Calpains Contribute to Vascular Repair in Rapidly Progressive Form of Glomerulonephritis: Potential Role of Their Externalization

Objective—Calpains, calcium-activated proteases, mediate the angiogenic signals of vascular endothelial growth factor. However, their involvement in vascular repair has not been investigated and the underlying mechanisms remain to be fully elucidated.

Methods and Results—A rapidly progressive form of glomerulonephritis in wild type and transgenic mice expressing high levels of calpastatin, a calpain-specific inhibitor, was studied. Calpastatin transgene expression prevented the repair of peritubular capillaries and the recovery of renal function, limiting mouse survival. In vitro analysis detected a significant reduction of both intracellular and extracellular calpain activities in transgene expressing cells, whereas Western blotting revealed that proangiogenic factors vascular endothelial growth factor and norepinephrine increased calpain exteriorization.

In vitro, extracellular calpains increased endothelial cell proliferation, migration and capillary tube formation. In vivo, delivery of nonpermeable extracellular calpastatin was sufficient to blunt angiogenesis and vascular repair. Endothelial cell response to extracellular calpains was associated with fibronectin cleavage, generating fibronectin fragments with proangiogenic capacity. In vivo, fibronectin cleavage was limited in the kidney of calpastatin transgenic mice with nephritis.

Conclusion—This study demonstrates that externalized calpains participate in angiogenesis and vascular repair, partly by promoting fibronectin cleavage and thereby amplifying vascular endothelial growth factor efficiency. Thus, manipulation of calpain externalization may have therapeutic implications to control angiogenesis.

Key Words: angiogenesis ■ kidney ■ pathology ■ vascular biology

Calpains are calcium-activated neutral cysteine proteases. Two major isoforms, calpain-μ and μ which require micromolar and millimolar Ca2+ concentrations for activity, respectively, are ubiquitously expressed, whereas the other isoforms are tissue-specific forms. Their activity is limited by calpastatin, a specific endogenous inhibitor that contains 4 equivalent inhibitory domains. Calpains play an important role in inflammatory process. First, they are involved in the activation of NF-κB, and thereby in the NF-κB–dependent expression of proinflammatory cytokines and adhesion molecules. Second, calpains are critical for inflammatory cell adhesion and chemotaxis and inflammatory mediator processing. Third, calpains are implicated in the cleavage of the heat shock protein 90, which is required for both binding and anti-inflammatory efficacy of glucocorticoids. Finally, calpains are externalized during inflammatory process and play a role in the microenvironment of inflammatory cells. We have recently demonstrated that calpains participate in the development of inflammatory lesions in an acute model of antiglomerular basement membrane nephritis.

In endothelial cells, calpain activity contributes to the hydrolysis of cytoskeletal proteins, thereby facilitating shear stress-induced endothelial cell alignment and lymphocyte or leukocyte transendothelial migration. Importantly, vascular endothelial growth factor (VEGF) increases m-calpain expression and activity in those cells. In turn, calpain activity participates in angiogenesis process, possibly by promoting cytoskeleton reorganization, rear-cell detachment and/or nitric oxide generation. However, whether activation of calpains plays any role in the vascular repair process besides the formation of new blood vessels is still unknown.

In severe and progressive kidney diseases, there is a rarefaction of peritubular capillaries which precedes the
development of tubulo-interstitial fibrosis and the decline of renal function.16–20 This process is the hallmark of experimental and human kidney diseases regardless of their cause, such as antilglomerular basement membrane models of glomerulonephritis, anti-Thy-1.1 model of acute glomerulonephritis, remnant kidney model, aging associated renal disease, chronic cyclosporine A nephropathy, and kidney transplantation.16,17 Progressive loss of peritubular capillaries is explained by a decrease in postglomerular flow from diseased glomeruli and an inappropriate activation of endothelial cells by factors such as angiotensin II, which allows rolling and sticking of leukocytes, thus limiting oxygen delivery.18,19 Hypoxia and inflammatory conditions lead to endothelial cell death. Nevertheless, endothelium has a strong potential to regenerate via the proliferation of resident progenitors and/or the recruitment of circulating endothelial progenitor cells.17 This angiogenesis process results from the local balance between pro- and antiangiogenic factors.16 A loss of the angiogenic VEGF expression and a marked expression of the antiangiogenic factor thrombospondin-1 limit the repair of peritubular capillaries and promote the development of interstitial fibrosis.21,22 Herein we took advantage of transgenic mice constitutively expressing high levels of calpastatin8 to study the impact of calpains/calpastatin balance on regeneration of peritubular capillaries in a severe model of antilglomerular basement membrane nephritis. Our results show that calpain activity is involved in this repair process. Surprisingly, extracellular calpains are particularly effective in capillary formation, suggesting that manipulation of calpain externalization rather than intracellular expression may have therapeutic implications to favor or inhibit angiogenesis.

