and white fat (mesenteric vessels). PVAT is found in healthy animals, suggesting it performs a physiological function. Dozens of vasoactive substances are released from PVAT, with a majority of substances reducing arterial contraction.3,4

Obesity is a situation in which fat is pathologically deposited in the body because of an imbalance of energy intake and expenditure. There is no question that increased visceral body fat (as opposed to subcutaneous body fat) is associated with higher risks of every virtual cardiovascular disease, including hypertension. A low-grade inflammation is described as being part of obesity, and obesity is considered a significant risk factor for developing hypertension. We discovered that an adipokine previously believed to be found only in visceral fat stores and inflammatory cells is also produced by PVAT. Chemerin (tazarotene-induced gene 2) is a peptide secreted as prochemerin from visceral fat and the liver. Originally located in human inflammatory cells, its secretion is attributed to the fat cell itself. Chemerin is described as a biomarker for adiposity because circulating chemerin levels associate strongly with body mass index and is increased in nascent metabolic syndrome, and chemerin levels are reduced with weight and fat loss. Importantly, genetic knockout of the primary receptor for chemerin, ChemR23 (also known as chemokine like receptor 1), is associated with reduced adiposity and body mass. Best known for stimulating movement of dendritic cells and leukocytes, chemerin activates ChemR23, a G protein–linked receptor, on monocytes and macrophages to elicit recruitment and stimulate an inflammation that could...
also play a role in obesity. Additionally, chemerin regulates adipocyte differentiation and production of several proinflammatory cytokines. We hypothesized that a chemerin axis exists in blood vessels. We propose that chemerin and the primary receptor for chemerin, ChemR23, are present and mediate contraction in the vasculature.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

Arterial Chemerin Axis

Isolated rat arteries express chemerin protein in the PVAT (Figure 1A). Real-time polymerase chain reaction supports the expression of chemerin (RARRES2) mRNA in the rat thoracic aortic PVAT (whole PVAT; Ct = 22.78±0.35; β2-microglobulin as control = 19.32±0.27; n=6). Chemerin signal does not wholly derive from resident mast cells because there was negligible CD68 staining in PVAT (Figure 1B, + control below), and staining for chemerin was, in many places, not punctate. Positive staining was observed within the cytoplasm of the fat cell, outside the rounded lipid droplet. The predominant receptor for chemerin, ChemR23, is expressed in the tunica media and endothelial cell layer (Figure 1C) and is observed as 3 dominant bands in homogenates (−PVAT) of the thoracic aorta and superior mesenteric artery cleaned of PVAT (Figure 1D and 1E). Two bands (at arrows) are consistent with that observed in a JAR (choriocarcinoma) positive control and were 42 kDa (expected size for ChemR23) and ≈84 kDa in size.

In endothelium intact (+E) rat aorta (Figure 2A) and rat superior mesenteric artery without PVAT (Figure 2C, left panel), the ChemR23 agonist chemerin-9 caused a small concentration-dependent contraction from baseline. When arteries were contracted with phenylephrine before chemerin-9, chemerin-9 first caused a modest relaxation that converted to an amplified contraction. This was readily visualized in tissues with no PVAT (Figure 2B and 2C, right panel). Amplification occurred regardless of whether an agonist of G protein–coupled receptors (prostaglandin F2alpha [PGF2alpha] or the adrenergic agonist phenylephrine [PE]) or a depolarizing stimulus (KCl) was used to contract the tissues (Figure 2D, left). The L type calcium channel antagonist nifedipine (100 nmol/L) reduced not only agonist tone (KCl in this example; contraction to KCl abolished by nifedipine) but also the amplified contraction to chemerin-9 (Figure I in the online-only Data Supplement). Removal of nitric oxide synthase activity by using N-ω-nitro-l-arginine (LNNA) and, to a greater extent, removal of the endothelial cell amplified chemerin-9–induced arterial contraction (Figure 2D, right). Similar PE-induced amplification of chemerin-9 contractions was observed in arteries from diet-induced obese and stroke-prone spontaneously hypertensive rats, when compared with controls (Figure II in the online-only Data Supplement). Chemerin-15,
Watts et al. Chemerin as a Vasoconstrictor.

A putative anti-inflammatory chemerin, did not stimulate baseline or agonist-enhanced contraction (Figure III in the online-only Data Supplement). When chemerin-9 was acutely infused into the LNA-treated rat (0.1 mg/µL at 200 µL/min for 5 minutes), mean arterial blood pressure was not elevated (control =102±3 mmHg; during infusion =104±4 mmHg; n=3). This concentration/dose of chemerin-9 was sufficient to stimulate vasoconstriction in the isolated artery.

