Contribution of Bone Marrow–Derived Cells Associated With Brain Angiogenesis Is Primarily Through Leukocytes and Macrophages

Qi Hao, Jianrong Liu, Rajita Pappu, Hua Su, Radoslaw Rola, Rodney A. Gabriel, Chanhung Z. Lee, William L. Young, Guo-Yuan Yang

Objective—We investigated the role of bone marrow–derived cells (BMDCs) in an angiogenic focus, induced by VEGF stimulation.

Methods and Results—BM from GFP donor mice was isolated and transplanted into lethally irradiated recipients. Four weeks after transplantation, groups of mice received adeno-associated viral vector (AAV)-VEGF or AAV-lacZ gene (control) injection and were euthanized at 1 to 24 weeks. BMDCs were characterized by double-labeled immunostaining. The function of BMDCs was further examined through matrix metalloproteinase (MMP)-2 and -9 activity. We found that capillary density increased after 2 weeks, peaked at 4 weeks (P<0.01), and sustained up to 24 weeks after gene transfer. GFP-positive BMDCs infiltration in the angiogenic focus began at 1 week, peaked at 2 weeks, and decreased thereafter. The GFP-positive BMDCs were colocalized with CD45 (94%), CD68 (71%), 5% Vimentin (5%), CD31/von Willebrand factor (vWF) (1%), and α-smooth muscle actin (α-SMA, 0.5%). Infiltrated BMDCs expressed MMP-9. MMP-9 KO mice confirmed the dependence of the angiogenic response on MMP-9 availability.

Conclusions—Nearly all BMDCs in the angiogenic focus showed expression for leukocytes/microglia, indicating that BMDCs minimally incorporated into the neovasculature. Colocalization of MMPs with GFP suggests that BMDCs play a critical role in VEGF-induced angiogenic response through up-regulation of MMPs. (Arterioscler Thromb Vasc Biol. 2008;28:000-000.)

Key Words: adeno-associated virus ■ angiogenesis ■ BMDCs ■ MMPs ■ VEGF

Angiogenesis plays an essential role during ischemic brain injury1 or cerebrovascular disorders such as brain arteriovenous malformations.2 Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are the key factors in activating angiogenesis in adults. VEGF is increased in brain diseases such as stroke, Alzheimer disease, and brain AVM.3,4 MMPs are responsible for the degradation of extracellular matrix component and are necessary during the angiogenesis process in both in vivo and in vitro experiments.5 MMP-9 is especially important because it plays a central role in angiogenesis.6,7 We have previously demonstrated that MMP-9 activity is increased after VEGF stimulation in the adult mouse brain, accompanied by increased focal angiogenesis.8 Inhibition of MMP-9 or neutrophil depletion9 can decrease the MMP response to VEGF stimulation.

Although the mechanisms of angiogenesis have been extensively studied, the extent to which BM-derived cells (BMDCs) contribute to angiogenesis in the adult brain is unclear. BMDCs are recruited to the sites of physiological and pathological angiogenesis.10,11 Transplantation of BMDCs benefits the recovery of ischemic tissue injury.12,13 Further, whether BMDCs directly incorporate into the vascular structures or play other functions in the brain remain unclear.

Recently, BMDCs have been recognized as an important source for storing and activating MMPs. Neutrophil, macrophage, and mast cells are the critical suppliers of MMPs, especially MMP-9.14,15 In the present study, we used an adeno-associated viral vector delivery of human VEGF165 cDNA (AAVVEGF) into the mouse brain to induce reproducible focal cerebral angiogenesis. We harvested BM from EGFP transgenic donor mice and transplanted them into lethally irradiated recipients to track BMDCs. Our aim was to demonstrate the function of BMDCs in VEGF-induced angiogenesis in the adult mouse brain.
Methods

Experimental Design
All experimental procedures for using laboratory animals were approved by the Institutional Animal Care and Use Committee, University of California, San Francisco.

Experiment 1
Sixty adult C57BL/6 male mice at age 8 to 10 weeks (Charles River, Wilmington, Mass) were lethally irradiated and subsequently transplanted with BM cells collected from C57BL/6-TgN (ACTGFP) mice (Jackson Laboratory). After 4 weeks of BM transplantation, circulating blood was collected for fluorescence-activated cell sorter (FACS) analysis to confirm the full hematopoietic recovery. The mice then underwent AAVVEGF or AAVlacZ injection into the right brain, and were euthanized 1, 2, 4, 12, and 24 weeks after the gene transfer. The brains were harvested for further analysis (See supplemental Figure IA at http://atvb.ahajournals.org/).