Methods

Calpastatin transgenic (CalpTG) mice were created and characterized in the laboratory.8 Glomerulonephritis was induced in male C57BL/6 wild type (WT) or CalpTG mice as described previously.23 Renal injury was evaluated on days 7 and 14. Specimens of kidney were cut for histochemistry and immunohistochemistry studies. Calpain activity and expression were determined with a fluorescence assay described previously8 and a Western assay, respectively. Human umbilical vein endothelial cells (HUVECs) were obtained to assess endothelial cell proliferation, monolayer repair, transmigration, and capillary formation.

For an expanded Materials and Methods, see the Supplemental Details are shown in enlargement of selected areas). A, Angiogenesis was tested using an in vivo Matrigel plug assay. Ten days after subcutaneous injection of Matrigel with vascular endothelial growth factor, vessel invasion, as quantified by measuring hemoglobin content, was significantly limited in CalpTG (black bars) as compared to WT (gray bars) mice. [*\(P<0.05\), significant difference from WT at day 14]. B, Fixed paraffin-embedded sections of kidney were stained with anti-mouse CD31 (PECAM) antibody. Peritubular capillary densities were quantified by measuring the number of capillary cross-sections per high power field. Significant capillary rarefaction observed 7 days after anti-GBM antiserum injection in all mice was reversed 7 days later in WT (gray bars) but not CalpTG mice (black bars). [*\(P<0.05\), significant difference from corresponding control at day 0; #\(P<0.005\), significant difference from WT at day 14]. D, Kidneys from WT and CalpTG mice were immunostained with antimouse panendothelial cell antigen antibody (MECA-32). Decreased peritubular capillary staining was observed 14 days after anti-GBM antiserum injection in CalpTG as compared to WT mice (Original magnification 200\times).

Results

CalpTG Mice Show a Defect in Both Formation of New Blood Vessels and Vascular Repair
To explore the importance of calpain/calpastatin balance in renal vascular repair, we compared WT and CalpTG mice. We first localized the transgene product in the kidney by immunohistochemistry (Figure 1A). Calpastatin expression was detectable in only a few tubules and in peritubular capillary cells. The intensity of this staining increased markedly in CalpTG as compared to WT mice. Then, to verify the role of calpain/calpastatin balance in the formation of new blood vessels in our mouse model, we used a Matrigel plug assay.13,24 Hemoglobin content in Matrigel plugs 10 days after subcutaneous injection, which measured blood vessel formation in the presence of VEGF-A, was significantly reduced in CalpTG as compared with WT recipients (Figure 1B). Finally, to assess the role of calpain/calpastatin balance in renal vascular repair, a rapidly progressive form of glomerulonephritis was induced in mice. Antilglomerular basement membrane serum (a total of 1.5 mg total protein/g body weight) was injected intravenously over 3 consecutive days, as previously described.23 Survival curves show that the number of surviving mice decreased much more rapidly for CalpTG than WT mice (Supplemental Figure 1A, available online at http://atvb.ahajournals.org). Blood urea nitrogen levels rose rapidly during the acute phase of immunologic injury until day 7 and then over the course of 14 days improved toward baseline values in WT mice while being even higher in CalpTG mice (Supplemental Figure 1B).
Peritubular capillary density was quantified in 2 ways after mouse CD31 (PECAM) or panendothelial cell antigen (MECA-32) immunostaining of endothelial cells. First, the mean number of capillary cross-sections per high power field (hpf) at 200× magnification was measured in tubulointerstitial areas (Supplemental Figure 1C–1D and Supplemental Figure II, available online at http://atvb.ahajournals.org). As expected, capillary density significantly decreased in all mice at day 7 after glomerulonephritis induction. One week later, this defect was reversed in WT mice while persisting in CalpTG mice. Second, peritubular capillary density was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells), transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.

Extracellular Activity of Calpains Is Limited by Calpastatin Transgene Expression and Amplified by Proangiogenic Factors

Calpains are intracellular calcium-activated proteases that are partly externalized. To assess the respective consequences of calpastatin transgene expression on intracellular and extracellular calpain activities, we decided to analyze both polyoma middle T-transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the cDNA clone of rabbit calpastatin (PM 194) used to create CalpTG mice or control cDNA, and T cells isolated from the spleen of WT mice. The expression of calpastatin transgene was quantified by computer image analysis of MECA-32-stained area. At day 14, this area increased, consistent with capillary dilatation (Supplemental Figure II). Again, such a staining pattern was significantly altered in CalpTG as compared to WT mice.

Altogether, these results underscore the involvement of calpains in vascular repair in addition to their established role in the formation of new blood vessels.
Extracellular Calpains Induce Endothelial Cell Proliferation, Migration, and Capillary Formation In Vitro and Ex Vivo

We therefore developed an in vitro model where HUVEC were exposed to exogenous \(\mu \)- or m-calpain. We first measured the effect of calpain on DNA synthesis in HUVECs and found a dose-dependent increase with a maximal effective concentration of 1 \(\mu \)g/ml (Figure 3A). Such a proliferative response, nearly comparable to that obtained with 2% serum, was dependent on the activity of the protease, because calpastatin addition blocked calpain effects (Supplemental Figure V, available online at http://atvb.ahajournals.org).