CCX832 was developed as a ChemR23 antagonist. The Table reports the low nanomolar affinity of CCX832 for ChemR23 receptors of the human, mouse, and rat. CCX832 does not possess appreciable affinity for 2 other chemerin receptors, G protein-receptor 1 and chemokine receptor like 2, as well as a host of related chemokine receptors (Table I in the online-only Data Supplement). CCX832 inhibited chemerin-9–induced calcium mobilization and chemotaxis in multiple cell types. The significant affinity of CCX832 at rat ChemR23 supported our use of CCX832 as a receptor antagonist in isolated tissue bath studies. CCX832 rightward shifted chemerin-9–induced contraction (Figure 3A; −log EC50 [M] vehicle =6.53±0.05; 50 nmol/L =5.60±0.41; 100 nmol/L =5.20±0.06; P<0.05) and reversed chemerin-9–induced contraction, whereas the inactive analog of CCX832, CCX826, did not (Figure 3B, tracing left, quantitation right). Endogenous chemerin from PVAT supports agonist-induced contraction because CCX832 reduced contraction to low concentrations of α1-adrenergic agonist phenylephrine (Figure 3C, left panel); CCX832 was without effect on phenylephrine-induced contraction in tissues without PVAT. CCX832 also reduced PGF2α-induced contraction in the rat thoracic aorta +PVAT (Figure 3C, middle panel). By contrast, CCX832 was ineffective in reducing KCl-induced contraction in tissues with PVAT (Figure 3C, right). Thoracic aortae from the global ChemR23 knockout mouse and wild-type mouse were unresponsive to human chemerin-9 (Figure IV A in the online-only Data Supplement). These same aortae that contracted with half-maximal PE did not contract or relax to chemerin-9 (data not shown, n=4 for wild-type and knockout rats). ChemR23 protein was observed immunohistochemically in mouse thoracic aorta (Figure IVB in the online-only Data Supplement).

Upregulated Chemerin Axis in Hypertension

Chemerin protein was detected in PVAT around the aorta and superior mesenteric artery of both the sham normotensive (left) and DOCA-salt hypertensive rat. Chemerin was detected in the cytoplasm of the fat cell (Figure 4A). ChemR23 expression...
was evident in the media of the aorta and superior mesenteric artery of the sham and DOCA-salt rat (Figure 4B). Western analysis supported no significant hypertension-related difference in ChemR23 expression in the aorta (sham =48.5±5.7, DOCA-salt =41.9±10.0 densitometry units/α-actin expression; *, P>0.05). Superior mesenteric artery (sham =21.0±6.0, DOCA-salt =32.2±5.2, **, P>0.05). Figure V in the online-only Data Supplement). In the mesentery, CD68-positive cells were visible in the media, adventitia, and strongly observed in mesenteric lymph nodes, especially of the DOCA-salt tissue (Figure 4C, bottom row). By contrast, CD68 staining was not observed in the thoracic aorta, and lymph nodes were not observed in the fat around the thoracic aorta. Baseline chemerin-9–induced contraction was significantly increased in the aorta and superior mesenteric artery of the DOCA-salt hypertensive rat (Figure 5A and 5B). The relationship between chemerin-9–induced maximum contraction in rat aorta and superior mesenteric artery from baseline and agonist amplified contraction in the isolated human small mesenteric artery (Figure 6C). Importantly, resistance arteries from the same area of the rat (mesentery) demonstrate baseline constriction and agonist potentiated contraction to chemerin-9 (Figure 6D).

Discussion

In the past 2 years, reports from human studies support a positive association of circulating chemerin concentration with both systolic and diastolic blood pressure,13,15,23–30 Patient populations in these studies include those with obstructive sleep apnea, preeclampsia, nonalcoholic fatty liver disease, obesity, metabolic syndrome, type 2 diabetes mellitus, and type 2 diabetes mellitus with hypertension. In healthy humans, plasma chemerin is estimated to be from 4 to 40 nmol/L. Plasma is, however, just one of the sources of chemerin to be considered in vascular function. Because chemerin is produced within PVAT, it is likely the concentration of chemerin experienced by the vasculature that is significantly higher than that which is circulating. Importantly, the concentrations we use experimentally are in this physiological range. The effects of chemerin are most probably balanced or synergized by a host of other PVAT substances, such as adiponectin, that promote arterial relaxation.31 A recent report suggests that the chemerin/adiponectin ratio can be used as a predictor of metabolic syndrome.32 We are beginning to understand the potential impact of chemerin on human health with reports, such as that by Min et al.33 This study is a multi-institution, worldwide study of gene loci associated with metabolic syndrome, a syndrome defined by a group of risk factors that include a large waistline, high plasma triglycerides, low high-density lipoprotein cholesterol, hypertension, and high fasting blood glucose (http://www.nhlbi.nih.gov/health/topics/topics/ms/). The gene for chemerin, RARRES2, was 1 of 2 that was elevated to a positive association with metabolic syndrome. This syndrome presents as a constellation of events that are seemingly unrelated in terms of cause. However, our finding that chemerin, a product of adipose tissue (both visceral and PVAT), stimulates receptor-dependent contraction links in at least 2 of the risk factors in metabolic syndrome (large waistline and hypertension).

