Effects of Estrogen on Vascular Inflammation
A Matter of Timing

Susana Novella, Magda Heras, Carlos Hermenegildo, Ana Paula Dantas

Objective—Our study aims to determine the role of time of menopause on vascular inflammation biomarkers and how it affects their modulation by estrogen and raloxifene in postmenopausal women.

Methods and Results—Uterine arteries from 68 postmenopausal women were divided into 3 segments and cultured for 24 hours in tissue culture media containing 17β-estradiol (100 nmol/L), raloxifene (100 nmol/L), or vehicle. Assessment of arterial concentration of 13 inflammatory biomarkers was performed by multiplex immunobead-based assay. Aging per se has a positive correlation with the generation of several proinflammatory markers. Although short-term estradiol exposure correlates with lower expression of tumor necrosis factor-α, vascular endothelial growth factor, and interleukin-1β in all age groups, for most biomarkers aging was associated with a switch from a beneficial anti-inflammatory action by estrogen, at earlier stages of menopause, to a proinflammatory profile after 5 years past its onset. Raloxifene has no significant effect on the expression of all proinflammatory markers. Western blot analysis of estrogen receptor expression (estrogen receptor-α and estrogen receptor-β) showed that estrogen receptor-β increases with aging, and this increase has a positive correlation with the generation of several proinflammatory markers.

Conclusion—Aging alters estrogen-mediated effects on the modulation of inflammatory biomarkers in women. How aging affects estrogen responses on vascular inflammation is not clear, but our data show a positive association between increased estrogen receptor-β expression with aging and proinflammatory effects by estrogen. (Arterioscler Thromb Vase Biol. 2012;32:00-00)

Key Words: vascular inflammation ◼ menopause ◼ estrogen ◼ raloxifene ◼ multiplex immunoassay

Vascular inflammation and endothelial dysfunction are key elements in the progression of cardiovascular disease (CVD). In most conditions that are considered cardiovascular risk factors (eg, hypercholesterolemia and hypertension), the vascular system or, more specifically, vascular endothelium incites an inflammatory response that leads to the development of adherent and dysfunctional endothelial cell, which in turn contributes to vascular damage and risk for CVD.

In women, the processes involved in vascular damage are thought to be slowed by the presence of estrogen. Nevertheless, available data on the effects of estrogens on inflammatory process are fairly contradictory, with both anti-inflammatory and proinflammatory effects reported. This is further complicated by discrepant data from prospective randomized clinical studies aimed to determine the effects of estrogen replacement therapy on circulating markers of inflammation in postmenopausal women. These studies described that biomarkers such as adhesion molecules and interleukins (ILs) can be increased, decreased, or unchanged after estrogen treatment.

Type of estrogen and cell/tissue studied, acute or chronic stimuli, degree of tissue injury, and differences in end points used to define the inflammatory response are some of the factors that may explain these discrepancies. In addition, there is a recent consensus that cardiovascular protective effects of estrogen may be influenced by the timing of initiation of estrogen therapy. A recent theory, called timing hypothesis, has postulated that the effects of estrogen to prevent CVD may occur only when treatment is initiated before the detrimental effects of aging on CVD are established in the vasculature. Aging, per se, is known to have a positive relationship with the levels of inflammation biomarkers and increased risk of CVD. Nonetheless, it is currently unknown whether the effects of estrogen on vascular function and, more specifically, vascular inflammation are modified by aging in women. In this regard, the present study aims to evaluate the relationship of aging with vascular inflammation biomarkers and how time since menopause affects the modulation of inflammatory biomarkers by estrogen and raloxifene in arteries of postmenopausal women.

Methods

The protocol was approved by the Ethics Committee of Clinical Research (CEIC, Protocol 2007/3916) from Hospital Clinic de Barcelona and conducted in compliance with the principles of the...
Helsinki Declaration. Uterine arteries were obtained from 68 women who underwent hysterectomy because of uterine prolapse or myoma from September 2007 to June 2009. All patients provided written informed consent to participate in the study. Women who have never been on hormone replacement therapy or selective estrogen receptor modulators (raloxifene and tamoxifen) were matched for body mass index, blood pressure, lipids, and lipoproteins. Exclusion criterion includes use of chronic anti-inflammatory therapy, statins, angiotensin-converting enzyme inhibitors, and AT1 receptor antagonist. At the moment of hysterectomy, arteries were cleaned, divided into 3 segments, and cultured for 24 hours in tissue culture media containing 17β-estradiol (100 nmol/L), raloxifene (100 nmol/L), or vehicle for further analysis of inflammation biomarkers and estrogen receptor (ER) expression. Detailed methods related to tissue culture and treatments, multiplex assay, and Western blot are shown in the online-only Data Supplement.

Data Analysis

Time since menopause was defined by the age at which a woman last had any menstrual bleeding and expressed as years passed since last menstruation until the day of hysterectomy. Inflammation biomarker concentration in each sample was expressed as mean concentration from triplicate measurements normalized by the amount of protein in each sample. The degree of linear relationship between time since menopause and biomarker concentration found in each group (ie, estrogen-treated, raloxifene-treated, and untreated groups), as well as the correlation between ER-α or ER-β expression (in untreated arteries) and biomarker concentration after treatments (estrogen or raloxifene), was expressed as regular linear regression compared with the use of Pearson correlation coefficient, expressed as Pearson r value, ranging from −1 (inverse correlation) to +1 (positive correlation). The proportion of variation response shared by the 2 variables in the model is expressed as r². Significant correlation was accepted at P<0.05. ANCOVA was used to compute the slopes of correlations from untreated arteries with the slopes obtained by different treatments (17β-estradiol or raloxifene). The magnitude of estrogen and raloxifene effects on inflammation biomarker concentration in association with time since menopause was performed by combination of samples in age groups as follows: menopausal women up to 5 years before hysterectomy (<5); women between 5 and 10 years past the onset of menopause (5–10); and women >10 years past menopause (>10). Association between time since menopause in grouped samples and estrogen or raloxifene treatments was assessed using 2-way ANOVA followed by Bonferroni post-test to compare replicate means. Statistical analysis and Pearson coefficient calculation were carried out using SPSS Statistics v18.0 software (IBM, Armonk, NY).

Results

Clinical characteristics of women who provide uterine arteries are presented in the Table. Despite all care in obtaining samples from patients without history of CVD, a few women in this study have presented some degree of cardiovascular risk factors, including hypertension and hypercholesterolemia, which were equally distributed among aging groups. No racial/ethnic-based evaluation was performed.