Figure 3. Effect of extracellular calpains on endothelial cell proliferation, migration, capillary formation, and microvessel outgrowth from mouse aortic explants. A, Human umbilical vein endothelial cells (HUVECs) (50×10^3 cells/well) were cultured in basal medium with or without 2.0% FCS or the indicated concentrations of \(\mu \)-calpain (top; \(n=5 \)) or with endothelial cell conditioned media (eCM) first depleted of \(\mu \)- and/or m-calpain by absorption on wells coated with specific antibodies or nonspecific IgG (bottom; \(n=4 \)). Additions were performed at 24 and 48 hours. BrdU was added to the wells at the later time. After further incubation (24 hours), DNA synthesis was measured using BrdU assay kit. *\(P<0.05 \) and **\(P<0.005 \), significant difference from untreated cells (top) or cells treated with non-depleted eCM (bottom).

B, After a cell-free zone (0.5 mm) was created in the monolayer, HUVECs were incubated for the indicated periods of time with (gray circles) or without (white circles) \(\mu \)-calpain (2 \(\mu \)g/mL). Thereafter, monolayer repair was measured and expressed as percentage of wound surface area (\(n=4 \)). **\(P<0.01 \), significant difference from untreated cells.

C, HUVECs in suspension were seeded on Matrigel and incubated for 20 hours with or without \(\mu \)-calpain in the presence of 0.5% FCS and with or without calpeptin or calpastatin in the presence of 2.0% FCS. The density of formed tubes was analyzed by measuring total capillary length by high power field. (\(n=4–6 \)). *\(P<0.02 \) and ****\(P<0.0002 \), significant difference from untreated cells.

D, Aortic explants from wild type (WT) or Calpastatin transgenic (CalpTG) mice adherent to Matrigel were treated as indicated for 7 days. Quantification of total microvessel outgrowth demonstrates a significant increase in aortic rings exposed to vascular endothelial growth factor (VEGF), norepinephrine (NE), or extracellular \(\mu \)-calpain and, conversely, a significant decrease in aortic rings treated by extracellular calpastatin. (\(n=3–5 \)). *\(P<0.05 \), significant difference from untreated aortic explants.
Because both \(\mu \)- and m-calpain accumulated in the culture medium of endothelial cells (Figure 2B), we addressed the respective contribution of either externalized calpain to the process of HUVEC proliferation. To this aim, HUVECs were cultured with endothelial cell conditioned media first depleted of \(\mu \)- and/or m-calpain by absorption on wells coated with specific antibodies. Both \(\mu \)- and m-calpain depletion significantly limited DNA synthesis in HUVEC under these experimental conditions, and the effect of \(\mu \)-calpain depletion was additive to that of m-calpain (Figure 3A). Thus, the 2 exteriorized calpains participate in endothelial cell proliferation.

Second, we analyzed the ability of HUVEC to migrate into a denuded area using a 2D scratch assay. Wound closure measured after 3, 6, and 9 hours was significantly faster after addition of calpain in the culture medium (Figure 3B).

Third, we examined the role the extracellular calpains play in the ability of endothelial cells to form vessels in vitro. HUVECs were incubated in Matrigel for 24 hours and endothelial tube formation was analyzed by measuring the total length of capillaries formed per high power field at 400x magnification. Addition of calpain enhanced significantly endothelial cell tube formation, whereas, conversely, there was a reduction of serum-induced tube formation in the presence of factors inhibiting extracellular (non permeant calpastatin) and/or intracellular (calpeptin) calpain activity (Figure 3C and Supplemental Figure VI, available online at http://atvb.ahajournals.org).

Finally, we measured the formation of vascular structures in an ex vivo sprouting assay. Addition of calpain to the culture medium resulted in increased sprouting from mouse aortic rings similar to that of VEGF and norepinephrine (Figure 3D). Conversely, endothelial sprout formation was limited by the presence of calpastatin or calpeptin.

Extracellular Calpains Induce Both Formation of New Blood Vessels and Vascular Repair In Vivo

As secreted calpains contribute to angiogenesis process in vitro, we needed to verify their specific role in new blood vessel formation in vivo. To this aim, we used again the Matrigel plug assay. Corresponding to Matrigel red colors, hemoglobin content and number of capillary cross-sections per high power field were significantly reduced after addition of calpastatin to the plugs (Figure 4A). Similarly, during wound healing process, local delivery of calpastatin significantly limited the formation of both blood and lymphatic vessels (Figure 4B).