Chemerin

Endogenous sources of chemerin include white fat, the liver, the platelet, and PVAT. Chemerin is initially produced as a 163 amino acid precursor (prochemerin, tazarotene-induced gene 2), and processing of prochemerin by proteases is considered the key regulatory mechanism affecting chemerin concentration. Proteases that activate prochemerin include cathepsin G, elastase, tryptase, plasmin, and carboxypeptidases N and B. Similarly, inactivation of active chemerin peptides is performed by proteases that include neutrophil proteinase, mast cell chymase, and angiotensin-converting enzyme. The present work describes PVAT as a source of chemerin. The presence, function, and balance of these proteases in PVAT are key for determining the production of chemerin peptides that influence vascular function. This includes both the final concentration of peptides and the specific chemerin protein interactions
produced. The first N-terminal 20 amino acids are cleaved by an unknown protease to form prochemerin, chemerin 20 to 163. Proteolytic processing of the C terminus results in the multitude of chemerin peptides that have varied activity in promoting chemotaxis (the only end point consistently measured for chemerin; last number is the amino acid residue): chemerin-158 (low activity), chemerin-157 (high activity), chemerin-156 (high activity), chemerin-155 (inactive), chemerin-154 (inactive), chemerin-152 (unknown). The antibody used in the immunohistochemical experiments shared in this article recognizes all these chemerin peptides, as the antibody is directed toward amino acids 29 to 67. Thus, we do not yet know the chemerin isoforms produced in different vascular beds nor how this might change in disease. However, the inflammogen tumor necrosis factor–α stimulates chemerin production from adipocytes, thereby linking chemerin to inflammation. In cultured endothelial cells, chemerin increases generation of mitochondrial reactive oxygen species, thereby perpetuating a cycle of events that potentially underly disease. These findings place the protein chemerin as a link between obesity and inflammation.

New Role for ChemR23

ChemR23, as supported by data in this article, has to be ascribed the new function of modifying vascular tone. Pieces of the potential chemerin axis in the vasculature have been discovered. ChemR23 expression was observed in cultured endothelial and cultured human venous smooth muscle cells, and an atypical chemerin receptor CCRL2 was found in cultured human and mouse vascular endothelial cells. Chemerin has been detected in epicardial and aortic adipose tissue. Chemerin incubation of isolated vessels for 24 hours increased arterial sensitivity to endothelin-1. However, never before have all the elements of the chemerin axis been identified in noncultured vascular smooth muscle as they are in the present report. Importantly, the finding that ChemR23 serves the function of contractility attributes a new function to this receptor. Loss of endothelial function, as occurring in multiple cardiovascular diseases, potentiates the ability of chemerin to increase arterial tone. This suggests that chemerin interacts at both the level of the endothelial cell and smooth muscle cell, supported by ChemR23 expression in both locations. We have not pursued the mechanism of chemerin-induced relaxation, but this will be important given the equivocal effects of chemerin-9 infusion. One reason for the lack of blood pressure elevation is that chemerin-9, at the dose given, may still exert an effect on the endothelium that would support vasorelaxation. Involvement of chemerin in the cardiovascular system becomes increasingly important with discoveries that chemerin stimulates angiogenesis and might promote atherosclerosis and diabetic nephropathy.
There are 2 different components of chemerin contractile function in the vasculature. First, chemerin directly causes contraction in arteries without PVAT. It does this from baseline, but contraction is magnified when tone is applied to the tissue before hand. Amplification of chemerin-induced contraction occurred when an activator of a G protein–coupled receptor (adrenergic, prostaglandin) or non–G protein–coupled receptor was used to establish tone. This suggests that a mechanism that underlies elevation of vascular tone, such as influx of extracellular calcium, is the key to potentiating chemerin-induced contraction. The ability of nifedipine to reduce agonist (KCl)-induced contraction and potentiation of chemerin-9–induced contraction supports the necessity of having tone to amplify chemerin-induced contraction. This is a postreceptor mechanism of interaction of chemerin and the other agonists. Because all 3 agonists (PE, PGF, and KCl) depend on activation of the L type calcium channel, we suggest that their similar ability to potentiate chemerin-induced contraction is likely attributable to elevation of intracellular calcium.

Second, chemerin may participate in arterial contraction (+PVAT) initiated by other agonists. This is distinct from agonist-induced potentiation of chemerin-induced contraction and is a prereceptor mechanism of interaction. In this instance, we are not adding chemerin to this experiment exogenously but rather are causing its release as interpreted by the ability of the ChemR23 antagonist, CCX832, to reduce agonist-induced contraction. PE and PGF2α-induced contraction was reduced by CCX832, whereas that of KCl was not. Our data suggest that PE and PGF2α initiate a series of events in PVAT that promotes chemerin release, and this does not occur with KCl. In the future, we hope to understand the physiological stimuli that can release chemerin from PVAT. These initial experiments were important in that they suggest stimuli normally experienced by the vasculature can release and use chemerin in their vasoconstriction.