Aging per se has a positive correlation with vascular inflammation. Eight of 13 markers displayed a sizeable positive relationship between time since menopause and inflammatory biomarkers (Table 1 in the online-only Data Supplement). ANCOVA revealed that short-term estradiol exposure significantly affects aging-associated correlation observed in most biomarkers (Figure 1). Estrogen treatment changed the degree of linear correlation of inflammatory biomarkers in association with time since menopause, although these effects were not uniform for all markers studied (Figure 1). Although estrogen treatment was associated with a reduction in the concentration of IL-1β, vascular endothelial growth factor, and tumor necrosis factor (TNF-α) at any stage of menopause, an increased correlation was observed for MCP1 and the adhesion molecules s-ICAM and s-VCAM. In addition, treatment with estrogen created a correlation that had not previously existed between the production of IL-6 and IL-8 and time of menopause (Figure 1). Raloxifene had no significant effects on the relationship of time since menopause with all proinflammatory markers studied (Table 1 in the online-only Data Supplement). When arteries were grouped by time after menopause, we observed a bidirectional effect of estrogen. Although estrogen treatment was associated with lower expression of the markers TNF-α, vascular endothelial growth factor, and IL-1β in all age groups (Figure 2), for most of the inflammation biomarkers, time of menopause was associated with a switch from a beneficial anti-inflammatory action by estrogen, at earlier stages of menopause, to a proinflammatory profile after 5 years past its onset (Figure 3). Western blot analysis of ER-α expression in nontreated arteries reveals the presence of 2 splicing variants of this receptor in the arterial wall, the 66-kDa (ER66) and the 46-kDa (ER46) isoforms (Figure 4A). Time since menopause does not modify the expression of ER66, whereas a slight, although not significant, increase in the ER46 isoform was observed in the >10-year group (Figure 4A). Analysis of ER46/ER66 ratio was found to have no correlation with time since menopause (Figure 4C). On the other hand, although ANOVA showed no statistical significance among aging groups (ER46/ER66 ratio: <5 group, 0.57±0.03; 5–10 group, 0.63±0.05; >10 group, 0.70±0.07), a significant aging-associated linear trend increase in ER46/ER66 was observed (ANOVA post-test for linear trend: P=0.0075). As for ER-β,
we observed a linear trend of increase in ER-β expression with aging (ANOVA post-test for linear trend: $P=0.013$), which becomes significantly higher past 10 years of menopause onset (Figure 4B). A similar pattern of responses on ER-α and ER-β expressions was found in arterial segments that were treated with 17β-estradiol or raloxifene (data not shown), suggesting that there is no modulation of ER expression by these agonists in our experimental conditions (24 hours of treatment at 100 nmol/L). By correlating the expression of ERs with arterial biomarkers of inflammation, no association was found between these markers and ER-α expression (Figure 1 in the online-only Data Supplement). However, a significant positive relationship was observed between ER-β expression and the proinflammatory effects of estrogen (Figure 5). Interestingly, we also found a lower, but positive, correlation between the expression of ER-β and the concentration of TNF-α and IL-1β, 2 biomarkers that were found to be downregulated by estrogen (Figure 5).

Discussion

Our data are a first step toward the understanding the effects of aging, or rather time since menopause, in the modulation of vascular inflammation by estrogen. Based on the principle of the timing hypothesis, the anti- or proinflammatory potential of 2 estrogenic molecules (17β-estradiol and raloxifene) was carefully determined by treating arterial segments from women at different stages of menopause.

Together with the known risk factors, findings from epidemiological and basic studies have tightly linked inflammatory process with vascular aging. Plasma levels of several cytokines, especially IL-6 and TNF-α, have been described to be increased with age even in apparently healthy individuals and in the absence of acute infection. We found that aging has a positive correlation with several markers of vascular inflammation in arteries from menopausal women. Of the 13 markers analyzed, we observed a significant degree of correlation in 8 of them, including the adhesion...
molecules E-selectin, s-ICAM, and s-VCAM, the cytokines IL-1α and TNF-α, and the chemokine MCP1. Our data agree with previous studies establishing that aging process is associated with a development of a more adhesive endothelium. Increased leukocyte adhesion and enhanced expression of adhesion molecules and chemokines have been observed in older individuals compared with young adult, as well as in senescent endothelial cells. On the other hand, even though our results corroborate previous studies showing an aging-associated increase in the cytokines TNF-α and IL-1β, our major surprise was related to the lack of correlation with IL-6, which has been widely described in the literature to be associated with vascular aging process and increased cardiovascular risk. However, the fact that IL-6 concentration was determined in plasma by the majority of studies demonstrates the complexity on the modulation of inflammation in different tissues. Although several inflammatory markers may arise from atheroma plaque, reflecting the extent of inflammation within the vascular lesion, they might also come from nonvascular sources, reflecting inflammatory states, such as chronic infections. As yet, the field still needs to better establish the role and the modulation of the distinct inflammatory markers in the vessel wall during the progression of CVD and aging.

Because women are less likely to progress to CVD, a sex-associated difference in inflammatory responses has been proposed. In fact, recent autopsy studies have described that inflammatory atherosclerosis and associated acute coronary heart disease develop earlier in life in men than in women and are associated with death at an earlier age, although both men and women present the same overall plaque burden. Also in animal models for atherosclerosis, male sex contributes to the progression of lipid deposition, remodeling, and aortic lesions. Despite evidences, the mechanisms of such gap are largely unknown, and few studies have addressed this issue by determining the anti- and proinflammatory potential of estrogen in the vasculature. Nonetheless, the available data are rather inconclusive and fairly contradictory. Estrogen has been described to suppress vascular inflammation by down-regulation of proinflammatory molecules, including cytokines and adhesion molecules. Inflammatory response has also been shown to vary significantly according to the estrous cycle in rodents. On the other hand, several clinical studies have described estrogen as a proinflammatory modulator in autoimmune diseases. Meta-analysis of clinical evidence on the modulating effects of estrogens reveals a striking discrepancy with both anti- and proinflammatory effects being described.

There is much controversy over the design and interpretation of the clinical studies to determine the effects of estrogen in the cardiovascular system. Recent studies have suggested that the cardiovascular protective effects of estrogen may be influenced by the type of estrogen and the timing of initiation of estrogen therapy. Furthermore, the most used hormone replacement therapy not only contains estrogenic compounds but also progestins and, importantly, androgens that may interfere with the beneficial effects of estradiol.

We have recently shown that equine estrogens display a lower transcriptional activity and lower ability to modulate endothelial function than the naturally occurring estrogen, 17β-estradiol. Consistently, increased inflammatory effects by estrogens were mostly found in women treated with conjugated equine estrogens, whereas others have found reduced or unaffected levels of the same biomarkers when women were treated with 17β-estradiol.

In addition to estrogens, a large number of women are being exposed to selective estrogen receptor modulators to prevent breast cancer recurrence and osteoporosis. According to several experimental and observational studies, the selective estrogen receptor modulator raloxifene has beneficial effects on the vascular system. Similar to estrogen, raloxifene treatment has shown favorable effects on lipid profile and endothelial...
function. With regard to its potential as a modulator of vascular inflammation, the little information available reveals similar inconsistency as estrogen. In these studies, we found that short-term treatment with raloxifene does not affect the degree of correlation between time past menopause and biomarkers of inflammation. On the other hand, we observed that 17β-estradiol displays an overall inflammatory effect, because the treatment of arteries with this hormone increases the degree of aging-associated relationship for most biomarkers studied.

However, although our results initially suggest an inflammatory effect by estrogens, a careful look at the data reveals a likely bidirectional effect of estrogen in some inflammatory biomarker that is dependent on age range. In this regard, a second analysis was performed by grouping samples according to time since menopause: up to 5 years (<5); between 5 and 10 years (5–10); and >10 years past the onset of menopause (>10). With this analysis, we observed that acute treatment with estrogen induces an anti-inflammatory effect only in arteries from women at early stages of menopause (up to 5 years). In arteries of older women or longer at menopause, estrogen begins to display a timing-dependent proinflammatory effect, suggesting that aging plays a negative role on estrogen-mediated effects on vascular inflammation. In fact, detailed examination of the data from the Women’s Health Initiative indicates that early initiation of estrogen replacement produces more favorable results than the late average time of initiation used in the Women’s Health Initiative studies overall. In support with this hypothesis are few studies showing that aging in female rodents is associated with significant reduction in estrogen-mediated cardiovascular effects. In addition, studies have described that timing of onset for estrogen replacement alters the immunologic environment and the progression of vascular inflammation and atherosclerosis formation. Ovariectomized women receiving estrogen immediately after ovariectomy had