Proangiogenic Function of Extracellular Calpains Involves Fibronectin Cleavage

Appearance of calpains in extracellular milieu leads potentially to proteolytic processing of a number of proteins at the surface of endothelial cells (eg, integrin subunits involved in endothelial cell attachment) and/or in extracellular matrix (eg, fibronectin (FN), laminin, and collagens). Our previous studies indicated that extracellular calpains play a role in tubular epithelium regeneration after renal ischemia/reperfusion via the detachment of FN fragments from the extracellular matrix, consistent with findings of other groups.

Thus, to identify molecular mechanisms whereby extracellular calpains speed up endothelium regeneration, we evaluated the ability of calpains to hydrolyze proteins of extracellular matrix in 1D-SDS-PAGE experiments (Supplemental Figure VII, available online at http://atvb.ahajournals.org). After exposure to human \(\mu \)-calpain or porcine m-calpain, collagen I, collagen IV, and laminin remained intact. Intact human FN appeared with an apparent molecular weight (MW) of 210 kDa and MW of 140 kDa, respectively named (FN+C1)\(_\alpha \), and (FN+C1)\(_\beta \). Fragmentation of FN increased as a function of calpain concentration, eventually leading to the release of a 30 to 40 and 60 kDa breakdown products. The main bands were excised from the gel and after in-gel tryptic digestion, the resulting peptide digests were analyzed by MALDI-TOF/TOF. The obtained MS and MS/MS data were used for a database search, leading to the identification of the human FN (NCBI, gi | 119590951) for the 3 protein bands, namely FN, (FN+C1)\(_\alpha \), and (FN+C1)\(_\beta \) with highly significant scores of 172, 341, and 255, respectively. Because of the lower MW of the (FN+C1)\(_\alpha \) and (FN+C1)\(_\beta \) proteins, one can assume that incubation of FN with calpain results in the hydrolysis/
Vascular Repair In Vivo Is Associated With FN Fragmentation

Because in vitro extracellular calpains generate FN fragments that promote endothelial cell proliferation and migration, we assessed the presence of such FN breakdown products in the kidney of mice at day 14 after glomerulonephritis induction, i.e., at the time of vascular repair. Western blot analysis revealed an accumulation of ≈40 kDa FN breakdown product, which was significantly reduced in CalpTG as compared to WT mice (Figure 6). These data are fully consistent with a role of calpain-dependent fragmentation of FN in vascular repair.

Discussion

This study demonstrates the involvement of calpains in vascular repair besides the formation of new blood vessels. Importantly, it is, to our knowledge, the first to uncover the role of exteriorized calpains in angiogenesis process both in vitro and in vivo. Additionally, we show that calpain-dependent fragmentation of FN in extracellular matrix contributes to the induction of endothelial cell proliferation and migration in vitro. As a consequence, we propose that modification of calpain externalization is a potential target for either limiting angiogenesis (e.g., in tumor development) or amplifying vascular repair (e.g., in ischemia/inflammation).

To explore the role of calpains in vascular repair besides its known involvement in the formation of new blood vessels, we studied a model of loss of kidney capillaries. In progressive autologous/accelerated form of anti-GBM glomerulonephritis in mouse, rarefaction of peritubular capillaries causes peritubular ischemia that is responsible for tubulointerstitial damage, even more than proteinuria.34 Here, anti-GBM antisera was administered over 3 consecutive days, inducing also a severe accelerated form of glomerulonephritis. This model thus differs from that described in our previous study of calpain regulation8 where a single injection of anti-GBM antisera caused a transient heterologous form of glomerulonephritis. Our present results demonstrate that limiting calpain activity by expressing calpastatin transgene does not affect the destruction but prevents completely the repair of peritubular capillaries, as assessed by 2 different techniques. Importantly, this is the first evidence to demonstrate the role of calpains in vascular repair besides neangiogenesis. Further studies are clearly needed to understand the different downstream mechanisms involved in this process.

Up to now, studies performed mainly in vitro have implied a role for intracellular calpains in angiogenesis. They mediate VEGF effects on cytoskeleton reorganization in endothelial cells, possibly through the activation of the Rho signaling pathway.13 Ezrin, a protein involved in cytoskeletal remodeling, would contribute to calpain localization to plasma membrane and, hence, to VEGF-dependent activation of endothelial nitric oxide synthase.15 As a consequence, endothelial NO production enhances endothelial cell migration, proliferation, and response to angiogenic factors. However, VEGF-induced calpain activity would also destabilize...
extracellular matrix proteins in vascular development and repair.37 Because calpains are known to cleave FN,31,32 we focused our studies on this protein. Exposure of native human FN to calpains generated various fragments encompassing the C-terminal heparin-II domains 9 to 10 and 13 to 14 which bind the αβ integrin and VEGF, respectively. Such cleavage products increased capillary formation in vitro significantly more than native FN did, confirming previous studies.33 In addition, cleavage of FN by calpains would be a limiting factor of endothelial cell binding to extracellular matrix. Interestingly, a weakening of the linkage between extracellular matrix and the cytoskeleton of endothelial cells is sufficient to trigger an intracellular signaling cascade leading to capillary formation.38 In the absence of subendothelial FN matrix, endothelial cells are thought to undergo a switch from αβ integrin-based adhesion, associated with a disruption of adherens junctions.39 In turn, αβ integrin engagement promotes angiogenesis, in part via interaction with VEGF receptor 2.40 Thus, FN cleavage by extracellular calpains would promote angiogenesis by both generating proangiogenic fragments and limiting FN adhesive functions.