Two other receptors for chemerin exist. Chemokine receptor like 2 is not thought to mediate biological signals of chemerin but to chaperone the chemerin molecule to ChemR23 for biological effect. G protein-receptor 1 binds chemerin, but its role in mediating biological signals of chemerin is unknown. CCX832 has negligible affinity for both of these receptors, underscoring the importance of ChemR23 as a receptor for chemerin. CCX832 was effective in reducing chemerin-9–induced contraction in all tissues examined. More recently, other agonists of ChemR23 have been identified. The Resolvin E1 family members have been suggested to bind to ChemR23 in transfected CHO cells. The presence of a chemerin axis in
the artery opens the door for chemerin and potentially resolvin to have functions within the blood vessel itself. The clinical relevance of this chemerin axis is supported by the qualitatively similar findings in the rat and human arteries. These findings contrast with those observed in the mouse thoracic aorta. The thoracic aorta of the wild-type mouse did not contract to chemerin-9, but ChemR23 was present. One explanation for this outcome is that human chemerin-9 cannot activate the mouse receptor. Human and mouse chemerin-9 differ in the first 2 N-terminal amino acids, and this difference could...
play a role in reactivity. Another explanation revolves around a dichotomy between mouse and rat contractility that has been observed before in this very tissue. Unlike the rat thoracic aorta, the mouse thoracic aorta does not contract to angiotensin II and endothelin-1;56 other groups have observed this in response to endothelin-1 and urotensin.57–59 The inability of the mouse thoracic aorta ChemR23, similar to the endothelin receptors, to couple to contraction is one interpretation of these findings. Finally, it will be interesting to determine whether other arteries of the mouse are similarly unresponsive.

Looking Forward

It will be critical to understand the role, in vivo, of chemerin and ChemR23 in the regulation of blood pressure. Initial experiments infusing chemerin-9 suggested that in vivo functions of chemerin will not be straightforward. Chemerin-9 infusion did not elevate blood pressure. However, chemerin peptides have not been designed for use in vivo and seem to be largely ineffective, given their rapid metabolism.59 We are unable to prevent this metabolism because we do not know those proteases responsible for chemerin-9 degradation. This will necessitate design of available peptides that are resistant to metabolism55 and investigation of the in vivo properties of CCX832. This finding may also illustrate the dual role played by chemerin peptides become new members of the vasoactive adipokines and vascular function. Thus, 2 events may be occurring simultaneously such that blood pressure is ultimately not modified. We also cannot discount the possibility that chemerin-9 exerts central nervous system effects to modify blood pressure because ChemR23 has been identified in the brain.12 Finally, it is unclear how infusion of chemerin-9 adds to already circulating levels of chemerin and whether this dose was sufficient to initiate a physiological change. Circulating levels of chemerin in the rat models used are not known. All these important issues deserve formal attention.

Conclusions

The present work is timely in that investigating PVAT function is a current focus in understanding arterial function. The intimate apposition of PVAT to the arterial wall makes PVAT perfectly poised to affect the function of the artery and link adiposity to hypertension and other diseases (Figure 6E). PVAT is not the only source of chemerin, but PVAT should be recognized as immediately important to arterial function. Chemerin peptides become new members of the vasoactive PVAT factors, adipokines, that may serve as a connector between obesity and a change in arterial tone.

Acknowledgments

S.W. Watts provided financial support and consultation. S.W. Watts wrote the article with comments from all authors, and all authors read the final version of this article.

Source of Funding

The work in S.W.W. and G.D.F. laboratories was supported by National Institute of Health P01HL70687.

Disclosures

None.

References

Watts et al. Chemerin as a Vasoconstrictor

Chemerin Connects Fat to Arterial Contraction
Stephanie W. Watts, Anne M. Dorrance, Mark E. Penfold, Jillian L. Rourke, Christopher J. Sinal, Bridget Seitz, Timothy J. Sullivan, Trevor T. Charvat, Janice M. Thompson, Robert Burnett and Gregory D. Fink

Arterioscler Thromb Vasc Biol. published online April 4, 2013;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2013/04/04/ATVBAHA.113.301476

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2013/04/04/ATVBAHA.113.301476.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Methods and Materials

Materials

Unless stated otherwise, chemicals and salts are from Sigma Chemical Co. (St. Louis, MO, USA). Human chemerin-9 was purchased from GenScript (cat # RP20248; Piscataway, NJ, USA), and chemerin-15 synthesized to specification (AGEDPHGYFLPGQFA) by Biosynthesis (Lewisville, TX USA). CCX832 and CCX826 were discovered and synthesized by ChemoCentryx (Mountain View, CA, USA).

Animal use

Procedures were performed in accordance with the institutional guidelines and animal use committee of Michigan State University. All guidelines are in accordance with the “The Guide for the Care and Use of Laboratory Animals” (8th Edition, Revised 2011).

Normal male Sprague-Dawley rats (8-10 weeks of age, 250–300 g; Charles River Laboratories, Inc., Portage, MI, USA) were used unless otherwise stated.

Genetic hypertension: The stroke prone spontaneously hypertensive rats (SHRSP, bred at Michigan State University, ~12 weeks of age) were used and normotensive Wistar Kyoto rats (WKY) purchased from Charles River Laboratories (Portage, MI, USA). Systolic blood pressures of SHRSP were 201±3 mm Hg, WKY were 110±5 mm Hg (tail cuff, conscious measurement).

