Hemorrhage and Large Lipid-Rich Necrotic Cores Are Independently Associated With Thin or Ruptured Fibrous Caps
An In vivo 3T MRI Study

Hideki Ota, Wei Yu, Hunter R. Underhill, Minako Oikawa, Li Dong, Xihai Zhao, Nayak L. Polissar, Blazej Neradilek, Tianli Gao, Zhuo Zhang, Zixu Yan, Miao Guo, Zhaoqi Zhang, Thomas S. Hatsukami, Chun Yuan

Objective—Histological studies suggest associations between hemorrhage and large lipid-rich/necrotic cores with thin or ruptured fibrous caps in advanced atherosclerosis. We investigated these associations in carotid arteries with mild to severe stenosis by in vivo 3T MRI.

Methods and Results—Seventy-seven patients with ≥50% carotid stenosis in at least one side by duplex ultrasound underwent bilateral multi-contrast carotid MRI scans. Measurements for wall and lipid-rich/necrotic core sizes, presence of hemorrhage, and fibrous cap status (classified as intact thick, intact thin or ruptured) were recorded. Arteries with poor image quality, occlusion, or no detectable lipid-rich/necrotic core were excluded. For the 798 MRI slices included, multivariate ordinal regression analysis demonstrated larger %lipid-rich/necrotic core (odds ratio for 10% increase, 1.49; P=0.02) and presence of hemorrhage (odds ratio, 5.91; P<0.001) were independently associated with a worse (intact thin or ruptured) stage of fibrous cap status. For artery-based multivariate analysis, a larger maximum %lipid-rich/necrotic core and presence of hemorrhage independently associated with worse fibrous cap status (P<0.001, for both). No hemorrhage was detected in arteries with thick fibrous caps.

Conclusion—Hemorrhage and larger %lipid-rich/necrotic core were independently associated with a thin or ruptured fibrous cap status at an early to advanced stage of carotid atherosclerosis. (Arterioscler Thromb Vasc Biol. 2009;29:00-00.)

Key Words: MRI ■ carotid artery ■ fibrous cap rupture ■ hemorrhage ■ lipid-rich necrotic core

Atherosclerotic plaque rupture is the most frequent cause of arterial thrombosis, accounting for 60% to 65% of all coronary thrombi and around 90% of thrombosed plaques from patients with stroke.

Histological studies of coronary arteries have demonstrated that necrotic lipid cores are associated with plaque vulnerability, showing the mean value of percent necrotic core size is the greatest in ruptured plaque (34±17%), followed by thin-cap atheromas (23±17%) and fibrous cap atheromas (15±20%). A recent histological study of 50 whole hearts demonstrated an inverse relationship between necrotic core size and cap thickness; percentage of necrotic core size is significantly different between ruptured plaques (31.0±3.6%) and thick-capped fibroatheroma (17.2±1.8%; P=0.0034). Intraplaque hemorrhage is also considered to contribute to plaque instability. Intraplaque hemorrhage shows associations with both an increase in the size of the necrotic core and lesion instability. The association of necrotic core size and hemorrhage with fibrous cap status has been also evaluated by studies of carotid endarterectomy specimens. A histological study of symptomatic patients demonstrated that presence of a thin cap is significantly associated with a large necrotic/lipid core. Another study of 44 carotid endarterectomy specimens demonstrated that intraplaque hemorrhage correlates strongly with plaque rupture (P<0.0001). Redgrave et al demonstrated in a histological assessment of 526 symptomatic carotid plaques that fibrous cap rupture showed strong positive associations with several other histology features, including: large lipid core (odds ratio [OR] 6.46, 95% confidence interval [CI] 4.37 to 9.55, P<0.001), hemorrhage (OR 4.38, 95% CI 2.98 to 6.42, P<0.001), and marked cap inflammation (OR 6.01, 95% CI 3.80 to 9.50, P<0.001). The histological assessment also showed that in a multivariate analysis, intraplaque hemorrhage and fibrous cap inflammation were independently associated with fibrous cap rupture.
These studies evaluated only advanced stages of atherosclerosis with severe stenosis following well-established treatment strategy. Little is known about the characteristics of carotid atherosclerosis in patients with early to moderate stenosis by histological studies. However, plaque rupture also occurs at low-grade stenosis, and the degree of stenosis poorly predicts events. Therefore, it is important to evaluate a wide range of carotid atherosclerotic disease to understand the mechanism of plaque development and rupture.