Besides of FN in the extracellular matrix, calpains are known to cleave latency-associated peptide and, hence, to activate transforming growth factor-β at the surface of endothelial cells.41 As a consequence, mature transforming growth factor-β could promote angiogenesis through direct effects on endothelial cells and indirectly in stimulating VEGF synthesis by nonendothelial cells.42 This intriguing possibility remains to be investigated.

The contribution of other potential mechanisms and their likely interaction with various signaling pathways in angiogenesis is difficult to evaluate in vitro. Thus, we tested in vivo whether inactivation of extracellular calpains by nonpermeant calpastatin would translate into deficiencies in angiogenesis and vascular repair. Once again, we showed that inhibition of extracellular calpains alone resulted in defect of capillary formation and vascular repair in Matrigel plug and skin wound healing models, respectively.

In summary, the present studies provide evidence that calpain exteriorization from endothelial cells is induced by proangiogenic factors and is crucial for the angiogenesis process. They shed new light on the fundamental aspects of angiogenesis, adding a novel member to the list of extracellular proteases involved in angiogenesis,43 and point to new directions in the exploration of therapeutic strategies.

Sources of Funding
This work was supported by the Institut National de la Santé et de la Recherche Médicale and by the Faculté de Médecine Pierre et Marie Curie. Additional support was provided by grants from the Association pour la Recherche sur le Cancer (N° 9946), the Ligue Nationale contre le Cancer (Comité de Paris), and the Baxter Extramural Grant Program.

Disclosures
None.

References

Calpains Contribute to Vascular Repair in Rapidly Progressive Form of Glomerulonephritis: Potential Role of Their Externalization

Béatrice Letavernier, Lara Zafrani, Dany Nassar, Joëlle Perez, Charlène Levi, Agnès Bellocq, Laurent Mesnard, Emmanuelle Sachon, Jean-Philippe Haymann, Selim Aractingi, Anne-Marie Faussat, Laurent Baud and Emmanuel Letavernier

Arterioscler Thromb Vasc Biol. published online November 17, 2011;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2011/11/17/ATVBAHA.111.240242

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2011/11/17/ATVBAHA.111.240242.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/
Detailed Methods

Mice and induction of nephritis. All procedures involving these animals were conducted in accordance with national guidelines and institutional policies. Calpastatin transgenic (CalpTG) mice were created and characterized in the laboratory (1). The presence and the expression of the cDNA clone of rabbit calpastatin were identified in founder transgenic mice by PCR and RT-PCR analysis, respectively. All animals used in these studies were homozygous for the transgene and backcrossed into the C57BL/6 background > nine generations.

Glomerulonephritis was induced in male C57BL/6 wild type (WT) or CalpTG mice by intravenous administration of a total of 1.5 mg protein of sheep anti-mouse GBM serum / g body weight, administered over three consecutive days (days 0, 1, and 2), as described previously (2).

Analyses of renal function. Blood urea nitrogen (BUN) was measured by a colorimetric method.

Immunohistochemical analyses. Renal fragments embedded in paraffin were cut into 3 μm sections. Calpastatin expression was assessed using a polyclonal primary antibody (Affinity Bioreagents; 1:200). Endothelial cells were immunostained with purified rat anti-mouse panendothelial cell antigen (MECA-32; BD Biosciences) or with purified rat anti-mouse CD31 antibody (MEC 13.3; BD Biosciences). Samples were revealed with Single Stain
Mouse MAX PO (rat) Histofine (Nichirei Biosciences). Density of peritubular capillaries was determined on pictures at 200 x magnification by using Image J software.

Matrigel plug assay. Angiogenesis was determined in vivo using a Matrigel plug assay, as previously described (3). Briefly, a volume of 0.6 mL Matrigel (BD Biosciences) containing 50 ng VEGF, 10 U heparin, and calpastatin human recombinant domain I or calpastatin peptide negative control, was injected subcutaneously near the abdominal midline under isoflurane anesthesia. After 10 days, mice were euthanatized and Matrigel was withdrawn carefully. To determine blood vessel formation, haemoglobin content in the Matrigel plug was measured using the Drabkin’s reagent (Sigma-Aldrich) and calculated using a standard with a known concentration of haemoglobin.