Deoxycorticosterone Acetate (DOCA) Salt hypertension: Male Sprague Dawley rats underwent left uninephrectomy (isoflurane anesthesia) and a DOCA pellet was implanted subcutaneously (200 mg/kg). Shams underwent uninephrectomy only. Rats were given standard rat chow *ad libitum*. Animals receiving DOCA also received water supplemented with 1% NaCl and 0.2% KCl. After four weeks, the systolic blood pressure of sham rats was 128±1 mm Hg and that of the DOCA-salt rat 211±2 mm Hg (tail cuff, conscious measurement).

Diet-Induced Obesity: Male Sprague-Dawley rats were fed a high fat-diet (36% fat; 15.2% saturated, 20.8% unsaturated, 0.4% sodium, and 0.6% potassium; cat # F3283, Bioserve, Frenchtown, NJ) from 3 - 20 weeks of age. Control rats received normal chow (4.4% fat; 2.5% saturated, 1.9% unsaturated, 0.39% sodium, and 1.0% potassium; Harlan). At 20 weeks, high fat fed rats were heavier (511±21 grams) than controls (447±9; p<0.05) and possessed a greater amount of visceral fat (total control = 9.17±0.85 grams; high-fat = 24.2±2.84 grams) that elevated the percentage of body fat from 2.04 to 4.68 percent.

ChemR23 WT and KO mice: Thoracic aortae were dissected from WT and KO male mice (2-3 months old) and shipped overnight from Canada in cold physiological salt solution for isometric contractile experiments and ChemR23 immunohistochemistry. Prior to all dissection, rats were anesthetized with Fatal Plus® (60 mg/kg, i.p.) and tissues dissected.

RT-PCR

RNA was extracted from PVAT (rat thoracic aorta) using a RNeasy Lipid Tissue kit (Qiagen Valencia, CA). One μg of RNA was reverse transcribed using SuperScriptVILO (cat #11754; Invitrogen, Grand Island, NY). Real-time PCR was
performed using TaqMan primers (Applied Biosystems, Foster City CA) specific for Chemerin (Rarres2; Rn01451853_m1) and β2microglobin (Rn00560865_m1). Results were expressed as the mean ± SEM of the CT value obtained.

Histochemistry

Tissues were formalin-fixed or fresh frozen. Sections (8 micron) were taken through immunohistochemistry using a species-specific Vector kit (Burlingame CA, USA; rabbit: cat # PK-4001; rat = cat # PK-4004). Sections were incubated 24 hours with chemerin (rabbit TIG-2; 1:200, cat #H-002-52, Phoenix Pharmaceuticals Inc, Belmont CA USA), ChemR23 (rabbit 1:50-1:100, cat # APO6779PU-N, Acris Antibodies, Inc, San Diego CA USA), CD68 (rat, 1:50, cat #MAB1435, Millipore, Temecula, CA USA) or no primary antibody at 4 ºC. Sections were developed using a DAB (3, 3-diaminobenzidine) developing solution (cat # SK-4100; Vector Laboratories, Burlingame CA, USA). Slides were counterstained with Vector Hematoxylin (cat # H-3401, 30 seconds). Sections were photographed on a Nikon TE2000 inverted microscope using MMI® Cellcut Software.

Western analysis

Standard protein isolation, western blotting and transfer procedures using Immobilon-FL (IPFL10100, Millipore, Temecula, CA USA) were performed on cleaned arteries, loading equivalent amounts of total protein per lane [1]. Primary antibody (ChemR23, 1:1000, cat # APO6779PU-N, Acris Antibodies, San Diego CA USA) was incubated with blots overnight at 4 ºC. Blots were rinsed thrice in TBS + Tween (0.1%) with a final rinse in TBS and incubated with IRDye ® 800 goat anti-rabbit IgG (1:1000, cat #926-32211, LI-COR Biosciences, Lincoln, NE, USA) for 1 hour at 4 ºC with rocking. Blots were visualized using an Odyssey® Infrared Imaging System LICOR CE (LI-COR Biosciences, Lincoln, NE, USA) and reprobed for α-actin (cat #A14, EMD Chemicals, Gibbstown NJ, USA).

CCX832 Pharmacology

CCX832 was developed as a ChemR23 receptor antagonist. Methods for determining the affinity of CCX832 for human, mouse and rat ChemR23 and ability to inhibit activation of the same receptors are reported in supplemental methods. Supplemental Table 1 contains information regarding the ability of CCX832 to bind to and/or inhibit related chemokine receptors.