In vivo carotid MRI has the ability to visualize atherosclerotic plaque components such as lipid-rich/necrotic core (LRNC), calcification, hemorrhage, and fibrous cap, and has good concordance with histology. Noninvasive imaging allows us to study plaque characteristics not only in advanced- but also early- to moderate-stage atherosclerosis, which holds potential to reveal the processes behind atherosclerosis progression.

The aim of this study was to investigate whether the size of LRNC or the presence of hemorrhage are associated with thin or ruptured fibrous caps in carotid arteries with mild to severe stenosis, using 3.0T MRI.

Methods
This study was approved by the institutional review board, and informed consent was obtained from all patients. Between February and September 2007, 77 consecutive patients hospitalized at the neurological department of Anzhen Hospital, Capital Medical University, Beijing, China were included. 33 patients were symptomatic and had acute ischemic stroke or transient ischemic attacks with ≥50% carotid stenosis in the ipsilateral side as measured by duplex ultrasound, and 44 were neurologically asymptomatic who sought treatment for their carotid artery diseases with ≥50% stenosis in at least one side. Patients were excluded before the carotid MR scan if there was: (1) a probable cardiac source of embolism, (2) Takayasu’s arteritis, (3) intracranial artery stenosis proven by transcranial Doppler sonography and brain MR angiography, or (4) any contraindication for MRI. Symptomatic patients were imaged within 7 days after onset of symptoms. A total of 154 carotid arteries in 77 patients were included, which includes arteries with <50% stenosis on the less stenotic side.

MRI Protocol
Patients were imaged with a 3.0T whole body MR scanner (Signa Excite; General Electronic Healthcare) and a phased-array carotid coil. The following 5 MR contrast weightings were obtained: 3-dimensional time-of-flight (TOF), double inversion recovery pre-contrast T1-weighted (T1W) and gadolinium-based contrast-enhanced T1-weighted (CE-T1W), proton-density weighted (PDW), and T2-weighted (T2W). Gadopentetate dimeglumine (Magnevist; Bayer Schering Pharma AG), 0.1 mmol/kg body weight, was injected intravenously to acquire CE-T1W images. Scan delay was 5 minutes after the injection based on previous reports to evaluate LRNC and fibrous cap validated by histology. Scan protocols were as follows: for T1W and CE-T1W, repetition time/echo time/inversion time, 800/11/300ms; for PDW and T2W, repetition time, 3500ms, echo time 12.4/62.1ms; for TOF, repetition time/echo time 21/2.9ms, flip angle, 15°. All the images were obtained with field-of-view of 14.0×14.0 cm, matrix size of 256×256, slice thickness of 2 mm. Interslice gaps were 2 mm in T1W, T2W, PDW, and CE-T1W images, and 1 mm in TOF images. Scan coverage was 3.2 cm (32 slices) in TOF, and 3.4 cm (17 slices) in other weightings. Scan coverage included the carotid artery bifurcation on both sides.

MRI Image Review and Criteria
Five trained reviewers, blinded to subject information, interpreted images. One reviewer evaluated all cases. The result was peer-reviewed by 4 of the other 4 reviewers. In cases where disagreement between the primary- and peer-review occurred, consensus agreement was reached after discussion.

Slice levels of all the image weightings were matched based on the level of extracranial carotid bifurcation. An image quality (IQ) score was assigned to each location by primary reviewers: IQ=1 indicated poor quality (arterial wall and lumen margins not identifiable); IQ=2, adequate quality (wall was visible, but the compositional substructure was partially obscured); IQ=3, good quality (minimal motion or flow artifacts, wall and lumen boundaries clearly defined); and IQ=4, excellent quality (no artifacts, wall architecture and plaque composition depicted in detail). Imaging locations with an average IQ=1 were excluded from the image review.