Figure 3. Effects of treatments with 17β-estradiol (E2) or raloxifene (ralox) on the expression of inflammatory biomarkers s-ICAM, s-VCAM, interleukin (IL)-6, IL-8, and MCP1 in uterine arteries of women grouped by age, according to time past the onset of menopause: <5 years (<5); between 5 and 10 years (5–10); and >10 years of menopause (>10). Shown are the biomarkers in which E2 displayed a bidirectional action relative to the time of menopause. Data are plotted as mean±SEM. *P<0.05, **P< 0.01, and ***P<0.001.
significantly smaller atherosclerotic lesions than those undergoing delayed or no estrogen exposure.35

On the other hand, acute treatment with 17β-estradiol was effective in decreasing the arterial levels of IL-1β and TNF-α in all age groups, despite keeping the positive correlation of those markers with aging. Both are major inflammatory cytokines crucially involved in early stages of vascular inflammation. Through endothelial stimulation, IL-1β and TNF-α increase in synthesis and release of adhesion molecules ICAM and VCAM and set off the inflammatory cascade.36

Corroborating our data are numerous experimental studies describing that estradiol downregulates TNF-α and IL-1β in different cell types and suggesting an anti-inflammatory and vasculoprotective action by estrogens.3 However, although a decrease in levels or action of specific cytokines has been attributed to lower risk of CVD, the functional specificity of each biomarker to the process of chronic inflammation and progression of vascular disease remains uncertain. It is important to note that the mechanisms of actions of these inflammatory markers are highly pleiotropic and often share common pathways and, therefore, could act on other molecules synergistically even when they are at lower concentrations. In fact, there are reports that genetic deletion and pharmacological neutralization of TNF-α and IL-1β in different cell types and suggesting an anti-inflammatory and vasculoprotective action by estrogens.3

However, although a decrease in levels or action of specific cytokines has been attributed to lower risk of CVD, the functional specificity of each biomarker to the process of chronic inflammation and progression of vascular disease remains uncertain. It is important to note that the mechanisms of actions of these inflammatory markers are highly pleiotropic and often share common pathways and, therefore, could act on other molecules synergistically even when they are at lower concentrations. In fact, there are reports that genetic deletion and pharmacological neutralization of TNF-α and IL-1β in different cell types and suggesting an anti-inflammatory and vasculoprotective action by estrogens.3

The mechanisms whereby aging and long-term estrogen withdrawal affect estrogenic responses are largely unknown, but our data suggest a relationship between changes on balance of ERs (ER-α isoforms and ER-β) with increased proinflammatory effect by estrogen. The differences in signaling through ER-α and ER-β are increasingly becoming apparent, and, in fact, previous experimental studies have established that increased expression of ER-β over ER-α is associated with higher oxidative stress and atherosclerotic plaque formation.39,40 Furthermore, emerging evidences have shown the physiological and pathophysiological relevance of 2 variants of ER-α to estrogen signaling—the full-length ER-α with 66-kDa (ER66) and the ER-α isoform lacking the N-terminal portion (ER46).41,42 Both isoforms are expressed in the endothelial cells and are able to increase NO production.41 In this regard, a slight increase in ER46 expression, as observed, would represent a benefit to the vascular wall. However, studies have described that ER46 dimerizes with ER66 and...
can modify the risk for CVD remain unknown, but our data strongly suggest that the time to start hormone replacement therapy should be taken into account when deciding the best therapy to treat postmenopausal women.

Acknowledgments

We are grateful to Dr Marc Garcia-Elias (Kaplan Institute, Barcelona), Dr Lluís Marcet (Teknon Medical Center, Barcelona), and to the gynecologists and nurses from gynecology and obstetrics division at Hospital Clíníc de Barcelona for providing arterial samples. We are indebted to Nadia Castillo for excellent technical assistance.

Sources of Funding

This work was supported by Spanish grants from Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III – FEDER-ERDF (grants FIS PI1000518, FIS PI080176, FIS PI080272, and Red HERACLES RD06/0009), Spanish Society of Cardiology (SEC), and Consellería de Sanidad, Generalitat Valenciana (grants AP 097/2011, AP 104/2011, and GE 027/2011).

Disclosures

None.

References

Figure 5. Simple correlation analysis between the concentration of biomarkers of inflammation after estrogen treatment (x axis) and estrogen receptor (ER)-β expression (y axis). Shown are the inflammatory biomarkers that expressed significant increase in the degree of correlation after 17β-estradiol (E2) treatment, as determined by ANCOVA.

Effects of Estrogen on Vascular Inflammation: A Matter of Timing
Susana Novella, Magda Heras, Carlos Hermenegildo and Ana Paula Dantas

Arterioscler Thromb Vasc Biol. published online June 7, 2012;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272
Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2012/06/07/ATVBAHA.112.250308

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2012/06/07/ATVBAHA.112.250308.DC1
http://atvb.ahajournals.org/content/suppl/2012/06/07/ATVBAHA.112.250308.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
SUPPLEMENT MATERIAL

Effects of Estrogen on vascular inflammation: a matter of timing.

Running head: aging, estrogen and vascular inflammation

Susana Novella c,d,e, Magda Heras a,b, Carlos Hermenegildo c,e, Ana Paula Dantas a,b.

From the a Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; b Institut Clinic de Tòrax, Hospital Clinic Barcelona, Spain; c Department of Physiology, University of Valencia, Valencia, Spain; d Research Foundation, Hospital Clínico Universitario, Valencia, Spain; e Instituto de Investigación Sanitaria INCLIVA, Hospital Clínico Universitario, Valencia, Spain

Address for correspondence:

Ana Paula Dantas, PhD. Experimental Cardiology Division, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). C/ Casanova 143 Lab. IDIBAPS 404. 08036 – Barcelona, Spain. Tel: +34.934516905. Fax:+34.934514148. adantas@clinic.ub.es
Extended Methodology

Tissue Culture

Under sterile conditions, major branches of uterine arteries in the parametrium were dissected from connective tissues in iced-cold media Liebovitz’s L-15 without phenol red (Gibco®, Invitrogen, Carlsbad, CA). Each artery was divided into three segments of 10 mm in length, which were assigned to each one of the three experimental groups: vehicle (NT), estrogen-treated (E2) and Raloxifene-treated (Ralox). Special care was taken to avoid stretching or injury during dissection, transport or incubation. Tissue culture was based on methods previously described \(^{10, 11}\), with modifications. Clean segments of uterine artery were incubated in Liebovitz’s L-15 media without phenol red supplemented with 10% (v/v) calf serum and penicillin G (100 IU/ml) + streptomycin (100µg/ml) at 37°C under atmosphere of 95%O\(_2\) and 5%CO\(_2\). Arteries segments from each patient were incubated for 24h with 100 nmol/L 17β-estradiol (Sigma, St Louis, MO), 100 nmol/L Raloxifene (Tocris, Bristol, UK) or vehicle containing 0.01% alcohol. No contamination with lipopolysaccharide was confirmed at the end of the incubation using HEK-Blue™ LPS Detection Kit (Invitrogen, Carlsbad, CA). Following incubation period, arteries were removed from media, snap-frozen in liquid nitrogen and kept at -80°C until the day of the assay.