Isometric Contraction and Pharmacology: large and small arteries

Arteries (endothelium intact or removed; thoracic aorta of mouse and rat; superior mesenteric or mesenteric resistance of rat) cleaned of fat (-PVAT) or with fat intact (+PVAT) were mounted in tissue baths or a wire myograph for isometric tension recordings using Grass FT03 transducers and PowerLab data Acquisitions (ADInstruments, Colorado Springs, CO, USA). Baths contained physiological salt solution (PSS) [NaCl 130; KCl 4.7; KH₂PO₄ 1.8; MgSO₄ * 7H₂O 1.7; NaHCO₃ 14.8;
dextrose 5.5; CaNa$_2$EDTA 0.03, CaCl$_2$ 1.6 (pH 7.2), 95% O$_2$/CO$_2$]. Rings were placed under optimum resting tension [4 grams for rat thoracic aorta, 500 mg for mouse thoracic aorta, 1.2 grams for rat superior mesenteric artery, 400 mg for rat mesenteric resistance artery] and equilibrated for one hour. An initial concentration of 10 μM phenylephrine (PE) tested arterial viability and the status of the endothelial cell layer tested by acetylcholine (1 μM)-induced relaxation of a half-maximal PE-induced contraction. Tissues were washed and one of the following experiments performed.

From baseline: chemerin peptides were added cumulatively in a concentration-dependent fashion.

From contraction: tissues were half-maximally contracted with agonist (PE, KCl, PGF2alpha). When agonist-induced contraction plateaued, either vehicle (water) or chemerin peptides were added in a cumulative fashion.

Antagonist: Tissues were incubated for one hour with vehicle (0.05% DMSO or water) or drug (LNNA, CCX832, CCX826) prior to cumulative addition of chemerin peptide or other agonist. Alternatively, tissues were contracted with chemerin-9 (1 μM) and either CCX826 or CCX832 added in parallel tissue baths. CCX826, solubilized in DMSO, provides both a negative control (inactive congener) and vehicle control for CCX832.

Human samples

Small arteries (~500 micron diameter) from the intestinal/fat border were removed from small intestinal samples from de-identified obese humans during bariatric surgery (MSU IRB BIRB approved, with formal consent granted), and placed in a wire myograph (Tungsten .0008 wire, California Fine Wire, Grover Beach, CA USA). Arteries equilibrated for 30 minutes, passive tension placed (~800 milligrams), and equilibrated another 30 minutes. Tissues were challenged with a maximal concentration of NE, washed, and challenged again with vehicle or a half-maximal concentration of NE (~3 μM) prior to addition of chemerin-9 (1 μM).

In vivo Chemerin-9 administration

Isoflurane-anesthetized normal male Sprague Dawley rats, treated with LNNA (0.5 gram) for one week prior to experimentation, were implanted with a femoral arterial and venous line for measurement of blood pressure and chemerin-9 infusion, respectively. Chemerin-9 was infused through a syringe pump at a rate of 200 μL/minutes for 5 minutes and recordings of mean arterial blood pressure monitored before and after infusion.

Data Analysis

Data are reported as means+SEM for number of animals indicated in parentheses (N). Immunohistochemical results are shown in sections incubated with and without primary antibody, and are representative of a minimum of four (4) separate animals. Adjustments in brightness and contrast were made to the whole panel of a photograph,
not a portion. Westerns were quantified using Image J (NIH) and normalized for actin expression. Contraction is reported as means±SEM as force (milligrams) or as a percentage of the initial contraction to phenylephrine (PE) or norepinephrine (NE). Relaxation is reported as a percentage of the initial contraction to chemerin-9 (1 μM) or half-maximal contraction to agonist. The contraction caused by the contractant (PE, KCl, PGF2alpha) was subtracted out to result in the data presented. Potency values (-log EC\textsubscript{50}, M) were calculated as concentrations necessary to cause a half-maximal effect. Where a maximum was not achieved, the values are estimated and true potencies equal or greater than that reported. Either an unpaired Student’s t test or repeated measures ANOVA performed after confirming the normality of data distribution. Normality of data variances was tested using the F test (StatPlus/Mac 2009). Where variances were not equivalent, a Mann-Whitney U test was conducted as a nonparametric measure of two independent means where appropriate. p< 0.05 was considered statistically significant.

A. Cells and Reagents
CCX832 was prepared by the Medicinal Chemistry Department at ChemoCentryx and was stored as a 10 mM solution in DMSO at -20 °C until the time of the assay. Baf3 cells stably expressing human, mouse, or rat ChemR23 were cultured in RPMI-1640 medium supplemented with 10% FBS and 10 ng/ml murine IL-3. Recombinant chemerin and murine IL-3 were purchased from R&D Systems (Minneapolis, MN). Chemerin peptides hC9 (sequence YFPGQFAFS) and mC9 (sequence FLPGQFAFS) was purchased from CPC Scientific (San Jose, CA). 125I-chemerin (human) was purchased from Perkin Elmer (Waltham, MA). Mouse and rat plasma was purchased from Bioreclamation.

