Platelet-Derived RANTES Mediates Hypercholesterolemia-Induced Superoxide Production and Endothelial Dysfunction

Background—Hypercholesterolemia (HC) is known to elicit oxidative stress and impair endothelium-dependent vasodilation (EDV) in arterioles and large arteries. Although RANTES, a chemokine that promotes the recruitment of leukocytes, has been implicated in atherosclerosis, its role in HC has not been previously evaluated.

Methods and Results—Wire myography, a cytochrome C reduction assay, and RT-PCR were used to assess the HC-induced responses of aortic rings from wild-type (WT), RANTES-deficient (RANTES−/−), bone marrow chimeras (WT→WT, RANTES−/−→WT, and WT→RANTES−/−), and WT mice receiving antiplatelet serum (APS) to induce thrombocytopenia. HC led to superoxide (O2−) production, Nox-2 expression, and EDV dysfunction in WT mice with a corresponding increase in plasma RANTES concentration. The HC-induced responses were absent in RANTES−/−, RANTES−/−→WT chimeras, and APS-treated WT mice. Exposure of WT aortic rings to RANTES elicited EDV impairment and O2− production, which were blocked by incubation with heparin or metRANTES. Aortic rings from CD44-deficient mice exhibited responses similar to WT after RANTES incubation, suggesting that CD44 does not act as an auxiliary receptor in RANTES-mediated responses with HC.

Conclusions—These findings are consistent with a mechanism whereby HC promotes platelet release of RANTES, inducing a glycosaminoglycan- and CCR-dependent enhancement of O2− production with impairment of EDV.

(Arterioscler Thromb Vasc Biol. 2008;28:000-000)

Key Words: ●●●

Hypercholesterolemia (HC) is a significant risk factor for the development of cardiovascular disease (CVD), a leading cause of morbidity and mortality worldwide. Several mechanisms have been proposed to explain the deleterious effects of HC on the vasculature, including oxidative stress, activation of the renin–angiotensin system, and immune cell activation. Like immune cells and platelets, endothelial cells are also activated in response to HC. This endothelial cell dysfunction appears to contribute to both the early vasomotor dysfunction and later atherosclerotic lesion development that are associated with HC. Although there is significant evidence implicating immune cells in both the early and late endothelium-dependent vascular pathology in HC, less is known about the role of platelets in this disease process and whether platelets act in concert with immune cells to mediate HC-induced endothelial cell dysfunction. There are several lines of evidence that suggest that platelets may contribute to the vascular disease associated with HC, including: (1) circulating platelets are rendered hyperactive by HC and exhibit an increased expression of P-selectin, (2) blockade of platelet adhesion, by targeting either platelet-associated GPIIb-IIIa or P-selectin in apoE−/− mice reduces leukocyte accumulation and plaque development in large arteries, (3) inhibition of platelet cyclooxygenase activity attenuates lesion development in apoE−/− mice, and (4) HC-induced arteriolar dysfunction is blunted in thrombocytopenic mice and in mice with genetic deficiency of platelet-associated P-selectin.