Multiplex Assay

Simultaneous assessment of arterial concentrations of 13 inflammation biomarkers: cell adhesion molecule (sE-Selectin, sVCAM and sICAM); plasminogen activator inhibitor-1 (tPAI-1); matrix metalloproteinase-9 (MMP-9); cytokines (interleukins - IL-10; IL-8, IL-6 IL-1β; interferon gamma - IFN\(_{\gamma}\) and tumor necrosis factor alpha - TNF\(_{\alpha}\); monocyte chemotactic protein-1
(MCP1); transforming growth factor alpha; and vascular endothelial growth factor (VEGF) was performed using commercially-available multiplex bead-based immunoassay kits (HCVD1-67AK and HCVD3-67CK, Millipore, Billerica, MA) following the manufacturer’s instructions. Briefly, arterial rings were homogenized in RIPA buffer (150 mmol/L NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mmol/L Tris, pH 8.0 and a mixture of protease inhibitors - 2µg/ml). After 30 min of incubation on ice, samples were centrifuged for 20 min at 14,000 x g at 4°C to yield a solubilized preparation. Protein concentration was measured using the BCA protein assay (Thermo Scientific, Rockford, IL). Equal volume of arterial homogenates (25 µL/well) or standards (25 µL/well) were incubated with pre-mixed bead sets in pre-wetted 96-well microtiter plates at 4°C overnight. After recommended washing, the fluorescent detection antibody mixture was added and incubated for 1 hour, followed by incubation with streptavidin-phycoerythrin for an additional 30 min at room temperature. Inflammatory biomarkers were determined using a Luminex IS 100 2.3 (Luminex, Austin, TX), and data were reported as mean fluorescent intensities normalized by the amount of protein (mg) determined by BCA test (Thermo Scientific, Rockford, IL).

Western blot analysis of estrogen receptors

Equal amount of protein (50µg) from non-treated artery segments were resolved by SDS-PAGE on 4-12% gels and electroblotted onto nitrocellulose. After 1h blocking with 5% milk in Phosphate-buffered saline with 0.1% (v/v) Tween 20 (PBST), membranes were incubated for 1h in PBST containing 5% milk and the specified primary antibody: mouse monoclonal anti-ERα, 1:500 (Upstate #04-1564) or mouse monoclonal anti-ERβ, 1:500 (Calbiochem #GR39). After 4 washes with PBST, membranes were incubated for 1h with a horseradish peroxidase-labeled goat anti-mouse at a 1:2000 dilution in PBST containing 1% milk. After 4 additional washes in,
the membranes were incubated with a chemiluminescent reagent according to the manufacturer's protocols (SuperSignal west pico, Pierce Chemical Co), and chemiluminescent signal was visualized by LAS-4000 imaging system (Fujifilm). All membranes were re-blotted using a monoclonal antibody anti GAPDH (1:2000; Santa Cruz Biotechnology) as a loading control. Densitometric analyses of Western blots were performed using a Mac Biophotonic ImageJ Software). Data were normalized to corresponding values of GAPDH densitometry.
Table I - *Pearson’s Correlation Coefficients*

<table>
<thead>
<tr>
<th></th>
<th>Untreated</th>
<th></th>
<th></th>
<th>Estrogen</th>
<th></th>
<th></th>
<th>Raloxifene</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson r</td>
<td>r²</td>
<td>P value</td>
<td>Summary</td>
<td>Pearson r</td>
<td>r²</td>
<td>P value</td>
<td>Summary</td>
<td></td>
</tr>
<tr>
<td>MMP-9</td>
<td>0.1522</td>
<td>0.023</td>
<td>0.5737</td>
<td>ns</td>
<td>0.1459</td>
<td>0.021</td>
<td>0.0987</td>
<td>ns</td>
<td>0.0592</td>
</tr>
<tr>
<td>E-Selectin</td>
<td>0.7205</td>
<td>0.519</td>
<td><0.0001</td>
<td>***</td>
<td>0.7274</td>
<td>0.529</td>
<td>0.0003</td>
<td>***</td>
<td>0.6893</td>
</tr>
<tr>
<td>s-ICAM</td>
<td>0.4549</td>
<td>0.207</td>
<td><0.0001</td>
<td>***</td>
<td>0.9057</td>
<td>0.820</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.5463</td>
</tr>
<tr>
<td>s-VCAM</td>
<td>0.6602</td>
<td>0.436</td>
<td><0.0001</td>
<td>***</td>
<td>0.8463</td>
<td>0.716</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.5723</td>
</tr>
<tr>
<td>tPAI</td>
<td>0.6778</td>
<td>0.459</td>
<td><0.0001</td>
<td>***</td>
<td>0.6221</td>
<td>0.387</td>
<td><0.0001</td>
<td>***</td>
<td>0.5861</td>
</tr>
<tr>
<td>IFNγ</td>
<td>0.2048</td>
<td>0.042</td>
<td>0.4467</td>
<td>ns</td>
<td>0.2390</td>
<td>0.057</td>
<td>0.4105</td>
<td>ns</td>
<td>0.1428</td>
</tr>
<tr>
<td>IL-1β</td>
<td>0.7161</td>
<td>0.513</td>
<td><0.0001</td>
<td>***</td>
<td>0.5302</td>
<td>0.281</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.6740</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.1715</td>
<td>0.029</td>
<td>0.1587</td>
<td>ns</td>
<td>0.8357</td>
<td>0.699</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.2589</td>
</tr>
<tr>
<td>IL-8</td>
<td>0.1319</td>
<td>0.017</td>
<td>0.7479</td>
<td>ns</td>
<td>0.7193</td>
<td>0.518</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.4127</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.4440</td>
<td>0.197</td>
<td>0.0849</td>
<td>ns</td>
<td>0.4192</td>
<td>0.176</td>
<td>0.1357</td>
<td>ns</td>
<td>0.5350</td>
</tr>
<tr>
<td>TNFα</td>
<td>0.6308</td>
<td>0.407</td>
<td><0.0001</td>
<td>***</td>
<td>0.5161</td>
<td>0.266</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.7104</td>
</tr>
<tr>
<td>MCP1</td>
<td>0.6202</td>
<td>0.385</td>
<td><0.0001</td>
<td>***</td>
<td>0.8311</td>
<td>0.691</td>
<td><0.0001</td>
<td>*** (a)</td>
<td>0.6729</td>
</tr>
<tr>
<td>VEGF</td>
<td>0.6610</td>
<td>0.437</td>
<td><0.0001</td>
<td>***</td>
<td>0.3362</td>
<td>0.113</td>
<td>0.0047</td>
<td>** (a)</td>
<td>0.5896</td>
</tr>
</tbody>
</table>

(a): Analysis of Covariance (ANCOVA) reveals significant difference (p < 0.05) in comparison to untreated group.
Figure I - Simple correlation analysis between concentration of biomarkers of inflammation after estrogen treatment (X axis) and ERα expression (Y axis). Shown are the inflammatory biomarkers that expressed significant increase in the degree of correlation following E2 treatment, as determined by ANCOVA.
폐경 후 여성의 혈관에서는 에스트로겐 수용체의 발현이 항진되어 있는데 이를 통해서 에스트로겐의 혈관염증 반응을 초래한다.

임상 엽 교수
고려대학교 안산병원 순환기내과

Summary

배경
이 연구는 폐경 시 노화가 혈관의 염증표지자들에 미치는 역할과 폐경 후 여성에서 에스트로겐과 raloxifene 치료 시 혈관의 염증표지자들이 어떻게 변화하는지 규명하기 위하여 시행되었다.

방법 및 결과
68명의 폐경 여성에서 추출한 자궁 동맥을 3개의 분절로 나누어 17β-estradiol (100 nmol/L), raloxifene (100 nmol/L) 또는 vehicle를 추가하여 24시간 동안 배양한 다음 13개의 염증표지자의 혈관 내 농도를 측정하였다. 노화 자체는 여러 염증표지자의 생성과 양의 상관관계가 있었다. 단기간의 estradiol 노출은 모든 연령 그룹에서 TNF-α, VEGF, IL-1β의 발현을 억제하였고, 폐경 초기 단계에서는 에스트로겐이 대부분의 염증표지자들에서 유익한 항염증 작용을 보이지만, 5년 후에는 에스트로겐의 작용이 오히려 염증을 조장하는 방향으로 바뀌었다. Raloxifene는 모든 염증표지자들의 발현에 유익한 영향을 미치지 않았다. 에스트로겐 수용체(α와 β 수용체)의 western blot 결과, 노화는 에스트로겐 수용체-β 증가와 관련되었으며, 이는 여러 염증표지자의 생성과 양의 상관관계를 보였다.