Experiment 2
Twenty-four adult male MMP-9-/- mice and their wild-type littermates at age 8 to 10 weeks received either AAVVEGF or AAVlacZ injection into the right brain. The capillary counts and focal inflammation were examined 2 and 4 weeks after injection to explore the relationship between angiogenesis and MMP expression.

BM Transplantation
Donor BM was harvested from 8- to 10-week old male C57BL/6-TgN mice expressing GFP under a β-actin transcriptional promoter in all tissues. The mice were euthanized to remove tibias and femurs. BM was flushed out of the tibias and femurs with Iscove modified Eagle medium (IMDM, Invitrogen) containing 1% fetal serum, dispersed by gentle aspiration, then centrifuged at 1200 rpm for 10 minutes. Cells were suspended in PBS at a concentration of 1×10^6/mL.

Recipient mice received lethal irradiation with a total dose of 9.5 Gy using a Gammacell 40 irradiator (MDS-Nordion). 10^6 BM-H11003/L prepared of viral suspension were injected into the right brain, and the recipients underwent aseptic surgery. To detect the level of hematopoietic engraftment, peripheral blood samples were obtained from the retro-orbital plexus of the recipient mice after 4 weeks of BM injection. Blood from nontransplanted C57BL/6 mice was obtained as a control. The cells were suspended in PBS and processed with FACSCalibur.

AAVVEGF Gene Transfer in the Mouse Brain
After 4 weeks of irradiation, the recipient mice were anesthetized using ketamine/xylazine (100/10 mg/kg body weight). The animals were then placed in a stereotactic frame with a mouth holder (David Kopf Instruments). A burr hole was drilled in the pericranium 2 mm lateral to the sagittal suture and 1 mm posterior to the coronal suture. A 10-μL Hamilton syringe was inserted into the right hemisphere at a depth of 3.0 mm under the cortex. Two μL of viral suspension containing 2×10^7 genome copies of AAVVEGF or AAVlacZ were injected into the right lateral ventricle and basal ganglia at a rate of 0.2 μL per minute.

Quantification of Capillary Density
We have established a relatively simple and reliable method to quantify the number of capillaries in a given brain region using lectin-stained imaging, referred to as “capillary density.” This method gives consistent mean values and variance.16,17 (supplemental Figure IIA and IIB) Two brain coronal sections from the lectin-stained brain were chosen, 1 mm anterior and 1 mm posterior to the needle track. Three areas (left, right, and bottom of the track) were examined using a low power objective lens (10×). Two investigators without knowledge of treatment conditions assessed vessel counts separately. If there was a discrepancy, both investigators recounted together under a monitor’s supervision. Capillary density for each animal was calculated as the mean of the vessel counts obtained from the 6 pictures (3 per reader).18

Double-Labeled Fluorescent Staining
Coronal sections (20 μm in thickness) were cut, air-dried, and fixed in 4% paraformaldehyde for 20 minutes, and incubated in 5% blocking serum for 30 minutes. The sections were incubated overnight in primary antibodies: vWF and Vimentin (Chemicon), α-smooth muscle actin (Sigma), CD68 (Serotec), MMP-12 (Santa Cruz Biotechnology), CD45 (Laboratory Vision), intercellular adhesion molecule-1 (ICAM-1; Biologend), and MMP-9 (a gift from Dr Robert Senior of Washington University, St. Louis, Mo). The secondary antibodies were Alexa 594 red. Negative controls were performed by omitting primary antibodies. BrdU was injected i.p. daily at a dose of 100 mg per mouse per day for 5 days. After sacrificing the animals, the brain was removed and brain sections were rinsed with 0.1 mol/L boric acid pH 8.5 at 25°C for 10 minutes, blocked by using a MOM solution (MOM Kit, Vector Laboratories) at 25°C for 1 hour, and incubated using a BrdU antibody (Sigma) at room temperature overnight. The secondary antibody was Alexa 594 red antimmunoglobulin IgG. Double-labeled immunostaining sections were evaluated using a fluorescence microscope (Nikon Microphoto-SA).

Gelatin Zymogram for MMP-9 Activity Detection
MMP-9-/- and wild-type mice were euthanized at 2 and 4 weeks after AAVVEGF gene transfer. The brain tissues from treated animals were collected and homogenized with 100 μL prepared lysis buffer. Equal amounts of protein were loaded onto a gel and analyzed by gelatin zymogram to characterize gelatinase activity. After electrophoresis, the gel was washed and incubated overnight at 37°C in a developing buffer. The gels were stained with Coomassie Blue R-250 (Bio-Rad) and subsequently washed in destaining solution. Standard MMP-9, -2 (Chemicon) was examined on the gel to identify corresponding MMP-9, -2 bands. Gelatinolytic bands were quantified by scanning densitometry and analyzed using NIH Image 1.63 software.