Platelets produce and secrete on activation a variety of substances that could account for their ability to mediate vascular pathology. RANTES (Regulated on Activation Normal T-cell Expressed and Secreted) is a chemokine secreted by activated platelets that promotes the recruitment of leukocytes to sites of inflammation and vessel injury. Several recent studies have implicated this chemokine in the development of atherosclerosis, providing evidence that (1) RANTES secreted by thrombin-stimulated platelets is immobilized on the surface of microvascular and aortic endothelium where it mediates monocyte recruitment, (2) a reduction of platelet-derived RANTES attenuates HC-induced recruitment of monocytes to the endothelium of apoE−/− mice, and (3) antagonism of RANTES receptors limits plaque formation in HC mice. While there is compelling evidence that invokes a role for platelet-derived RANTES in the development of atherosclerotic lesions during HC, the potential contribution of this chemokine to the early vasomotor dysfunction and NADPH oxidase-mediated oxidative stress induced by HC has not been previously addressed.
The overall objective of this study was to determine whether platelet-derived RANTES contributes to the endothelial dysfunction and enhanced superoxide production that are elicited in large arteries by hypercholesterolemia. Because RANTES is a highly cationic molecule that has been shown to exert its actions on immune cells and endothelial cells via interactions with cell surface glycosaminoglycans (GAGs),20–28 we also assessed the potential contribution of GAGs to the RANTES-mediated vascular responses. Inasmuch as previous work on HC-induced oxidative stress and vasomotor dysfunction invokes a role for immune cells (CD4+ T-cells) and cytokines (IFN-\gamma) derived therefrom,14 the possibility that HC-induced RANTES release is modulated by CD4+ T-cells and IFN-\gamma was also evaluated. Our findings are consistent with a mechanism whereby hypercholesterolemia causes platelets to release RANTES, which induces a GAG-dependent enhancement of O\textsubscript{2} - production from Nox-2 and the subsequent impairment of endothelium-dependent vasodilation.

Materials and Methods

Animals and Experimental Groups

Wild-type (WT), CD4+ T-cell deficient (CD4-/-), homozygous for the Cdk1flox/flox mutation and interferon (INF)-\gamma-deficient (IFN-\gamma-/-), homozygous for the Ifng-/- mutation, and CD44-deficient (CD44-/-) mice, all on a C57BL/6J background, were obtained from Jackson Laboratories (Bar Harbor, Me). RANTES-deficient (RANTES-/-) mice (on C57BL/6J background) were obtained from S. Sarawar at the Torrey Pines Institute for Molecular Studies, San Diego.29 A breeding colony for the RANTES-/- mice was established in the animal-resource facility of LSU Health Sciences Center-Shreveport. RANTES-/- mice were also used for the generation of bone marrow chimeras as described further in the supplemental materials (available online at http://atvb.ahajournals.org).

Briefly, irradiated WT mice received RANTES-/- bone marrow, such that only circulating blood cells were deficient in RANTES (RANTES-/-→WT), or irradiated RANTES-/- mice received WT bone marrow such that only the vessel wall lacked RANTES (WT→RANTES-/-). In addition, CD4+ T-cells isolated from WT-HC mice were adoptively transferred into either IFN-\gamma-/- or HC (CD4+ T-cells→IFN-\gamma-/- or RANTES-/-→HC (CD4+ T-cells→RANTES-/-) mice, as detailed in the supplemental methods file. The mice had ad libitum access to a standard diet and water until reaching the desired age (5 to 6 weeks). The mice were placed on either a normal diet (ND) or cholesterol-enriched (HC) diet (Teklad 90221 with 1.25% cholesterol, 0.125% choline chloride, 15.8% fat; Harlan Teklad) for 2 weeks (n=5 per group).

Experimental Protocol

Aortas were obtained from all groups for measurement of endothelial-dependent (acetylcholine) or endothelium-independent (sodium nitroprusside) vasodilation, or endothelium-dependent vasomotor dysfunction. Aortas were obtained from all groups for measurement of endothelial dysfunction and increased O\textsubscript{2} - production that whether platelet-derived RANTES contributes to the endothelium-dependent vasodilation and increased O\textsubscript{2} - production were not detected in the RANTES-/- mice (Figure 1A and 1B). To determine whether the RANTES-mediated the HC-induced vascular responses was derived from circulating blood cells versus non–bone marrow–derived cells within or outside the vessel wall, vasomotor dysfunction and O\textsubscript{2} - production were evaluated in aortic tissue derived from RANTES-/- bone marrow chimeras (Figure 1A and 1B). RANTES-/-→WT-HC mice exhibited endothelium-dependent vasodilation and superoxide production responses similar to those noted in WT→WT-ND controls. This attenuation of HC-induced endothelial dysfunction and increased vascular O\textsubscript{2} - production was not observed in the WT→RANTES-/-→HC or WT→WT-HC chimeras, suggesting that RANTES derived from circulating blood cells, not from the vessel wall, mediate the HC-induced oxidative stress and endothelium-dependent vasomotor dysfunction.