At each location, area measurements of vessel wall and plaque components were measured using a computer-aided system for...
cardiovascular disease evaluation (CASCADE).23 This program has been validated and has been used to evaluate carotid plaque for arteries with mild to severe stenosis.24–27 Plaque features, including LRNC, calcification, and hemorrhage were determined according to previously published criteria,13–16,20,24,25 based on relative tissue signal intensities compared to the adjacent muscle. In slices with LRNC, fibrous cap status (intact thick, intact thin, or ruptured) was also evaluated14,24,25,28 (Figures 1 through 3). Table 1 details the image interpretation criteria.

Statistical Analysis

Descriptive statistics are presented as means±SD for continuous variables and as numbers of cases and percentages per group for categorical variables.

For each slice the %LRNC was calculated as 100×LRNC area divided by wall area. Variables for artery-based analysis were the maximal value of %LRNC and the worst condition of fibrous cap status across all slices in an artery, as well as presence of hemorrhage. Slices or arteries with no detectable LRNC or with a calcium nodule were excluded from the slice or artery analysis.

Univariate and multivariate ordinal logistic regression models were fitted to determine the association of hemorrhage and LRNC size with the fibrous cap status (ordered from best to worst as thick, thin, and ruptured cap). The ordinal logistic regression models were fitted using generalized estimating equations (GEE) with exchangeable correlation structure to adjust for the correlation of the repeated measures within a patient. Separate models were fitted to the slice data and to the artery data. The multivariate models provided the adjusted odds ratios for fibrous cap status in relation to each of the risk factors.

In the artery dataset, the logistic regression models for cap status with hemorrhage as an independent variable did not converge because of the presence of a zero cell in the 2-by-3 crosstabulation with hemorrhage as an independent variable. Variables with P<0.2 in the univariate model were considered for the multivariate analysis. Variables were selected into the final multivariate model using forward variable selection (P<0.1 for entry into model).

Computation was performed in R (Vienna, Austria), version 2.7.0. P<0.05 was used to designate statistical significance.

Results

Out of 154 arteries in 77 subjects, nine arteries were excluded before image matching (3 because of poor image quality across all slices, and 6 because of occlusion). In addition, 33 arteries with no detectable LRNC were excluded from statistical analysis. In the remaining 112 arteries (71 subjects), the mean±SD of the degree of stenosis measured by duplex ultrasound was 51.5±24.3% (range 0% to 99%). Table 2 shows baseline demographic data for the 71 subjects. Twenty-nine of the 71 patients had symptomatic arteries.

Slice-Based Analysis

Of 2329 slices in 145 arteries, 34 slices were excluded before image interpretation because of poor image qualities. Of 2295 slices interpreted, 122 slices (5.3%) required mutual discussion for consensus agreement. The source of disagreement was from either low image quality or artifact that reduced certainty for image interpretation. After image interpretation, 1492 slices with no detectable LRNC and 5 with calcium nodules were excluded. Of the remaining 798 slices, 565 hemorrhage in the thick cap group.) For these analyses, either stratified ordinal logistic regression or linear regression (estimated by GEE) was used.

Associations of symptoms with fibrous cap status and presence of clinical risk factors were also evaluated using logistic regression analysis, estimated with GEE. Variables with P<0.2 in the univariate model were considered for the multivariate analysis. Variables were selected into the final multivariate model using forward variable selection (P<0.1 for entry into model).

Computation was performed in R (Vienna, Austria), version 2.7.0. P<0.05 was used to designate statistical significance.