Statistical Analysis
Parametric data in the different groups were compared using 1-way ANOVA followed by Fisher’s protected least significant difference test. All data are presented as mean±SD. A P<0.05 was considered statistically significant.

Results

BM Transplantation and Hematopoietic Recovery
To evaluate the efficacy of BM transplantation into the lethally irradiated mice, we performed flow cytometric analysis of recipient blood 4 weeks after BM transplantation. As measured by fluorescent intensity, 93% nucleated cells from recipient mice expressed GFP, indicating that most of the host stem cells were replaced by donor cells (supplemental Figure IB). No visible abnormal behavioral changes were noted after irradiation and BM transplantation; the animals moved freely and ate and drank normally.

VEGF-Induced Focal Angiogenesis Is Associated With Infiltrating BMDCs
To determine the kinetics of angiogenic response induced by VEGF in the brain, we injected AAVVEGF or AAVlacZ into the mouse brain and further analyzed the tissue at 1, 2, 4, 12, and 24 weeks after gene transfer. The number of capillaries increased as early as 1 week after AAVVEGF injection and peaked at 4 weeks (Figure 1). Although the magnitude of
Capillary density gradually decreased thereafter, capillary density in the AAVVEGF group remained higher than in the AAVlacZ group for up to 6 months. BMDCs were found within the VEGF-induced angiogenic region as early as 1 week after transplantation, peaking at 2 weeks, and progressively decreasing afterward (Figure 1). It should be noted that the peak of BMDC accumulation occurred before the peak of increased capillary density.

CD45- or CD68-Positive Cells Are the Major BMDCs Recruited to the Angiogenic Region

BM has the capacity to differentiate into a spectrum of cell types, including leukocytes, endothelial cells, pericytes, and smooth muscle cells. To identify the cell types that BM cells differentiated into in the brain angiogenic focus after AAV-VEGF injection, we used CD45 and CD68 immunostaining to characterize infiltrated BMDCs. We found that the majority of GFP-positive cells colocalized with CD45 and CD68 (Figure 2). CD45- and CD68-positive cells comprised the majority of the GFP-positive cells at 94% and 71%, respectively. We further identified that the GFP-positive BMDCs colocalized with CD31, vWF, Vimentin, and α-smooth muscle actin (α-SMA), indicating that BMDCs could differentiate into endothelial cells, pericytes, and smooth muscle cells; these were recruited to the angiogenic region although they only occupied a small percentage (1 ± 1%, 5 ± 3%, 0.5 ± 0.2%, respectively). In addition, BrdU-positive GFP cells were associated with blood vessels, suggesting that GFP-positive cells were actively proliferating. Notably, there was no positive double-staining associated with GFAP, a marker for astrocytes, or NeuN, a marker for neurons.

BMDC Homing Is Associated With ICAM-1 Expression in the Angiogenic Focus

ICAM-1 is the main endothelial surface receptor responsible for recruitment of BMDCs into the brain after VEGF stimulation. ICAM-1 deficiency impairs VEGF-induced angiogenesis. To explore the function of ICAM-1 during angiogenesis in brain tissue, we examined ICAM-1 expression. ICAM-1 expression was undetectable in the AAVlacZ-transduced mouse brain and the contralateral hemisphere of the AAVVEGF-transduced mouse brain. Interestingly, ICAM-1–positive staining was observed in the ipsilateral hemisphere in the angiogenic region where BMDCs were homing (Figure 3). Both GFP-positive BMDCs and upregulated ICAM-1 expression were observed in the same region but not in the contralateral hemisphere, suggesting that BMDCs homing in the angiogenic region is associated with focal overexpression of ICAM-1.
BMDCs: A Source of MMPs in the Angiogenic Focus

To identify the source of MMPs in the angiogenic focus, we examined MMP-9 expression. MMP-9–positive cells were only detected in the angiogenic focus in the AAVVEGF-transduced mouse brain, corresponding to the homing BMDCs. No MMP-9–positive cells were detected in the contralateral hemisphere (data not shown). MMP-9–positive staining colocalized well with GFP-positive cells, suggesting that the homing BMDCs were the source of MMP-9 (Figure 4). Because MMP12 is macrophage elastase, we further examined MMP12 expression. We detected well-colocalized MMP-12 and GFP-positive cells in the angiogenic focus, although they were much less than MMP-9 and GFP-positive cells.