결론
여성의 노화는 염증표지자들의 반응에 관련된 에스트로겐의 효과를 변화시킨다. 노화가 에스트로겐에 관련된 혈관염증에 어떻게 영향을 미치는지는 확실하지 않지만, 이 연구는 노화가 진행될 때 에스트로겐 수용체-β의 증가와 에스트로겐에 의한 염증 반응 사이에 밀접한 관련이 있음을 보여준다.

임상 엽 교수
고려대학교 안산병원 순환기내과

im from page 49 of the document.

Summary

Background
This study was conducted to investigate the role of aging in the inflammatory mediators of blood vessels and how estradiol and raloxifene treatment affect the inflammatory mediators in postmenopausal women.

Methods and Results
68 postmenopausal women were selected and their uterine arteries were divided into three segments. The segments were incubated for 24 hours with 17β-estradiol (100 nmol/L), raloxifene (100 nmol/L) or vehicle. The concentration of 13 inflammatory mediators in the blood vessels was measured. Aging itself showed a correlation with the generation and amount of several inflammatory mediators. Short-term estradiol exposure inhibited the expression of TNF-α, VEGF, IL-1β in all age groups. In the early stage of menopause, estradiol had a beneficial anti-inflammatory effect in most inflammatory mediators, but after 5 years, the effect of estradiol turned inflammatory. Raloxifene did not have a significant effect on the expression of all inflammatory mediators. Western blot results showed that aging was associated with estradiol receptor-β increase, which was correlated with the generation and amount of several inflammatory mediators.

Conclusion
Women's aging is related to the inflammatory response mediated by estradiol. It is unclear how aging affects vascular inflammation, but this study showed a close relationship between aging and estradiol receptor-β increase and estradiol-mediated inflammatory response.
이 연구는 에스트로겐의 혈관염증의 조절효과에 대한 노화의 영향에 대한 연구의 첫걸음이다. 이 연구에서 주목할 점은 노화가 혈관의 염증표지자를 증가시키는 것뿐만 아니라, 폐경 전이나 폐경 직후에 나타나는 에스트로겐에 의한 혈관염증 억제작용이 폐경 후 나이가 들어감에 따라서 오히려 혈관염증을 조장하는 방향으로 진행된다는 것이다.

관상동맥질환은 폐경기 여성에서 주된 사망 원인으로 알려져 있으며, 폐경이 되면 심혈관질환의 위험이 2-3배로 증가한다. 과거에는 이러한 에스트로겐의 결핍이 죽상경화증 및 심혈관질환의 위험을 증가시키는 것으로 생각되어 여성호르몬 대체요법(hormone replacement therapy, HRT)이 폐경기 여성에서 심혈관질환의 위험을 줄일 수 있을 것으로 생각되었다. 그러나 과거 대규모 전향적 무작위 연구인 Heart and Estrogen/progestin Replacement Study (HERS)에서는 HRT를 받은 군에서 관상동맥질환의 재발 빈도를 줄이지 못하였으며, 오히려 초기 치료 1년간 관상동맥질환의 재발빈도가 증가하는 결과를 나타냈다. 관상동맥질환의 일차 예방에 대한 Women’s Health Initiative (WHI) 연구에서도 HRT를 시행한 군에서 정맥혈전증의 위험도가 유의하게 높았으며, 심혈관질환 및 뇌졸중의 발생 위험이 오히려 증가했던 원인에 대한 설명으로 보인다. 이 연구의 결과를 바탕으로 심혈관질환이 진행되기 전 폐경 초기에 HRT를 시행한다면 심혈관질환에 대한 유용한 효과를 가질 것으로 생각되나, 향후 이에 대한 대규모의 전향적 연구가 필요할 것이다. 또한, 폐경 후 시간의 경과에 따른 여성호르몬의 여러 가지 영향에 대해서도 더욱 깊은 연구가 필요할 것으로 생각된다.

REFERENCES
Effects of Estrogen on Vascular Inflammation
A Matter of Timing

Susana Novella, Magda Heras, Carlos Hermenegildo, Ana Paula Dantas

Objective—Our study aims to determine the role of time of menopause on vascular inflammation biomarkers and how it affects their modulation by estrogen and raloxifene in postmenopausal women.

Methods and Results—Uterine arteries from 68 postmenopausal women were divided into 3 segments and cultured for 24 hours in tissue culture media containing 17β-estradiol (100 nmol/L), raloxifene (100 nmol/L), or vehicle. Assessment of arterial concentration of 13 inflammatory biomarkers was performed by multiplex immunobead-based assay. Aging per se has a positive correlation with the generation of several proinflammatory markers. Although short-term estradiol exposure correlates with lower expression of tumor necrosis factor-α, vascular endothelial growth factor, and interleukin-1β in all age groups, for most biomarkers aging was associated with a switch from a beneficial anti-inflammatory action by estrogen, at earlier stages of menopause, to a proinflammatory profile after 5 years past its onset. Raloxifene has no significant effect on the expression of all proinflammatory markers. Western blot analysis of estrogen receptor expression (estrogen receptor-α and estrogen receptor-β) showed that estrogen receptor-β increases with aging, and this increase has a positive correlation with the generation of several proinflammatory markers.

Conclusion—Aging alters estrogen-mediated effects on the modulation of inflammatory biomarkers in women. How aging affects estrogen responses on vascular inflammation is not clear, but our data show a positive association between increased estrogen receptor-β expression with aging and proinflammatory effects by estrogen. (Arterioscler Thromb Vasc Biol. 2012;32:2035-2042.)

Key Words: vascular inflammation ■ menopause ■ estrogen ■ raloxifene ■ multiplex immunoassay

Vascular inflammation and endothelial dysfunction are key elements in the progression of cardiovascular disease (CVD). In most conditions that are considered cardiovascular risk factors (eg, hypercholesterolemia and hypertension), the vascular system or, more specifically, vascular endothelium incites an inflammatory response that leads to the development of adherent and dysfunctional endothelial cell, which in turn contributes to vascular damage and risk for CVD.1

In women, the processes involved in vascular damage are thought to be slowed by the presence of estrogen.2 Nevertheless, available data on the effects of estrogens on inflammatory process are fairly contradictory, with both anti-inflammatory3,4 and proinflammatory5 effects reported. This is further complicated by discrepant data from prospective randomized clinical studies aimed to determine the effects of estrogen replacement therapy on circulating markers of inflammation in postmenopausal women. These studies described that biomarkers such as adhesion molecules and interleukins (ILs) can be increased, decreased, or unchanged after estrogen treatment.4,6,7

Type of estrogen and cell/tissue studied, acute or chronic stimuli, degree of tissue injury, and differences in end points used to define the inflammatory response are some of the factors that may explain these discrepancies. In addition, there is a recent consensus that cardiovascular protective effects of estrogen may be influenced by the timing of initiation of estrogen therapy. A recent theory, called timing hypothesis, has postulated that the effects of estrogen to prevent CVD may occur only when treatment is initiated before the detrimental effects of aging on CVD are established in the vasculature.4 Aging, per se, is known to have a positive relationship with the levels of inflammation biomarkers and increased risk of CVD.5 Nonetheless, it is currently unknown whether the effects of estrogen on vascular function and, more specifically, vascular inflammation are modified by aging in women. In this regard, the present study aims to evaluate the relationship of aging with vascular inflammation biomarkers and how time since menopause affects the modulation of inflammatory biomarkers by estrogen and raloxifene in arteries of postmenopausal women.