Skin wound healing assay. 8 weeks-old C57BL/6 female mice (Jackson laboratories) were anesthetized by inhalation of 4.9% isoflurane (Aerane®, Baxter, Deerfield, IL) at a 300 ml/min ambient air flow. After depilation, 5 mm surgical wounds were generated using a punch biopsy device. Wound edges were injected immediately after surgery and on days 3 and 5, either with 120 µl of recombinant calpastatin (40 µg/mL) or with control peptide for calpastatin (40 µg/ml). n=6 mice per group. Wounds were left uncovered until they were harvested. Mice were euthanized in a CO₂ chamber. Wound tissues were embedded in O.C.T compound and frozen at -80°C. Blood and lymphatic vessel count and surface were measured on 3 different fields on double-labeled cryosection for CD31 (BD Pharmingen) and Lyve-1 (Abcam), respectively. Measurements were done using a fluorescence microscope (Leica), with an imaging digital camera and a motorized measurement platform (Exploranova®).
Cell cultures. After written informed consent was obtained from donors, human umbilical vein endothelial cells (HUVECs) were isolated with collagenase perfusion of term umbilical cord vein. They were cultured in Endothelial Cell Basal Medium 2 (ECBM2; PromoCell) supplemented as indicated by the provider. HUVECs between passage 2 and 3 were used for experiments. The bEND.3, a polyoma middle T–transformed mouse brain capillary endothelial cell line, was obtained from ATCC and maintained in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. These cells were transfected transiently with 3 µg of PCI expression vector including or not the cDNA clone of rabbit calpastatin (PM 194) using a Nanofectin Kit (PAA Laboratories).

Spleen cells from WT and CalpTG mice were isolated by passing the tissue through a nylon membrane. They were depleted of erythrocytes by 90 sec exposure to ACK lysing buffer (BioWhittaker), washed, and resuspended in RPMI-1640 medium supplemented with 10% FCS, 1% glutamine, 10 mM HEPES, 0.05 mM β-mercaptoethanol, and penicillin / streptomycin. T cells were isolated from this preparation using the mouse CD3\(^+\) T cell enrichment kit (Stem Cell Technologies) according to the manufacturer’s instructions.

Endothelial cell proliferation. To perform BrdU incorporation assays, HUVECs (50×10\(^3\) cells/well) were cultured in medium (ECBM2 supplemented with 0.5% fetal bovine serum) with or without

- additional 2.0% fetal bovine serum,
- μ-calpain purified from human erythrocytes (Calbiochem),
- 50% conditioned media harvested at 4 h from VEGF-treated endothelial cells, and first depleted or not of μ- and/or m-calpain by absorption on wells coated with specific antibodies or isotype control antibody for 1 h prior to adding into culture,
- native human fibronectin (Sigma)
- fibronectin fragments obtained by incubation of native human fibronectin in KRH medium supplemented with 2mM calcium and 2 µg/mL human µ-calpain or porcine m-calpain. After 24h at 37°C, calpain activity was no more detectable.

Additions were performed at 24 and 48 h. BrdU was added to the wells at the later time. After further incubation (24 hours), cells were fixed, denatured, and immunostained with the anti-BrdU antibody (Cell Proliferation ELISA, BrdU, Roche, manufacturer's instructions).

Flow cytometric detection of microparticles. The bEND.3 endothelial cells were cultured with 100 nM norepinephrine for 24h. At the end of incubation period, the culture medium was removed and centrifuged at 800 g for 5 min, and at 4,500 g for 5 min to pellet contaminating cells. Supernatants were eventually centrifuged at 18,000 g for 45 min. The resulting microparticle-containing pellet was washed in PBS and dispersed in 100 µl Annexin V binding buffer and Annexin V-FITC (Annexin V-FITC Apoptosis detection kit, Sigma-Aldrich), according manufacturer’s instructions. For calpain detection, microparticles were permeabilized using the BD cytofix/cytoperm kit (BD Biosciences) according manufacturer’s instructions. Primary antibody (rabbit anti-mouse µ-calpain, Santa Cruz Biotechnology) or isotype-matched control (rabbit IgG, Santa Cruz Biotechnology) was added and samples were incubated on ice for 20 min. After washing, microparticles were incubated with secondary antibody (AlexaFluor® 647 goat anti-rabbit, Invitrogen) on ice for 20 min and then washed 3 times. Resulting samples were run on a Gallios flow cytometer (Beckman Coulter) and microparticles were identified by gating of size (less than or equal to 1 µm) and by binding of Annexin V to phosphatidylserine. Standard beads of different diameters (0.5-3 µm, Megamix) were used for size calibration. Calpain-positive microparticles were identified by fluorescence levels greater than two standard deviations above the isotypic controls.
Endothelial cell migration. Two different assays were performed. For endothelial monolayer repair assay, 7x10^4 HUVEC were cultured to confluence in each of the two wells of a Culture-Insert (Ibidi). After 24 h, the Culture Insert was removed and the cell monolayer including a central cell-free gap of 0.5 mm was covered with fresh medium with or without µ-calpain (Calbiochem) or porcine m-calpain (Calbiochem). Gap surface area was analyzed at 3, 6, and 9h by phase contrast microscopy.