Table 1. Image Interpretation Criteria

<table>
<thead>
<tr>
<th></th>
<th>TOF</th>
<th>T1W</th>
<th>PDW</th>
<th>T2W</th>
<th>CE-T1W</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRNC with no hemorrhage</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Intraplaque hemorrhage</td>
<td>+</td>
<td>+</td>
<td>Variable*</td>
<td>Variable*</td>
<td>–</td>
</tr>
<tr>
<td>Intact thick</td>
<td>Smooth surface on all images with juxtaluminal band between LRNC and lumen on CE-T1W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact thin</td>
<td>Smooth surface on all images and juxtaluminal band not apparent on CE-T1W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruptured</td>
<td>Irregular surface on all images and a hyperintense signal adjacent to the lumen on TOF and invisible juxtaluminal band on CE-T1W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The classification of LRNC and hemorrhage is based on the following signal intensity relative to adjacent muscle: +, hyperintense; 0, isointense; −, hypointense.

*Signal intensities are variable because of the hemorrhage type.

Table 2. Baseline Demographic Data for 71 Patients

<table>
<thead>
<tr>
<th>Characteristic or Risk Factor</th>
<th>Mean±SD or %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y (range)</td>
<td>67.2±9.7 (44 to 86)</td>
</tr>
<tr>
<td>Male sex, %</td>
<td>75</td>
</tr>
<tr>
<td>Height, meters</td>
<td>1.67±0.07</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>70.6±11.3</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>25.2±3.6</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>72</td>
</tr>
<tr>
<td>Hypercholesterolemia, %</td>
<td>34</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>37</td>
</tr>
<tr>
<td>Smoking, %</td>
<td>56</td>
</tr>
<tr>
<td>History of coronary artery disease, %</td>
<td>17</td>
</tr>
<tr>
<td>Symptom, %</td>
<td>41</td>
</tr>
</tbody>
</table>
Table 3. Associations Among LRNC Size, Presence of Hemorrhage, and Fibrous Cap Status

<table>
<thead>
<tr>
<th></th>
<th>Thick</th>
<th>Thin</th>
<th>Ruptured</th>
<th>Univariate Model</th>
<th>Multivariate Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice-based</td>
<td></td>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>n</td>
<td>565</td>
<td>194</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhage present (%)</td>
<td>27 (5)</td>
<td>54 (28)</td>
<td>25 (64)</td>
<td>12.78 (8.33–19.61)</td>
<td><0.001</td>
</tr>
<tr>
<td>%LRNC (OR: per 10%)</td>
<td>20.1±11.8*</td>
<td>33.4±15.0*</td>
<td>41.3±19.3*</td>
<td>1.95 (1.53–2.47)</td>
<td><0.001</td>
</tr>
<tr>
<td>Artery-based</td>
<td></td>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>n</td>
<td>43</td>
<td>50</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemorrhage present (%)</td>
<td>0 (0)</td>
<td>10 (20)</td>
<td>14 (88)</td>
<td>NA†</td>
<td><0.001‡</td>
</tr>
<tr>
<td>Maximum %LRNC (OR: per 10%)</td>
<td>22.5±11.0*</td>
<td>39.4±12.2*</td>
<td>53.1±13.8*</td>
<td>3.33 (1.94–5.71)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Ordinal logistic regression was used for the univariate and multivariate models, unless otherwise specified.

*Mean±SD.
†Ordinal logistic regression stratified on hemorrhage presence/absence.
‡P value from linear regression analysis.
§Ordinal logistic regression stratified on hemorrhage presence/absence.

Univariate ordinal logistic regression of the slice data showed a significant association of higher %LRNC with worse fibrous cap status (OR = 1.95 for every 10% increase in %LRNC; 95% CI, 1.53 to 2.47; P = 0.001) and a significant increase in the risk of a worse fibrous cap status among those with versus those without hemorrhage (OR = 12.78; 95% CI, 8.33 to 19.61; P = 0.001). Multivariate analysis found that both the presence of hemorrhage and larger %LRNC were independent risk factors for a worse stage of fibrous cap status. The odds ratios from the multivariate model were OR = 1.86; 95% CI, 1.18 to 2.84, and P = 0.06, respectively. All 4 variables were selected into the multivariate model, which demonstrated that fibrous cap status (OR = 1.97, 95% CI, 1.02 to 3.80, P = 0.04), as well as coronary artery disease (OR = 3.67, 95% CI, 1.27 to 10.61, P = 0.02), and diabetes (OR = 2.61, 95% CI, 1.11 to 6.10, P = 0.03) demonstrated a statistically significant independent association with symptom status; hypercholesterolemia (OR = 2.28, 95% CI, 1.02 to 3.80, P = 0.06) was marginally significant in the same model.