Methods

The protocol was approved by the Ethics Committee of Clinical Research (Comite Etico de Investigacion Clinica Protocol 2007/3916) from Hospital Clinic de Barcelona and conducted in compliance with

Received on: March 25, 2012; final version accepted on: May 24, 2012.
From the Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (M.H., A.P.D.); Institut Clinic de Tòrax, Hospital Clinic Barcelona, Spain (M.H., A.P.D.); Department of Physiology, University of Valencia, Valencia, Spain (S.N., C.H.); Research Foundation, Hospital Clínic Universitario, Valencia, Spain (S.N., C.H.);

The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBAHA.112.250308/-/DC1.
Correspondence to Ana Paula Dantas, PhD, Experimental Cardiology Division, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/ Casanova 143 Lab, IDIBAPS 404, 08036 Barcelona, Spain. E-mail adantas@clinic.ub.es

© 2012 American Heart Association, Inc.
Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.112.250308
the principles of the Helsinki Declaration. Uterine arteries were obtained from 68 women who underwent hysterectomy because of uterine prolapse or myoma from September 2007 to June 2009. All patients provided written informed consent to participate in the study. Women who have never been on hormone replacement therapy or selective estrogen receptor modulators (raloxifene and tamoxifen) were matched for body mass index, blood pressure, lipids, and lipoproteins. Exclusion criteria include use of chronic anti-inflammatory therapy, statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor type 1 antagonist. At the moment of hysterectomy, arteries were cleaned, divided into 3 segments, and cultured for 24 hours in tissue culture media containing 17β-estradiol (100 nmol/L), raloxifene (100 nmol/L), or vehicle for further analysis of inflammation biomarkers and estrogen receptor (ER) expression. Detailed methods related to tissue culture and treatments, multiplex assay, and Western blot are shown in the online-only Data Supplement.

Data Analysis

Time since menopause was defined by the age at which a woman last had any menstrual bleeding and expressed as years passed since last menstruation until the day of hysterectomy. Inflammation biomarker concentration in each sample was expressed as mean concentration from triplicate measurements normalized by the amount of protein in each sample. The degree of linear relationship between time since menopause and biomarker concentration found in each group (ie, estrogen-treated, raloxifene-treated, and untreated groups), as well as the correlation between ER-α or ER-β expression (in untreated arteries) and biomarker concentration after treatments (estrogen or raloxifene), was expressed as linear regression compared with the use of Pearson correlation coefficient, expressed as Pearson r value, ranging from −1 (inverse correlation) to +1 (positive correlation). The proportion of variation response shared by the 2 variables in the model is expressed as r². Significant correlation was accepted at P<0.05. ANCOVA was used to compare the slopes of correlations from untreated arteries with the slopes obtained by different treatments (Figure 1). The magnitude of estrogen and raloxifene effects on inflammation biomarker concentration in association with time since menopause was performed by combination of samples in age groups as follows: premenopausal women up to 5 years before hysterectomy (<5); women between 5 and 10 years past the onset of menopause (5–10); and women >10 years past menopause (>10). Association between time since menopause in grouped samples and estrogen or raloxifene treatments was assessed using 2-way ANOVA, followed by Bonferroni post-test to compare replicate means. Statistical analysis and Pearson coefficient calculation were carried out using SPSS Statistics v18.0 software (IBM, Armonk, NY).

Results

Clinical characteristics of women who provide uterine arteries are presented in the Table. Despite all care in obtaining samples from patients without history of CVD, a few women in this study have presented some degree of cardiovascular risk factors, including hypertension and hypercholesterolemia, which were equally distributed among aging groups. No racial/ethnic-based evaluation was performed.

Aging per se has a positive correlation with vascular inflammation. Eight of 13 markers displayed a sizeable positive relationship between time since menopause and inflammatory biomarkers (Table I in the online-only Data Supplement). ANCOVA revealed that short-term estradiol exposure significantly affects aging-associated correlation observed in most biomarkers (Figure 1). Estrogen treatment changed the degree of linear correlation of inflammatory biomarkers in association with time since menopause, although these effects were not uniform for all markers studied (Figure 1). Although estrogen treatment was associated with a reduction in the concentration of IL-1β, vascular endothelial growth factor, and tumor necrosis factor (TNF-α) at any stage of menopause, an increased correlation was observed for monocyte chemotactic protein-1 and the adhesion molecules soluble intercellular adhesion molecule-1 and soluble vascular cell adhesion molecule-1. In addition, treatment with estrogen created a correlation that had not previously existed between the production of IL-6 and IL-8 and time of menopause (Figure 1). Raloxifene had no significant effects on the relationship of time since menopause with all proinflammatory markers studied (Table I in the online-only Data Supplement). When arteries were grouped by time after menopause, we observed a bidirectional effect of estrogen. Although estrogen treatment was associated with lower expression of the markers TNF-α, vascular endothelial growth factor, and IL-1β in all age groups (Figure 2), for most of the inflammation biomarkers, time of menopause was associated with a switch from a beneficial anti-inflammatory action by estrogen, at earlier stages of menopause, to a pro-inflammatory profile after 5 years past its onset (Figure 3). Western blot analysis of ER-α expression in nontreated arteries reveals the presence of 2 splicing variants of this receptor in the arterial wall, the 66-kDa (ER66) and the 46-kDa (ER46) isoforms (Figure 4A). Time since menopause does not modify the expression of ER66, whereas a slight, although not significant, increase in the ER46 isoform was observed in the >10-year group (Figure 4A). Analysis of ER46/ER66 ratio was found to have no correlation with time since menopause (Figure 4C). On the other hand, although ANOVA showed no statistical significance among aging groups (ER46/ER66 ratio: <5 group, 0.57±0.03; 5–10 group, 0.63±0.05; >10 group, 0.70±0.07), a significant aging-associated linear trend increase in ER46/ER66 was observed (ANOVA post-test for linear correlation between ER-α expression and time since menopause was accepted at P<0.05). Following ANOVA, the Pearson correlation coefficient was calculated to examine the association between time since menopause and biomarker concentration found in each group (ie, estrogen or raloxifene), expressed as Pearson r value, ranging from −1 (inverse correlation) to +1 (positive correlation). The magnitude of estrogen and raloxifene effects on inflammation biomarker concentration in association with time since menopause was performed by combination of samples in age groups as follows: premenopausal women up to 5 years before hysterectomy (<5); women between 5 and 10 years past the onset of menopause (5–10); and women >10 years past menopause (>10). Association between time since menopause in grouped samples and estrogen or raloxifene treatments was assessed using 2-way ANOVA, followed by Bonferroni post-test to compare replicate means. Statistical analysis and Pearson coefficient calculation were carried out using SPSS Statistics v18.0 software (IBM, Armonk, NY).