MMP-9 Required for VEGF-Induced Angiogenesis

To confirm that MMP-9 is required for VEGF-induced angiogenesis, we used VEGF stimulation in the MMP-9−/− mice. The result showed that the number of capillaries in the AAVVEGF-transduced MMP-9−/− mouse brain was greatly reduced compared to AAVVEGF-transduced WT mice (Figure 5A and 5B). Furthermore, zymographic analysis showed...
that MMP-9 activity was highly upregulated in the AAVVEGF-transduced WT mice but absent in the MMP-9−/− mice, whereas MMP-2 had no changes (Figure 5C). Additionally, the MMP-9 activity after 2 weeks was higher than after 4 weeks of VEGF hyper-stimulation (5D). We also noted that the peak of MMP-9 activity occurred before the peak of capillary increase.

Discussion

In the present study, we demonstrated that: (1) BMDCs were recruited into the ipsilateral hemisphere of the mouse brain after AAVVEGF transduction with corresponding ICAM-1 expression; (2) BMDCs infiltrating the angiogenic region displayed a leukocyte (94%) or macrophage (71%) phenotype, whereas only a minority incorporated into the vascular wall; (3) the majority (80%) of the BMDC population colocalized with activated MMP-9; and (4) the increase of capillaries induced by VEGF transduction was attenuated 80% (2 weeks) and 66% (4 weeks) in MMP-9−/− mice. Taken together, our results demonstrate that BMDCs are recruited into the VEGF-induced angiogenic focus and are involved in angiogenesis by activating MMP-9.

BMDC incorporation into endothelial cells of growing vessels varies widely, from almost no incorporation up to 56% based on different tissues and types of stimulation.22,23 We found that only 1% GFP donor cells were positive for endothelial cell (CD31 or vWF), 0.5% for smooth muscle cell (α-SMA), and 5% for pericyte (Vimentin). Our results indicate that BMDCs in the brain tissue only occasionally incorporate into VEGF-induced angiogenesis, although other groups found that up to 42% of cells incorporate into brain vasculature in other models.24,25

We found that most of infiltrated BMDCs in the activated angiogenic region display leukocyte and macrophage markers. BMDCs are able to differentiate into astrocytes,26 neurons,24 and oligodendrocytes27; however, we did not detect GFP-positive astrocytes, neurons, and oligodendrocyte under VEGF stimulation conditions, suggesting that differentiation of BMDCs may be based on specific tissues and varying stimulation. We detected GFP-positive BMDCs only in VEGF-induced angiogenic focus, and their homing in the angiogenic focus as early as 7 days after AAVVEGF transduction, peaking at 2 weeks, and gradually decreasing afterward. This suggests that focal VEGF overexpression could recruit BMDCs. Because the peak of BMDC homing was 2 weeks earlier than that of increased capillaries, BMDCs were likely the activator for focal angiogenesis.

The insertion of the needle to introduce the viral vector causes minimal injury and may elicit a short-lived focal inflammatory response of several days, which would be visible in both experimental and control groups. However, in a previous study, we injected AAVVEGF, AAVlacZ (as viral control), and saline (as injection control) into the mouse brain and found that there was a paucity of inflammatory responses occurring in the 3 groups of mice, indicating that AAV vector or injection was unlikely to cause focal inflammation.28 In addition, we found that capillary density increased in the AAVVEGF-transduced mice but not in AAVlacZ and saline-injected mice, confirming that the increased capillaries were induced by VEGF but not AAV or injection. Generally,
inflammatory-induced angiogenesis occurs in the first few days and does not persist after several weeks (supplemental Figure IIC).

Before infiltration, BMDCs need to adhere to the vascular wall in a process mediated by adhesion molecules. VEGF could upregulate ICAM-1 expression both in vitro and in vivo. We examined ICAM-1 and other intercellular adhesion proteins such as vascular cell adhesion molecule (VCAM)-1 and E-selectin. We found that ICAM-1, but not other intercellular adhesion proteins, was extensively expressed in the ipsilateral hemisphere of the VEGF-treated mouse brain which parallels with infiltrated BMDCs, suggesting that ICAM-1 plays a significant role in BMDC infiltration.

VEGF enhances focal angiogenesis and promotes BBB leakage in the ischemic brain. Studies have noted that it induces BBB leakage only in the ischemic brain because BBB disruption has not been detected in the nonischemic rat brain after VEGF treatment. We believe that VEGF on BBB permeability may be based on the administered dose. Ad-VEGF (1×10^9 genome copies) or AAVVEGF (2×10^9 genome copies) or VEGF protein 0.6 to 1.2 ng/d are appropriate because these doses induce maximum angiogenesis with less BBB leakage. The inflammatory cell invasion could be due to the increased BBB permeability in the early stage of angiogenesis.