B. Study Protocols
Chemotaxis assay. Cells were collected by centrifugation at 400 x g at room temperature, then suspended at 5 million/ml in chemotaxis buffer (HBSS supplemented with 0.1% BSA). CCX832 or an equivalent volume of DMSO was diluted with chemotaxis buffer and added to the cells. Separately, synthetic human or mouse chemerin peptide mC9 was diluted with chemotaxis buffer, after which 29 µl of diluted ligand was placed in the lower wells of a ChemoTX plate (Neuro Probe, Gaithersburg, MD). A 5 µm (pore size) polycarbonate membrane was placed onto the plate, and 20 µL of the cell/compound mixture was transferred onto each well of the membrane. The plates were incubated at 37 °C for 90 minutes, after which the membranes were removed and 5 ml of the DNA-intercalating agent CyQUANT (Invitrogen, Carlsbad, CA) was added to the lower wells. The amount of fluorescence, corresponding to the number of migrated cells, was measured using a Spectrafluor Plus plate reader (TECAN, Durham, NC).

Radioligand binding assay. Cells were collected by centrifugation at 400 x g at room temperature, then suspended at 3 million/ml in chemotaxis buffer or species-appropriate plasma and 100 ml was transferred to 96-well plates containing 5 ml CCX832 or DMSO
pre-diluted with chemotaxis buffer. 100 ml chemotaxis buffer or species-appropriate plasma containing 125I-chemerin (50 pM final concentration) was added to the plate, after which the plate was incubated at 4 °C with agitation. Following a three hour incubation period, cells were aspirated onto polyethyleneimine-treated GF/B glass fiber filters with a cell harvester (Tomtec, Hamden, CT) and washed twice with washing buffer (25 mM Hepes, 500 mM NaCl, 1 mM CaCl$_2$, 5 mM MgCl$_2$, pH 7.1). 50 µl of MicroScint-20 (Perkin Elmer, Waltham, MA) was added to the filters, and radioactive emissions (cpm) were measured on a TopCount (Perkin Elmer, Waltham, MA) scintillation counter.

Calcium mobilization assay. Cells were incubated for 1 hour with 2 mM fluo-4/AM (Invitrogen, Carlsbad, CA) in HBSS, washed with HBSS and resuspended at 40 x 106 cells/ml in HBSS. CCX832 or an equivalent volume of DMSO was added to the cells, after which 40 ml of the mixture was transferred to a 384-well plate and fluorescence was monitored using a FLIPR fluorometer (Molecular Devices, Sunnyvale, CA). Human or mouse chemerin was diluted in HBSS and 10 ml was added to the plate.

C. *Data analysis.*
Data analysis and potency determinations (IC$_{50}$ and A_2 values) were carried out by non-linear regression analysis using Graphpad Prism. The A_2 values were calculated from the following equation:

$$pA_2 = p[\text{drug(M)}] - p[(A'/A)-1]$$

where A reflects the potency of the agonist in the absence of antagonist and A' reflects the potency of the agonist in the presence of antagonist at a given concentration of drug ($[\text{drug(M)}]$).
Supplemental Table I. Activity of CCX832 against a panel of chemokine receptors.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>IC$_{50}$ (nM)</th>
<th>Assay</th>
<th>Cells</th>
<th>Chemokine</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR1</td>
<td>>10,000</td>
<td>Chemotaxis</td>
<td>THP-1</td>
<td>CCL15/leukotactin</td>
</tr>
<tr>
<td>CCR2</td>
<td>>10,000</td>
<td>Chemotaxis</td>
<td>THP-1</td>
<td>CCL2/MCP-1</td>
</tr>
<tr>
<td>CCR3</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>293-CCR3</td>
<td>CCL11/eotaxin</td>
</tr>
<tr>
<td>CCR4</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>CEM</td>
<td>CCL22/MDC-1</td>
</tr>
<tr>
<td>CCR5</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Activated T cells</td>
<td>CCL4/MIP-1β</td>
</tr>
<tr>
<td>CCR6</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Activated T cells</td>
<td>CCL20/MIP-3α</td>
</tr>
<tr>
<td>CCR7</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Activated T cells</td>
<td>CCL19/MIP-3β</td>
</tr>
<tr>
<td>CCR8</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>293-CCR8</td>
<td>CCL1/I-309</td>
</tr>
<tr>
<td>CCR9</td>
<td>>10,000</td>
<td>Chemotaxis</td>
<td>Molt-4</td>
<td>CCL25/TECK</td>
</tr>
<tr>
<td>CCR10</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>L1.2-CCR10</td>
<td>CCL28/MEC</td>
</tr>
<tr>
<td>CXCR1</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Neutrophils</td>
<td>CXCL8/IL-8</td>
</tr>
<tr>
<td>CXCR2</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Neutrophils</td>
<td>CXCL8/IL-8</td>
</tr>
<tr>
<td>CXCR3</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Activated T cells</td>
<td>CXCL11/I-TAC</td>
</tr>
<tr>
<td>CXCR4</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>Activated T cells</td>
<td>CXCL12/SDF-1</td>
</tr>
<tr>
<td>CXCR5</td>
<td>>10,000</td>
<td>Ca$^{2+}$ Mobilization</td>
<td>L1.2-CXCR5</td>
<td>CXCL13/BCA-1</td>
</tr>
<tr>
<td>Receptor</td>
<td>Binding</td>
<td>Ligand</td>
<td>Cell Line</td>
<td>CC Chemokine</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>CXCR6</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>L1.2-CXCR6</td>
<td>CXCL16</td>
</tr>
<tr>
<td>CXCR7</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>435-CXCR7</td>
<td>CXCL12/SDF-1</td>
</tr>
<tr>
<td>C5L2</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>293-C5L2</td>
<td>C5a</td>
</tr>
<tr>
<td>C5aR</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>U937</td>
<td>C5a</td>
</tr>
<tr>
<td>CCRL2</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>293-CCRL2</td>
<td>chemerin</td>
</tr>
<tr>
<td>GPR1</td>
<td>>10,000</td>
<td>Radioligand Binding</td>
<td>293-GPR1</td>
<td>chemerin</td>
</tr>
</tbody>
</table>