The results summarized in Figure 2 demonstrate that 4-hour incubation of aortic rings from WT-ND mice with 10 ng/mL RANTES elicits an impaired acetylcholine-induced vasodilatory response and increased O\textsubscript{2} - production comparable to that observed in aortic tissue from WT-HC mice.
Shorter incubation times (15 or 60 minutes) did not elicit the responses noted with 4-hour incubation. The RANTES-mediated responses were not altered by coincubation with catalase. Similar responses were induced by RANTES incubation of aortic rings derived from normocholesterolemic WT mice. These findings demonstrate that RANTES can directly act on aortic tissue to increase superoxide production and impair the vasomotor response, and indicates that prolonged RANTES deficiency (either in all cells or only in circulating blood cells) does not alter the responsiveness of aortic tissue to the chemokine.

Figure 1. Acetylcholine-induced (10^-4 mol/L) dilation of (A) and superoxide production (B) by aortic rings from wild-type (WT) and RANTES-deficient (RANTES^-/-) mice, as well as wild-type to wild-type (WT→WT), RANTES^-/- to WT (RANTES^-/-→WT), and WT to RANTES^-/- (WT→RANTES^-/-) bone marrow chimeras. Mice in each group were placed on either a normal (ND) or cholesterol-enriched (HC) diet. *P<0.05 vs WT-ND; #P<0.05 vs WT-HC; ̂P<0.05 vs WT→WT-ND; %P<0.05 vs WT→WT-HC. n=5 mice per group.

Figure 2. Acetylcholine-induced (10^-4 mol/L) dilation (A) of and superoxide production (B) by aortic rings from wild-type (WT) mice on a normal diet (ND), wild-type (WT) mice on a cholesterol-enriched (HC) diet, RANTES-deficient (RANTES^-/-) mice on ND, and RANTES^-/- to WT (RANTES^-/-→WT) bone marrow chimeras on ND. In one series of experiments, WT, RANTES^-/-, and RANTES^-/-→WT groups were incubated with 10 ng/mL RANTES for 4 hours. *P<0.05 vs WT-ND; #P<0.05 vs WT-HC. n=5 mice per group.
WT mice rendered thrombocytopenic (blood platelet count reduced by 93%) with rabbit antimouse platelet antiserum (APS) do not exhibit the impaired vasomotor function and increased superoxide production normally induced by HC, suggesting that CD4+ T-cells are an unlikely source of the chemokine in this model.

Figure 4 summarizes the changes in acetylcholine-induced vasodilation and superoxide production in response to HC or RANTES incubation in the presence or absence of heparin. Previous work by others indicates that RANTES can use cell surface GAGs to mediate cell activation signals and that heparin can block these GAG-mediated signals. We noted that heparin incubation ablates the impaired vasomotor response as well as the increased superoxide production induced by either HC or RANTES incubation with ND control vessels. In addition, we noted that WT-ND rings incubated with the combination of RANTES and met-RANTES (a RANTES receptor antagonist) exhibited blunted EDV impairment and superoxide production, compared to incubation with RANTES alone. RANTES-induced O_2^- superoxide production and EDV dysfunction were not attenuated in rings from CD44 mice. Collectively, these findings indicate that RANTES-mediated EDV dysfunction and increased superoxide formation is dependent on both activation of the CCR5 receptor and an interaction with endothelial GAGs (which presumably elevates local RANTES concentration for interaction with the CCR5 receptors). The RANTES-mediated responses do not appear to involve the proteoglycan CD44, as previously proposed for other disease models.