Recently, BMDCs have been recognized as an important source for storing and activating MMPs. Macrophage, neutrophils, and mast cells are the critical suppliers of MMP-9. BMDCs contributing to tumor vasculature is MMP-9–dependent. We showed that BMDCs were recruited into the angiogenic focus and expressed MMP-9, and that majority (80%) of the BMDCs population colocalized with MMP-9. Although MMP-9–positive staining was not colocalized with MMP-12, a macrophage elastase, is expressed in monocellular cells, which is related to focal inflammation. We observed that although a few BMDCs expressed MMP-12 in the angiogenic focus, the majority of BMDCs expressed MMP-9; this suggests that BMDCs mainly deliver MMP-9 and not MMP-12 during angiogenesis. The effect of MMP-12 during angiogenesis in the brain tissue needs further study.

We previously showed that neutrophil depletion and tetracycline treatment decrease MMP-9 activity, consequently attenuating angiogenesis. To verify the specific effect of MMP-9, we examined the number of capillaries in the AAVVEGF-transduced MMP-9/− mice. We found that the number of capillaries was greatly reduced in AAVVEGF-transduced mice compared to WT mice. Zymographic results also showed that MMP-9 activity was highly upregulated in the AAVVEGF-transduced WT mice and absent in MMP-9/− mice, which parallels capillary density. Also, MMP-9 activity peaked at 2 weeks, the same with infiltrated BMDCs, ahead of the peak of capillary proliferation. All results were consistent with the view that infiltrating BMDCs are associated with MMP-9 activity during angiogenesis.

Transplantation of WT BM cells into MMP-9/− mice can restore tumor angiogenesis. Transplantation of MMP-9/− BM cells into WT mice greatly attenuated tumor angiogenesis compared with transplanting WT BM cells into WT mice. However, a study shows that non-BMDCs can compensate for the lack of MMP-9 in BM cells. Future studies on MMP-9/− BM cells transplanted into WT mice and WT BM cells transplanted into MMP-9/− mice may provide more evidence.

VEGF gene transfer produces angiogenesis in the presence of some type of vascular disease or tissue ischemia. Administration of VEGF improved recovery from ischemic injury in the heart, hind limbs, and the brain, although VEGF could also produce irregular malformed capillary networks in the heart. VEGF-induced angiogenesis in the heart and limb may be tissue-specific and, in addition, depends on the duration of VEGF stimulation. Nevertheless, VEGF could induce angiogenesis in normal cells and tissues including the brain.

Acknowledgments
The authors thank Ivo Cornelissen for suggesting BM transplantation, Dr Wei Zhu for the BrdU staining, Voltaire Gangbar for editorial assistance, and the staff of the Center for Cerebrovascular Research (http://avm.ucsf.edu/) for their collaborative support.

Sources of Funding
These studies were supported by NIH grants R01 NS27713 (to W.L.Y.), R21 NS0668 (to G.Y.Y.), and P01 NS44145 (to W.L.Y. and G.Y.Y.).

Disclosures
None.

References

Contribution of Bone Marrow–Derived Cells Associated With Brain Angiogenesis Is Primarily Through Leukocytes and Macrophages
Qi Hao, Jianrong Liu, Rajita Pappu, Hua Su, Radoslaw Rola, Rodney A. Gabriel, Chanhung Z. Lee, William L. Young and Guo-Yuan Yang

Arterioscler Thromb Vasc Biol, published online September 18, 2008;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2008/09/18/ATVBAHA.108.176297.citation

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2008/09/19/ATVBAHA.108.176297.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Supplementary Figure I legend:

Figure I. **A.** Figure illustrates irradiation experiments, BM transplantation and gene transfer. **B.** Circulating blood from transplanted mice was analyzed by FACS. Left panel shows circulating blood from non-transplanted mice as control. Right panel shows recipients hematopoietic-recovered with GFP cells.
Supplementary Figure II:

Supplementary Figure II legend:

Figure II. (A). Black dot (arrow) indicates entry point of fine needle for virus injection. We obtained brain tissue between the dotted lines. This area extends from 1000 um anterior to 1000 um posterior of the needle track. (B). Cartoon depicts a coronal section surrounding the needle track. The blue boxes demonstrate the areas of interest for our studies. These areas surrounding the needle track are at least 100 µm outside of the track itself. (C). HE stained section of mouse brain two weeks after injection of AAVVEGF, at the same coronal coordinates as Panel B. Note that the needle track is no longer visible, nor an inflammatory reaction.