Table. Baseline Demographic and Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>58 (13)</th>
<th>30 (44)</th>
<th>17 (25)</th>
<th>21 (31)</th>
<th>39 (57)</th>
<th>29 (43)</th>
<th>28 (3.5)</th>
<th>212 (22)</th>
<th>91 (19)</th>
<th>54 (80)</th>
<th>9 (13)</th>
<th>5 (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Time since menopause</td>
<td><5</td>
<td>5–10</td>
<td>>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Myoma</td>
<td></td>
</tr>
<tr>
<td>Uterine prolapse</td>
<td></td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mg/dl), mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dl), mean (SD)</td>
<td></td>
</tr>
<tr>
<td>History of CVD, n (%)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
</tr>
<tr>
<td>Angina</td>
<td></td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td></td>
</tr>
<tr>
<td>Past</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td></td>
</tr>
</tbody>
</table>

BMI indicates body mass index; CVD, cardiovascular disease.
trend: \(P = 0.0075 \). As for ER-\(\beta \), we observed a linear trend of increase in ER-\(\beta \) expression with aging (ANOVA post-test for linear trend: \(P = 0.013 \)), which becomes significantly higher past 10 years of menopause onset (Figure 4B). A similar pattern of responses on ER-\(\alpha \) and ER-\(\beta \) expressions was found in arterial segments that were treated with 17\(\beta \)-estradiol or raloxifene (data not shown), suggesting that there is no modulation of ER expression by these agonists in our experimental conditions (24 hours of treatment at 100 nmol/L). By correlating the expression of ERs with arterial biomarkers of inflammation, no association was found between these markers and ER-\(\alpha \) expression (Figure I in the online-only Data Supplement). However, a significant positive relationship was observed between ER-\(\beta \) expression and the proinflammatory effects of estrogen (Figure 5). Interestingly, we also found a lower, but positive, correlation between the expression of ER-\(\beta \) and the concentration of TNF-\(\alpha \) and IL-1\(\beta \), 2 biomarkers that were found to be downregulated by estrogen (Figure 5).

Discussion

Our data are a first step toward the understanding the effects of aging, or rather time since menopause, in the modulation of vascular inflammation by estrogen. Based on the principle of the timing hypothesis, the anti- or proinflammatory potential of 2 estrogenic molecules (17\(\beta \)-estradiol and raloxifene) was carefully determined by treating arterial segments from women at different stages of menopause.

Together with the known risk factors, findings from epidemiological and basic studies have tightly linked inflammatory process with vascular aging.\(^{10,11}\) Plasma levels of several cytokines, especially IL-6 and TNF-\(\alpha \), have been described to be increased with age even in apparently healthy individuals and in the absence of acute infection.\(^{12,13}\) We found that aging has a positive correlation with several markers of vascular inflammation in arteries from menopausal women. Of the 13 markers analyzed, we observed a significant degree
of correlation in 8 of them, including the adhesion molecules E-selectin, soluble intercellular adhesion molecule-1 and soluble vascular cell adhesion molecule-1, the cytokines IL-1α/β and TNF-α, and the chemokine monocyte chemotactic protein-1. Our data agree with previous studies establishing that aging process is associated with a development of a more adhesive endothelium. Increased leukocyte adhesion and enhanced expression of adhesion molecules and chemokines have been observed in older individuals compared with young adult,11 as well as in senescent endothelial cells.14 On the other hand, even though our results corroborate previous studies showing an aging-associated increase in the cytokines TNF-α and IL-1β, our major surprise was related to the lack of correlation with IL-6, which has been widely described in the literature to be associated with vascular aging process and increased cardiovascular risk. However, the fact that IL-6 concentration was determined in plasma by the majority of studies demonstrates the complexity on the modulation of inflammation in different tissues. Although several inflammatory markers may arise from atheroma plaque, reflecting the extent of inflammation within the vascular lesion, they might also come from nonvascular sources, reflecting inflammatory states, such as chronic infections. As yet, the field still needs to better establish the role and the modulation of the distinct inflammatory markers in the vessel wall during the progression of CVD and aging.

Because women are less likely to progress to CVD, a sex-associated difference in inflammatory responses has been proposed. In fact, recent autopsy studies have described that inflammatory atherosclerosis and associated acute coronary heart disease develop earlier in life in men than in women and are associated with death at an earlier age, although both men and women present the same overall plaque burden.15 Also in animal models for atherosclerosis, male sex contributes to the progression of lipid deposition, remodeling, and aortic lesions.16–18 Despite evidences, the mechanisms of such gap are largely unknown, and few studies have addressed this issue by determining the anti- and proinflammatory potential of estrogen in the vasculature. Nonetheless, the available data are rather inconclusive and fairly contradictory. Estrogen has been described to suppress vascular inflammation by down-regulation of proinflammatory molecules, including cytokines and adhesion molecules.6,7,19–22 Inflammatory response has also been shown to vary significantly according to the estrous cycle in rodents.23 On the other hand, several clinical studies have described estrogen as a proinflammatory modulator in autoimmune diseases.5 Meta-analysis of clinical evidence on the modulating effects of estrogens reveals a striking discrepancy with both anti- and proinflammatory effects being described.6 There is much controversy over the design and interpretation of the clinical studies to determine the effects of estrogen in the cardiovascular system. Recent studies have suggested that the cardiovascular protective effects of estrogen may be influenced by the type of estrogen and the timing of initiation of estrogen therapy. Furthermore, the most used hormone replacement therapy not only contains estrogenic compounds but also progestins and, importantly, androgens that may interfere with the beneficial effects of estradiol.24 We have recently shown that equine estrogens display a lower transcriptional activity and lower ability to modulate endothelial function than the naturally occurring estrogen, 17β-estradiol.25 Consistently, increased inflammatory effects by estrogens were mostly found in women treated with conjugated equine estrogens, whereas others have found reduced or unaffected levels of the same biomarkers when women were treated with 17β-estradiol.4 In addition to estrogens, a large number of women are being exposed to selective estrogen receptor modulators to prevent breast cancer recurrence and osteoporosis. According to several experimental and observational studies, the selective estrogen receptor modulator raloxifene has beneficial effects on the vascular system. Similar to estrogen, raloxifene treatment has shown favorable effects on lipid profile and endothelial

Figure 2. Effects of treatments with 17β-estradiol (E2) or raloxifene (ralox) on the expression of inflammatory biomarkers in uterine arteries of women grouped by age, according to time past the onset of menopause: <5 years (<5); between 5 and 10 years (5–10); and ≥10 years of menopause (≥10). Shown are the biomarkers in which E2 displayed an anti-inflammatory action in all age groups. Data are plotted as meansSEM. *P<0.05, **P<0.01, and ***P<0.001. TNF-α indicates tumor necrosis factor-α; VEGF, vascular endothelial growth factor; IL, interleukin.
function. With regard to its potential as a modulator of vascular inflammation, the little information available reveals similar inconsistency as estrogen. In these studies, we found that short-term treatment with raloxifene does not affect the degree of correlation between time past menopause and biomarkers of inflammation. On the other hand, we observed that \(17\beta\)-estradiol displays an overall inflammatory effect, because the treatment of arteries with this hormone increases the degree of aging-associated relationship for most biomarkers studied. However, although our results initially suggest an inflammatory effect by estrogens, a careful look at the data reveals a likely bidirectional effect of estrogen in some inflammatory biomarker that is dependent on age range. In this regard, a second analysis was performed by grouping samples according to time since menopause: up to 5 years (<5); between 5 and 10 years (5–10); and >10 years past the onset of menopause (>10). Shown are the biomarkers in which E2 displayed a bidirectional action relative to the time of menopause. Data are plotted as mean±SEM. *P<0.05, **P< 0.01, and ***P<0.001.

Figure 3. Effects of treatments with \(17\beta\)-estradiol (E2) or raloxifene (ralox) on the expression of inflammatory biomarkers soluble intercellular adhesion molecule-1 (s-ICAM), soluble vascular cell adhesion molecule-1 (s-VCAM), interleukin (IL)-6, IL-8, and monocyte chemotactic protein-1 (MCP1) in uterine arteries of women grouped by age, according to time past the onset of menopause: <5 years (<5); between 5 and 10 years (5–10); and >10 years of menopause (>10). Shown are the biomarkers in which E2 displayed a bidirectional action relative to the time of menopause. Data are plotted as mean±SEM. *P<0.05, **P< 0.01, and ***P<0.001.