Figure 5 summarizes the changes in plasma RANTES concentration that are elicited by HC in different experimental groups. WT-HC mice exhibited a large increase in plasma RANTES concentration, which was not observed when the mice were rendered thrombocytopenic with APS. Because previous work from our laboratory implicates CD4+ T-cells...
A: WT-ND
B: WT-HC
C: WT-HC heparin
D: WT-ND RANTES incubation
E: WT-ND heparin/RANTES inc
F: WT-ND met RANTES/RANTES inc
G: CD44-/- RANTES inc

Figure 4. Acetylcholine-induced (10⁻⁴ mol/L) dilation of (A) and superoxide production by (B) aortic rings from wild-type (WT) mice on either a normal (ND) or cholesterol-enriched (HC) diet. In a separate WT-HC group, the aortic rings were incubated with heparin (50 ng/mL) for 4 hours. Some rings from WT-ND mice were incubated for 4 hours with 10 ng/mL RANTES in the presence or absence of 50 ng/mL heparin or metRANTES (1 μg/mL). Vascular rings from CD44-null (CD44-/-) mice were also incubated with RANTES for a 4-hour period. *P<0.05 vs WT-ND; #P<0.05 vs WT-HC. n=5 mice per group.

Table. gp91phox (Nox-2) mRNA Expression in Aortic Tissue Determined by RT-PCR

<table>
<thead>
<tr>
<th>Groups</th>
<th>Relative gp91phox mRNA Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT-ND</td>
<td>1.00±0.08</td>
</tr>
<tr>
<td>WT-HC</td>
<td>2.82±0.74*</td>
</tr>
<tr>
<td>RANTES-/- ND</td>
<td>1.01±0.11#</td>
</tr>
<tr>
<td>RANTES-/- HC</td>
<td>0.93±0.19#</td>
</tr>
<tr>
<td>WT→WT-ND</td>
<td>1.03±0.08#</td>
</tr>
<tr>
<td>WT→WT-HC</td>
<td>3.09±0.54*</td>
</tr>
<tr>
<td>RANTES-/-→WT-ND</td>
<td>0.88±0.14#</td>
</tr>
<tr>
<td>RANTES-/-→WT-HC</td>
<td>1.01±0.26#</td>
</tr>
<tr>
<td>WT-ND (APS)</td>
<td>1.17±0.21#</td>
</tr>
<tr>
<td>WT-ND (APS)</td>
<td>1.37±0.20#</td>
</tr>
<tr>
<td>WT-RANTES incubation</td>
<td>2.63±0.13#</td>
</tr>
<tr>
<td>WT-RANTES/heparin incubation</td>
<td>0.97±0.08#</td>
</tr>
<tr>
<td>WT-RANTES/metRANTES incubation</td>
<td>1.06±0.32#</td>
</tr>
<tr>
<td>CD44-/- RANTES incubation</td>
<td>2.03±0.28#</td>
</tr>
</tbody>
</table>

Each group was placed on either a normal diet (ND) or high-cholesterol diet for 2 weeks (HC). gp91phox levels were normalized to GAPDH and expressed relative to the gp91phox mRNA expression of the WT-ND group. n=5 mice per group.

*P<0.05 vs WT-ND; #P<0.05 vs WT-HC.

and T-cell–derived IFN-γ in the vasomotor dysfunction and increased superoxide production elicited by HC, we also evaluated the influence of genetic deletion of these factors on the HC-induced elevation in plasma RANTES. HC mice deficient in either CD4 + T-cells or IFN-γ also exhibited an attenuation of HC-induced RANTES secretion. However, the adoptive transfer of WT-HC CD4+ T-cells into IFN-γ–deficient HC mice restored the HC-induced elevation in plasma RANTES concentration, suggesting a role for CD4+ T-cell–mediated IFN-γ signaling in the platelet-dependent changes in plasma RANTES.