For transmigration assay, 2x10^4 HUVECs in culture medium devoid of VEGF were added onto the upper chamber of 24-well transmigration inserts (Costar Transwell; membrane pore size, 8µm), the lower chamber being filled with medium containing native human plasma fibronectin (Sigma-Aldrich) or calpain-treated fibronectin fragments (5 µg/mL) and VEGF (10 ng/mL). After 24 h, transmigration was quantified by haematoxylin staining and cell counting.

In vitro angiogenesis assay. 6x10^4 HUVECs in suspension were seeded on Matrigel in 24-wells and incubated for 20h with or without human µ-calpain in the presence of 0.5% FCS and with or without calpeptin or calpastatin in the presence of 2.0% FCS. The density of formed tubes was analyzed by measuring total capillary length or total segment number by hpf.

Aortic ring outgrowth assay. The thoracic aorta from WT or CalpTG mice was cut into 1mm segments that were placed on Matrigel and covered with culture medium devoid of VEGF and supplemented with recombinant human VEGF (BioVendor Laboratory Medicine), norepinephrine (Aguettant), human µ-calpain (Calbiochem), purified human calpastatin domain I and peptide negative control (Calbiochem), or calpeptin (Biomol). After 7 days,
mean total vessel outgrowth was measured for each ring at 200x magnification, by using Analysis software.

Sequence analysis of fibronectin and fibronectin fragments. Samples of native human fibronectin (Sigma) were incubated at 37°C for 1 h in KRH medium supplemented with 2mM calcium. Human µ-calpain 2 μg/mL was added twice at 30 min intervals. After calpain heat-inactivation, proteins were separated on 1D-SDS PAGE gel (12%). The bands stained with colloidal blue were excised, destained, washed twice with deionized water/ACN (1/1), and dried in ACN. Proteins in the bands were reduced with 10 mM dithiotreitol in 100 mM ammonium bicarbonate at 56°C for 45 min, and alkylated with 55 mM iodoacetamide at room temperature for 30 min in the dark. Then, gel pieces were washed twice with deionized water/ACN (1/1) and dried in ACN. Finally, spots were soaked in a 50 mM ammonium bicarbonate containing 8 ng/µL of trypsin Gold mass spectrometry grade (Promega) for 45 min on ice. After removing residual trypsin, the gel pieces were incubated in 50 mM ammonium bicarbonate at 37°C overnight. Digested peptides were collected in the supernatant and acidified in 0.1 % TFA.

Desalting and concentration of the samples – Microcolumns packed with Poros oligo 20R2 resin (Applied biosystems) were prepared as described previously (4). For each sample, two consecutive micropurifications were performed. The flowthrough from the first microcolumn containing possibly unbound peptides was systematically recovered via a second microcolumn. Finally, the bound peptides were directly eluted from both columns onto the MALDI target using 0.6 µL of the α-cyano-4 hydroxy cinnamic acid (CHCA) matrix solution. This matrix was prepared as follows: it was dissolved in 50% ACN, 50% H2O
containing 0.1% TFA at a concentration of 5 mg/mL. The dried droplet method for target preparation was chosen (5).

Mass Spectrometry – Positive ions MALDI-TOF as well as MALDI-TOF-TOF mass spectra were recorded on the Applied Biosystems 4700 Proteomics Analyzer instrument. MALDI-TOF MS was performed in reflector mode (focus mass at 2100 u) near the threshold of laser fluence. Calibration was performed using external standards (Proteomix 4 LaserBio Labs). MALDI-TOF-TOF experiments were carried out in CID mode with gas (N2, ~ 2x10⁻⁷ Torr) with collision energy of 1 keV. Typically the precursor ion (M+H+) was selected in a window (-5u, 5u) centred on the first isotope. Data Explorer version 4.6 software was used to analyze the spectra.

Protein identification – The peptide mass fingerprints (PMF) and MS/MS for the trypsin digests were submitted to a MASCOT sequence query search (www.matrixscience.com) after advanced based line correction, noise removal (standard deviation to remove = 2), and peak deisotoping (MASCOT search parameters were: NCBIInr 20090528 as the database; MSDB 20060831 and Swissprot 57.3 were also systematically searched in parallel, all entries or homo sapiens for the taxonomy, oxidized M and carbamidomethyl C as variable modifications, 2 missed cleavages allowed for trypsin, 40ppm for the peptide mass tolerance and 0.1 Da for the MS/MS tolerance). To be qualified as a positive identification, a protein’s score had to equal or exceed the minimum significant score threshold at P>0.05.

Statistical analysis. Data are expressed as mean ± SEM. The results were analyzed by t test (for comparison of 2 groups) or 2-way ANOVA for multiple comparisons of time courses. Results with P < 0.05 were considered statistically significant.
Supplemental References

Supplemental Figures and Figure Legends

A

Supplemental Figure I: CalpTG mice develop more severe renal injury than WT mice.