Artery-Based Analysis

Three arteries with calcium nodules were excluded. Of the remaining 109 arteries (43%) were classified as thick, 50 (46%) as thin, and 16 (15%) as ruptured fibrous caps. The mean±SD of maximal %LRNC and the number of arteries (100) was 20.1±11.8% as thin, and 16 (15%) as ruptured fibrous caps. The remaining 109 arteries 43 (39%) were classified as thick, 50 (46%) as thin, and 16 (15%) as ruptured fibrous caps. The size of %LRNC and the number of arteries with hemorrhage for each fibrous cap group are shown in Table 3.

Univariate ordinal logistic regression of the slice data showed a significant association of higher %LRNC with worse fibrous cap status (OR = 1.95 for every 10% increase in %LRNC; 95% CI, 1.53 to 2.47; P = 0.001) and a significant increase in the risk of a worse fibrous cap status among those with versus those without hemorrhage (OR = 12.78; 95% CI, 8.33 to 19.61; P = 0.001). Multivariate analysis found that both the presence of hemorrhage and larger %LRNC were independent risk factors for a worse stage of fibrous cap status. The odds ratios from the multivariate model were OR = 1.86; 95% CI, 1.18 to 2.84, and P = 0.06, respectively. All 4 variables were selected into the multivariate model, which demonstrated that fibrous cap status (OR = 1.97, 95% CI, 1.02 to 3.80, P = 0.04), as well as coronary artery disease (OR = 3.67, 95% CI, 1.27 to 10.61, P = 0.02), and diabetes (OR = 2.61, 95% CI, 1.11 to 6.10, P = 0.03) demonstrated a statistically significant independent association with symptom status; hypercholesterolemia (OR = 2.28, 95% CI, 1.02 to 3.80, P = 0.06) was marginally significant in the same model.

Discussion

This study is based on in vivo imaging of carotid atherosclerosis with different levels of severity and thus various levels of clinical lesion stages. We showed that both %LRNC and presence of hemorrhage are associated with fibrous cap status and therefore plaque vulnerability. These 2 predictor variables have an independent effect on cap status—an effect consistent between the slice-based and artery-based analyses.

To understand the mechanism of fibrous cap destabilization is important because plaques rupture is the most frequent cause of arterial thrombosis. Previous in vivo MRI studies point to the mechanism of plaque progression and plaque features associated symptoms.28–31 However, none of those studies reported any association of plaque components qual-
Fibrous cap is defined as a layer of connective tissue covering the LRNC. Ruptured plaques have several histological features that are different from intact plaques: relatively large plaque volumes, evidence of positive remodeling, large lipid cores, inflammatory cell infiltration, thin cap depleted of smooth muscle cells and collagen, and increased neovascularity. The mechanism underlying the relationship between necrotic core size and fibrous cap status is not yet fully known. Activated macrophages in necrotic cores secrete matrix metalloproteases and collagenases, which may retard the development of a thick collagen-rich fibrous cap. Those inflammatory cells are probably recruited into the atherosclerotic plaques by adhesion molecules and chemokines, or they may come into the plaques through the adventitial neovascularure. Large LRNC may provide an environment where inflammatory cells can be activated. In addition, LRNC contains tissue factors which play important roles in promoting thrombosis when they are exposed to circulating blood. The result that larger LRNC tends to have thin/ruptured fibrous caps also may indicate that a more severe catastrophic thromboembolic event would occur after the release of larger amount of thrombogenic materials.