Discussion

RANTES (CCL5), a member of the CC-chemokine family, has been implicated in a variety of chronic inflammatory diseases, including atherosclerosis. It is generally held that the primary biological action of RANTES is to recruit and activate leukocytes at sites of inflammation. Although this chemokine is also known to elicit different biological responses in immune cells, such as proliferation and apoptosis, its actions on other cell populations remain poorly defined. The results of this study provide evidence for novel biological actions of RANTES that may explain the impaired vascular function that is associated with different risk factors for cardiovascular disease. We demonstrate for the first time that RANTES is a major determinant of the oxidative stress and vasomotor dysfunction that is induced in large arteries by hypercholesterolemia. In addition, we show that exogenous RANTES acts directly on arterial tissue to increase the expression of Nox-2 (NADPH oxidase) mRNA, enhance superoxide production, and inhibit vessel reactivity to the endothelium-dependent vasodilator acetylcholine. These findings, coupled to our observation that HC is associated with a significantly elevated RANTES concentration in plasma, support a role for RANTES as a mediator of ROS production and endothelial cell dysfunction induced by hypercholesterolemia.

RANTES is produced by a variety of cell populations, including platelets, T-lymphocytes, endothelial cells, mast cells, and vascular smooth muscle. By comparing the
response.38,39 platelet-derived RANTES is the likely mediator of this recent studies which show that circulating activated platelet-derived RANTES in our HC model is also consistent with T-cells into RANTES release the RANTES that mediates the HC-induced response.37 A role for platelet-derived RANTES in our HC model is also consistent with recent studies which show that circulating activated platelets exacerbate atherosclerosis in apoE−/− mice,38 and that platelet-derived RANTES is the likely mediator of this response.38,39

The molecular mechanisms that underlie the ability of RANTES to mediate the impaired vascular function in HC remain poorly defined. However, our results, coupled with previous reports demonstrating a critical role for vessel wall Nox-2 in the HC-induced superoxide production and vasomotor dysfunction, suggest that RANTES is likely to be mediating its effects via NADPH oxidase upregulation/activation.14,40 HC-induced upregulation of Nox-2 mRNA was prevented by RANTES deficiency, in RANTES−/−→WT chimeras, and in thrombocytopenic WT mice, suggesting that platelet-derived RANTES regulates Nox-2 expression in vascular endothelium. Collectively, our findings are consistent with a mechanism wherein RANTES acts on endothelial cells to increase Nox-2 levels, which results in accelerated rates of superoxide production. The impaired endothelium-dependent vasodilation likely reflects an effect of the enhanced superoxide flux to reduce the bioavailability of nitric oxide, which is known to mediate acetylcholine-induced endothelium-dependent vasodilation. The proposed action of RANTES on superoxide production via NADPH oxidase during HC is consistent with the results of a recent report that describes an enhanced superoxide production and impaired endothelium-dependent vasodilation in rat aorta incubated with the CX3C chemokine fractalkine.41 The fractalkine-mediated EDV response was prevented by coincubation of the aortic ring with tiron, and the enhanced superoxide production was significantly attenuated by treatment with the nonspecific NADPH oxidase inhibitor diphenyliodonium, but not the xanthine oxidase inhibitor allopurinol. These observations with fractalkine and our findings with RANTES suggest that chemokines may play a more important role in the vasoregulatory dysfunction associated with inflammation than previously considered.

An interesting and potentially important observation in this study is the ability of heparin to reduce superoxide production and restore endothelium-dependent vasodilation in aortic rings derived from HC mice and to exert the same protective effects in rings incubated with RANTES. Although endothelial cell express G protein–coupled receptors for RANTES (CCR1, CCR3, CCR5), the density of these receptors is low compared to other cell populations, such as T-lymphocytes.42 Nonetheless, this positively charged chemokine binds avidly to vascular endothelium by interacting with cell surface GAGs,30 which is believed to confer selectivity to the chemokine in mediating tissue-specific leukocyte recruitment. RANTES binding studies to isolated cell systems have revealed that the GAG-RANTES interactions can promote cell signaling in two ways: (1) it can create a high local concentration of the chemokine in the vicinity of its receptors, which facilitates cell signaling when receptor density is low, as with endothelial cells,43 and (2) it can activate cells via a receptor-independent mechanism wherein RANTES binds to GAG chains of the proteoglycan CD44 leading to activation of a MAPK pathway.55 Because the affinity interactions between GAGs and RANTES can be ablated by heparin,27 our results with heparin suggest that the HC-induced RANTES-mediated increase in Nox-2 expression and superoxide production, and impaired vasomotor function likely involves one of the aforementioned GAG-dependent signal-