Observed that acute treatment with estrogen induces an anti-inflammatory effect only in arteries from women at early stages of menopause (up to 5 years). In arteries of older women or women who have more years in menopause, estrogen begins to display a timing-dependent proinflammatory effect, suggesting that aging plays a negative role on estrogen-mediated effects on vascular inflammation. In fact, detailed examination of the data from the Women’s Health Initiative indicates that early initiation of estrogen replacement produces more favorable results than the late average time of initiation used in the Women’s Health Initiative studies overall. In support with this hypothesis are few studies showing that aging in female rodents is associated with significant reduction in estrogen-mediated cardiovascular effects. In addition, studies have described that timing of onset for estrogen replacement alters the immunologic environment and the progression of vascular inflammation and atherosclerosis formation. Ovariectomized
women receiving estrogen immediately after ovariectomy had significantly smaller atherosclerotic lesions than those undergoing delayed or no estrogen exposure.35

On the other hand, acute treatment with 17\(\beta\)-estradiol was effective in decreasing the arterial levels of IL-1\(\beta\) and TNF-\(\alpha\) in all age groups, despite keeping the positive correlation of those markers with aging. Both are major inflammatory cytokines crucially involved in early stages of vascular inflammation. Through endothelial stimulation, IL-1\(\beta\) and TNF-\(\alpha\) increase in synthesis and release of adhesion molecules ICAM and VCAM and set off the inflammatory cascade.36

Corroborating our data are numerous experimental studies describing that estradiol downregulates TNF-\(\alpha\) and IL-1\(\beta\) in different cell types and suggesting an anti-inflammatory and vasculoprotective action by estrogens.3

However, although a decrease in levels or action of specific cytokines has been attributed to lower risk of CVD, the functional specificity of each biomarker to the process of chronic inflammation and progression of vascular disease remains uncertain. It is important to note that the mechanisms of actions of these inflammatory markers are highly pleiotropic and often share common pathways and, therefore, could act on other molecules synergistically even when they are at lower concentrations. In fact, there are reports that genetic deletion and pharmacological neutralization of TNF-\(\alpha\) fail to reduce atherosclerosis in mice.37,38 Unfortunately, our study fails to establish how this unbalanced modulation of inflammatory biomarkers (ie, decrease of TNF-\(\alpha\) and IL-1\(\beta\) in the presence of augmented levels of other biomarkers, would account for the overall process of vascular inflammation), and even more important is how the acute effects of estrogen observed could be translated into protection or vascular damage in the long run. The major contribution of this study was to demonstrate the aging-associated dichotomy that exists on the effects of estrogen on inflammatory biomarkers, which draws our attention to the need of further prospective studies designed to better establish the effects of estrogen in the process of vascular inflammation and risk of CVD in postmenopausal women.

The mechanisms whereby aging and long-term estrogen withdrawn affect estrogenic responses are largely unknown, but our data suggest a relationship between changes on balance of ERs (ER-\(\alpha\) isoforms and ER-\(\beta\)) with increased proinflammatory effect by estrogen. The differences in signaling through ER-\(\alpha\) and ER-\(\beta\) are increasingly becoming apparent, and, in fact, previous experimental studies have established that increased expression of ER-\(\beta\) over ER-\(\alpha\) is associated with higher oxidative stress and atherosclerotic plaque formation.39,40 Further studies have shown the physiological and pathophysiological relevance of 2 variants of ER-\(\alpha\) to estrogen signaling—the full-length ER-\(\alpha\) with 66 kDa (ER66) and the ER-\(\alpha\) isoform lacking the N-terminal portion (ER46).41,42 Both isoforms are expressed in the endothelial cells and are able to increase NO production.41 In this regard, a slight increase in ER46 expression, as observed, would represent a benefit to the vascular wall. However, studies have described that ER46 dimerizes with ER66 and

Figure 4. Expression of estrogen receptor (ER)-\(\alpha\) (A) and ER-\(\beta\) (B) in untreated uterine arteries of women grouped by age, according to time past the onset of menopause: <5 years (<5); between 5 and 10 years (5–10); and >10 years of menopause (>10). Values for ER-\(\alpha\) isoforms, 46 kDa (ER46) and 66 kDa (ER66), and ER-\(\beta\) were normalized by the corresponding optical density for GAPDH, used as the internal control. Data are plotted as mean±SEM. Significant correlation is accepted at \(P<0.05\). Simple correlation analysis between time since menopause (x axis) and expression of ER-\(\alpha\) splicing variants ratio (46kDa/66kDa) (C) and ER-\(\beta\) (D) (y axis) in untreated uterine arteries.
and ER-β how the crosstalk between ER-α estrogen treatment. Nonetheless, the question still arises as to or modified at long term, or yet, whether it can be altered by the relationship between aging and ER expression is worse of estrogen, we were unable to provide evidence on whether of ER profile as responsible for reversing the beneficial effects the vessel wall. Although we interpret the results on changes as both a positive and negative regulation might take place in cannot determine in which direction this effect would occur, given cell. Such dual effect of ER46 could bias the efficiency serves as a competitive inhibitor of ER66 for DNA binding, and therefore an increase in ER46 may interfere with ER66 transcriptional activity and modify estrogenic responses in a given cell. Such dual effect of ER46 could bias the efficiency of estrogen to modulate vascular inflammation, although we cannot determine in which direction this effect would occur, as both a positive and negative regulation might take place in the vessel wall. Although we interpret the results on changes of ER profile as responsible for reversing the beneficial effects of estrogen, we were unable to provide evidence on whether the relationship between aging and ER expression is worse or modified at long term, or yet, whether it can be altered by estrogen treatment. Nonetheless, the question still arises as to how the crosstalk between ER-α isoforms (ER46 and ER66) and ER-β modulates the effects of estrogen in the vascular wall. Unfortunately, sample size in these studies prevented us from further investigation of these precise mechanisms. Entirely new protocols and new samples are needed to address this issue and to improve our knowledge on the mechanisms for aging and hormonal regulation of vascular function. Despite that, our data demonstrate that estrogen has complex biological effects under distinct pathophysiological conditions and may influence the risk of cardiovascular events and other outcomes. How aging affects estrogen responses and to what extent these changes can modify the risk for CVD remain unknown, but our data strongly suggest that the time to start hormone replacement therapy should be taken into account when deciding the best therapy to treat postmenopausal women.

Acknowledgments
We are grateful to Dr Marc García-Elias (Kaplan Institute, Barcelona), Dr Lluis Marcat (Teknon Medical Center, Barcelona), and to the gynecologists and nurses from gynecology and obstetrics division at Hospital Clinic de Barcelona for providing arterial samples. We are indebted to Nadia Castillo for excellent technical assistance.

Sources of Funding
This work was supported by Spanish grants from Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III – FEDER-ERDF (grants FIS PI1000518, FIS PI080176, FIS PI080272, and Red HERACLES RD06/0099), Spanish Society of Cardiology (SEC), and Consellería de Sanidad, Generalitat Valenciana (grants AP 097/2011, AP 104/2011, and GE 027/2011).

Disclosures
None.

References

Figure 5. Simple correlation analysis between the concentration of biomarkers of inflammation after estrogen treatment (x axis) and estrogen receptor (ER)-β expression (y axis). Shown are the inflammatory biomarkers that expressed significant increase in the degree of correlation after 17β-estradiol (E2) treatment, as determined by ANCOVA.