Lin et al demonstrated in an experiment using New Zealand White rabbits that injected erythrocytes in aortic plaques induced dose-dependently thinner fibrous cap, more macrophage infiltration, and more superoxide and lipid content. Increased content of lipids and other prooxides derived from erythrocytes may promote inflammation in plaque, resulting in increased lipid content, recruitment of inflammatory cells, and attenuated fibrous cap. Our findings may lend support to their proposed mechanism of contribution of hemorrhage to fibrous cap destabilization.

The goal of slice-based analysis was to evaluate the morphological characteristics of carotid plaque in a manner comparable to histological cross-sectional evaluation. On the other hand, the artery-based analysis was more clinically oriented. Yuan et al demonstrated that identification of fibrous cap rupture by in vivo carotid MRI was highly associated with symptoms, which was consistent with our result. Furthermore, no hemorrhage occurred in the thick fibrous cap group in our study. This may indicate that hemorrhage significantly affects plaque progression, making it more prone to rupture. Murphy et al demonstrated that the prevalence of hemorrhage/thrombus detected by in vivo MRI was higher in symptomatic carotids. Those arteries with hemorrhage have a high probability of fibrous cap ruptures.

One advantage of in vivo carotid MRI over histological studies is the ability to monitor atherosclerotic plaques at early to severe stages. Carotid endarterectomy studies offer clues to the mechanisms of plaque disruption but cannot document the process of plaque evolution. The association of LRNC and hemorrhage with fibrous cap status in our study is consistent with previous histological studies regarding the course of development of atherosclerosis. Another advantage of in vivo MRI is the ability to perform longitudinal studies. Longitudinal clinical studies have demonstrated that the LRNC size decreases after statin treatment. This study shows the ability of in vivo MRI to visualize features of the vulnerable plaque; a large necrotic core with thin cap. Further studies may capture subsequent fibrous cap rupture of vulnerable plaques, or reveal whether fibrous cap may regain thickness along with the regression of LRNC.

The measurement of LRNC relies mainly on the area of absent or limited enhancement on CE-T1W images compared with the surrounding more strongly enhanced fibrous tissue. It is reported that high enhancement is seen in area of neovascularule or loose extracellular matrix. Although gadolinium may diffuse into the LRNC from such regions, it can be assumed that LRNC with little vasculature will enhance less than the surrounding tissue. 5.2% of interpreted slices needed mutual discussion for consensus agreement. This rate would be acceptable when compared to reported interreader reproducibility for in vivo carotid plaque MRI (intraclass correlation coefficient=0.73 to 0.95 for quantification, and weighted kappa=0.83 for lesion type assessment.)

It is a limitation that our MRI protocols did not enable evaluation of the degree of inflammation, which is likely to associate with fibrous cap rupture. Other studies suggest the potential of in vivo imaging of plaque inflammation using such as dynamic contrast MR imaging and ultrasmall superparamagnetic iron oxide imaging. With further development of the imaging protocol, multi-factorial analysis regarding fibrous cap status may help reveal the complex factors behind fibrous cap rupture further in addition to the present results.

In conclusion, large LRNC and presence of hemorrhage have a significant and independent association with a worse grade of fibrous cap status for carotid arteries with mild to severe carotid stenosis. These results reveal part of the process of atherosclerosis progression. Because fibrous cap rupture is considered a critical factor for subsequent thromboembolic events, the present results provide important information for the management of patients with carotid artery atherosclerosis.

Acknowledgments
We thank Zach Miller for his help in preparing the manuscript.

Sources of Funding
This work was supported by NIH Grants NIH R01-HL56874, NIH R01-HL073401, and NIH P01 HL072262.

Disclosures
None.

References

Hemorrhage and Large Lipid-Rich Necrotic Cores Are Independently Associated With Thin or Ruptured Fibrous Caps. An In vivo 3T MRI Study

Arterioscler Thromb Vasc Biol. published online July 16, 2009;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2009/07/16/ATVBAHA.109.192179.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/