Figure 5. Serum RANTES concentrations determined by ELISA from: wild-type (WT) mice on a normal diet (ND), WT mice on a cholesterol-enriched diet (HC), CD4+ T-lymphocyte-deficient (CD4−/−) mice on HC, IFN-γ−/− deficient (IFN-γ−/−) mice on HC, and IFN-γ−/− mice on HC after adoptive transfer of CD4+ T-cells from WT mice (CD4+ T-cells → IFN-γ−/−) on HC. *P<0.05 vs WT-ND; #P<0.05 vs WT-HC. n=5 mice per group.
ing pathways. Because vascular rings derived from CD44-null mice exhibited responses to RANTES that were similar to those elicited in rings from WT mice, and in view of the observed inhibitory actions of met-RANTES in our model, it appears likely that endothelial GAGs are acting to facilitate the interaction of RANTES with CCR5 on endothelial cells, rather than acting via a CD44-dependent pathway. Such a mechanism appears tenable because G protein–coupled signaling pathways have been implicated in the activation of NADPH oxidase. \(^{44}\)

Recent work from our laboratory has implicated CD4+ T-lymphocytes and CD4+ T-cell–derived IFN-γ in the oxidative stress and endothelium-dependent vasomotor dysfunction induced by HC in mice. \(^{14}\) These observations, coupled to the results of the present study that implicate platelet-derived RANTES in the same responses to HC, raise the possibility that CD4+ T-cells and IFN-γ may mediate the release of RANTES from platelets during HC. Our measurements of plasma RANTES concentration in hypercholesterolemic mice deficient in either CD44+ T-cells or IFN-γ support this possibility, as well as our observation that the HC-induced elevation of plasma RANTES is restored by adoptive transfer of CD4+ T-cells into IFN-γ–deficient mice. Such a link between platelet release of RANTES and IFN-γ is also consistent with reports demonstrating a significantly elevated plasma IFN-γ concentration in WT-HC mice \(^{45}\) and the presence of IFN-γ receptors on platelets. \(^{46,47}\) Alternatively, it is conceivable that IFN-γ does not act directly on platelets to elicit the release of RANTES, but exerts its effects through an intermediate blood cell, which in turn directly or indirectly activates platelets to release RANTES. Additional work is needed to determine whether and how the release of platelet-derived RANTES is modulated by immune cells in the setting of HC.

In conclusion, our findings have revealed a novel role for RANTES in the NADPH oxidase–mediated oxidative stress and impaired vasomotor function associated with HC. The data are consistent with circulating blood cells, most likely platelets, as a major source of the RANTES that mediates the HC-induced vascular responses. In immune cell–mediated activation of platelets and GAG-dependent CCR5 receptor activation on endothelial cells are also implicated in these responses. The data supports RANTES as a potential therapeutic target for the vascular pathology induced by HC.

Sources of Funding
This work was supported by a grant from the National Heart Lung & Blood Institute (HL26441).

Disclosures
None.

References

Platelet-Derived RANTES Mediates Hypercholesterolemia-Induced Superoxide Production and Endothelial Dysfunction

Ryan M. Wolford, Robert Manriquez, Karen Y. Stokes and D. Neil Granger

Arterioscler Thromb Vasc Biol. published online July 17, 2008;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2008/07/17/ATVBAHA.108.168955.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/