WT (gray) and CalpTG (black) mice were injected with anti-GBM antiserum over three consecutive days starting at day 0. (A) Survival curves show that the percentage of surviving mice decreased more rapidly for CalpTG than WT mice ($P<0.05$). (B) Blood urea was measured using an autoanalyzer. *$P<0.01$ and ***$P<0.005$, significant difference from WT control.
Supplemental Figure II: CalpTG mice exhibit defective vascular repair. Kidneys from WT (gray bars) and CalpTG mice (black bars) were immunostained with anti-mouse panendothelial cell antigen antibody (MECA-32).

Upper panel. Peritubular capillary densities were quantified by measuring the number of capillary cross-sections per high power field. *P<0.05, significant difference from corresponding control at day 0; #P<0.05, significant difference from WT at day 14.

Lower panel. Peritubular capillary density, as quantified by computer image analysis of MECA-32 immunostaining (area in µm²) in each high power field at day 14. **P=0.005, significant difference from WT.
Supplemental figure III: Effect of calpastatin transgene expression on intracellular and extracellular calpain activities. (A) Spleen CD3^+ T cells (3.10^6 in 500 µL) isolated from WT and CalpTG mice were stimulated for 24 h with 1 µg/mL α CD3 mAb. (B) Polyoma middle T–transformed mouse brain capillary endothelial cells (bEND.3 cells) transfected with the PCI expression vector including the cDNA clone of rabbit calpastatin (CalpTG) or not (WT) were incubated for 4 h. Intracellular and extracellular calpain activities were determined by measuring the calpain-specific cleavage of fluorescent AMC. N=6; *P<0.05, **P<0.01, ***P<0.001, significant difference from WT.
Supplemental Figure IV: Flow cytometric detection of µ-calpain in microparticles from endothelial cells. Microparticles were isolated from the medium of bEND.3 endothelial cells treated with norepinephrine for 24h, using differential centrifugations. Shown are controls, including samples of microparticles stained with FITC (A) or nonspecific IgG-Alexa 647 (B). Microparticles stained positive for annexin V-FITC (C) of which 8.52% displayed µ-calpain-Alexa 647 (D).
Supplemental Figure V: The effect of extracellular calpains on endothelial cell proliferation requires the activity of the protease. HUVECs (50×10³ cells/well) were cultured in basal medium including 0.5% FCS with or without 2 µg/ml µ- or m-calpain together with or without 20 µg/ml calpastatin. Additions were performed at 24 and 48 h. BrdU was added to the wells at the later time. After further incubation (24 hours), DNA synthesis was measured using BrdU assay kit (n = 4). * P <0.01 and # P <0.005, significant difference from untreated cells and calpastatin-treated cells, respectively.
Supplemental Figure VI: Effect of calpain activity on endothelial cell capillary formation. HUVECs in suspension were seeded on Matrigel and incubated for 20h with or without μ-calpain in the presence of 0.5% FCS and with or without calpeptin or calpastatin in the presence of 2.0% FCS. Representative photomicrographs of fields corresponding to the experiments shown in Fig. 3C. Bars, 50 μm.
Supplemental Figure VII: Effect of calpains on extracellular matrix proteins. Samples of native human fibronectin, collagen IV, collagen I or laminin (Sigma) were incubated at 37°C for 1 h in KRH medium supplemented with 2mM calcium. Either µ-calpain (µ-) or m-calpain (m-) was added twice at 30 min intervals. After calpain heat-inactivation, proteins were separated on 1D-SDS PAGE gel (12%) and the bands were stained with colloidal blue.
Supplementary Table: Identification by mass spectrometry of characteristic peptide units in human fibronectin fragments generated upon cleavage by human μ-calpain.

<table>
<thead>
<tr>
<th></th>
<th>FN</th>
<th>(FN+C1)\textsubscript{A}</th>
<th>(FN+C1)\textsubscript{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW\textsubscript{theo}</td>
<td>262 kD (259 kD without signal peptide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW\textsubscript{app}</td>
<td>> 250 kD</td>
<td>210 kD</td>
<td>140 kD</td>
</tr>
<tr>
<td>Number of peptides observed in the PMF (MS)</td>
<td>40</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>Sequence of the intact FN covered by the observed peptides</td>
<td>From 273 to 2180</td>
<td>From 831 to 2180</td>
<td>From 831 to 2180</td>
</tr>
<tr>
<td>Position of the peptides fragmented by MS/MS in the intact FN</td>
<td>959-976 (101)</td>
<td>1130-1157 (63)</td>
<td>1130-1157 (63)</td>
</tr>
<tr>
<td></td>
<td>1354-1382 (82)*</td>
<td>1354-1382 (82)*</td>
<td>1836-1859 (21)**</td>
</tr>
<tr>
<td></td>
<td>1836-1859 (24)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2045-2060 (30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peptides labelled with * or ** belong to the C-terminal heparin-II domains of fibronectin (type III repeats), III\textsubscript{9} cell binding domain (1356 to 1449) and III\textsubscript{14} VEGF-binding domain (1813 to 1901) of the intact human fibronectin, respectively.