C5aR = complement component 5A receptor 1, C5L2 = C5a anaphylatoxin chemotactic receptor, CCL = chemokine ligand; CCR, CCRL2 = C-C chemokine receptor-like 2, CXCR = chemokine receptor (CC or CCX class), GPR1 = G-protein coupled receptor 1.
Supplemental Figure legends

Figure SI. Extracellular Calcium and Agonist-driven tone is Necessary for Potentiation of Chemerin-9-induced contraction. Nifedipine reduces KCl-induced half-maximal contraction and reduces the potentiation of chemerin-9-induced contraction in isolated rat thoracic aorta +E without PVAT. Points represent means+SEM for number of animals in parentheses. * significant differences compared to responses of vehicle-incubated tissues.

Figure SII. Chemerin-9-induced Arterial Contraction in Disease Models. a, Concentration-dependent response to chemerin from baseline and above PE-induced contraction in the endothelium intact (+E) isolated thoracic aorta from control and obese rats. b, Concentration-dependent response to chemerin from baseline and above PE-induced contraction in the endothelium intact (+E) isolated thoracic aorta from normotensive WKY and hypertensive SHRSP rats. Points represent means+SEM for number of animals in parentheses.

Figure SIII. Chemerin-9 vs Chemerin-15 Contraction. Comparison of chemerin-9 vs chemerin-15 induced contraction in normal male Sprague-Dawely rats from baseline (a) and above a PE-induced contraction (b). Points represent means+SEM for number of animals in parentheses.

Figure SIV. Lack of Chemerin-9 Induced Contraction in Mouse Thoracic Aorta. a, Lack of ability of chemerin-9 to cause baseline contraction in the endothelium intact, cleaned thoracic aorta +/- LNNA (100 µM) from the wild type or chemerin R23 receptor mouse knockout. Points represent means+SEM for number of animals in parentheses. Parenthetic values in key report the magnitude of contraction to PE (10 µM), validating these tissues were living. b, Immunohistochemical localization of ChemR23 in the wild type receptor knockout thoracic aorta. Arrows point to medial staining. Representative of three individual mice.
Figure SV. ChemR23 expression in Sham and DOCA-salt arteries. Full sized blot for expression of ChemR23 in SMA (superior mesenteric artery) and RA (rat aorta) from sham and DOCA-salt rats. Each lane represents an individual animal (N=4 total). Arrows point to those bands recognized in the positive control of the JAR cell lysate (figure 1) and which were used in quantitative analysis/densitometry. Stripped blot was reprobed for smooth muscle \(\alpha\)-actin expression and densitometry values were normalized to this measure.
Rat Thoracic Aorta +E, -PVAT
KCl-contracted (half-maximal)

(N=3-5)

- Vehicle
- Nifedipine (100 nM)
- Baseline

Figure SI
Rat Thoracic Aorta +E, -PVAT

\[\text{log Chemerin-9 [M]} \]

Force (milligrams)

- Control Baseline
- Control PE Contracted
- Obese Baseline
- Obese PE Contracted

Figure SII
a. Rat Thoracic Aorta +E, -PVAT

![Graph showing percentage PE(10^-5 M) contraction vs log Chemerin [M].]

- Chemerin-9
- Chemerin-15

(N=4)

b. Rat Thoracic Aorta +E, -PVAT

![Graph showing percentage half-maximal PE contraction vs log Chemerin [M].]

- Chemerin-9
- Chemerin-15

(N=4)

Figure SIII
a. Mouse Thoracic Aorta +E, -PVAT

<table>
<thead>
<tr>
<th>Log Chemerin-9 [M]</th>
<th>Percentage PE (10^-5 M) Contraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td>100</td>
</tr>
</tbody>
</table>

- WT (38.2±3.0 mg)
- KO (73.5±13.1 mg)
- WT + LNNA (60.0±4.5 mg)
- KO + LNNA (132.2±8.9 mg)

(N=4)

b. ChemR23 in Mouse Thoracic Aorta

Figure SIV
ChemR23

Sham SMA DOCA SMA Sham RA DOCA RA Normal RA

102 kDa 76 kDa 38 kDa

α-actin

Figure SV