Antagonism of Lipopolysaccharide-Induced Blood Pressure Attenuation and Vascular Contractility

Objective—Aim was to assess whether lipopolysaccharide (LPS)-induced decrease of total peripheral resistance depends on Toll-like receptor (TLR)4 signaling and whether it is sensitive to NO-synthase or TLR4 antagonists.

Methods and Results—C3H/HeN mice (control), expressing a functional, and C3H/HeJ mice, expressing a nonfunctional TLR4, were compared. LPS (20 mg/kg) was injected i.p. 6 hours before hemodynamic measurements. L-NAME and SMT, inhibitors of NO production, and Eritoran, a TLR4 antagonist, were tested for their impact on vascular contractility. Aortic rings were incubated for 6 hours with or without LPS (1 μg/mL), or with LPS+Eritoran (2 μg/mL) and their phenylephrine-induced contractility was measured using a myograph. The expression of cytokines in aortic tissue was examined by real-time polymerase chain reaction. In control mice LPS induced a significant decrease of blood pressure and an increase of heart rate, whereas C3H/HeJ remained unaffected. LPS induced an increase of cytokine expression and a depression of vascular contractility only in control mice but not in C3H/HeJ. L-NAME and SMT increased contractility in all rings and restored LPS-dependent depression of contractility. Eritoran prevented LPS-induced loss of contractility.

Conclusions—LPS upregulates cytokine expression via TLR4 and induces attenuation of smooth muscle contractility which can be effectively antagonized. (Arterioscler Thromb Vasc Biol. 2007;27:000-000.)

Key Words: ●●●

Sepsis and septic shock are responsible for about 1400 deaths per day on noncardiac intensive care units in the United States.1,2 During bacterial infection virulence factors are released and the immune system reacts by generating inflammatory cytokines3 leading to a lowered total peripheral resistance (TPR) of the circulatory system. This is compensated by an increase in heart rate and cardiac output. In septic shock cardiac output cannot balance the loss in peripheral resistance any longer resulting in a drastic drop in blood pressure and disturbed microcirculation.4

It has been shown that different members of the Toll-like receptor (TLR) family specifically bind different virulence factors from a wide variety of pathogens. Those virulence factors are very important for the pathogenesis of sepsis. Therefore, competitive inhibition of virulence factors at the Toll-like receptor level might be a potential therapeutic option to treat pathogen-induced sepsis and septic shock. LPS is an important virulence factor of Gram-negative bacteria, which binds to and signals via the TLR4/CD14 complex, thereby inducing inflammatory mediators.3,5

Recently it has been demonstrated that a synthetic Lipid-A-analog called Eritoran (E5564, Eisai, currently also used in different clinical trials for the treatment of sepsis) competitively antagonizes LPS at the TLR4/CD14 complex and inhibits the synthesis and induction of sepsis relevant mediators. In addition, Eritoran was able to prevent the negative inotropic effect of LPS on isolated cardiac myocytes.6,7

In addition nitric oxide (NO) and cytokines or adrenomedullin (ADM) appear to be increased during sepsis and play an important role in the regulation of total peripheral resistance (TPR).8,9 It is known that the NO synthase isoenzyme iNOS (inducible NOS or type II NOS) is upregulated in the murine myocardium after LPS stimulation10 and that vascular NO from iNOS is relevant for vasomotor dysfunction during septic shock.11 Early studies on the use of nonselective NOSynthase inhibitors such as L-NAME or L-NMMA have shown that the inhibition of NO can prevent the sepsis associated hypotension, albeit L-NMMA produced a decreased cardiac output.12,13

Therefore selective inhibitors of iNOS may be more suitable to inhibit the loss of TPR and do so without the detrimental effects of total NO inhibition by L-NAME shown in animal15–18 and clinical studies.19

The purpose of this study was to examine the role of TLR4 and inflammatory cytokines, as target genes in the TLR4 signaling cascade, in a murine model of Gram-negative sepsis.
for the regulation of hemodynamic parameters and vascular contractility. The second aim was to elucidate whether TLR4 antagonism or iNOS inhibition may serve as therapeutic targets for the treatment of TPR loss during septic shock.

Materials and Methods

Animal Model

Twelve- to 14-week-old LPS responsive C3H/HeN (control) mice and LPS hyporesponsive C3H/HeJ mice of both genders were purchased from Charles River (Sulzfeld, Germany). C3H/HeJ mice carry a point mutation in the cytoplasmic region of TLR4, a replacement of proline with histidine, leading to the LPS hyporesponsive phenotype.20 Mice were housed in pathogen-free cages with free access to water and standard rodent chow. The animals were handled according to the principles of laboratory animal care (NIH publication No. 85-23, revised 1996), and animal procedures were approved by the local committee for animal care.

In Vivo Stimulation

Controls and C3H/HeJ mice were injected i.p. with NaCl or LPS (20 mg/kg bodyweight, #L2630, E. coli 0111:B4; Sigma-Aldrich Chemical) before hemodynamic recordings.

Hemodynamics

Baseline hemodynamic parameters were recorded in anesthetized mice (1% isoflurane, flow 1 l/min Forene, Abbott GmbH) under constant regulation of body temperature. A polyethylene catheter (PE 10) was inserted into the right carotid artery. Pressure signals were digitized using a Powerlab (AD, Instruments GmbH) and were continuously recorded using Chart for Windows (Version 4.2.3). After a 15-minute stabilization period baseline hemodynamic parameters were recorded for 15 minutes. Afterward the animals were euthanized to allow excision of the aorta thoracica.

Mulvany Myograph and Contractility Studies

Periadventitial fat was removed from the explanted abdominal aorta and the lower part was cut into 2-mm rings according to the method of Mulvany and Halpern.21 Aortic rings were mounted in a Mulvany multi myograph (Model 610 mol/L, Danish Myo Technology) in oxygenated Krebs-Ringer Bicarbonate solution (in mmol/L: glucose 5.5, NaCl 118.5, KCl 4.7, MgSO4 1.2, KH2PO4 1.2, NaHCO3 25) at a pH of 7.4 and 37°C for 60 minutes. Then resting tension of 10 mN was applied and the rings were allowed to equilibrate for another 45 minutes. Vessel viability was checked by exposure to high potassium solution (125 mmol/L) and 10⁻⁶ mol/L phenylephrine (PE, Sigma #P-6162). Afterward concentration-response curves (CRC) were recorded with PE concentrations of 10⁻⁸ mol/L to 10⁻² mol/L. All agonist solutions were prepared in ascorbic acid stock solution (1 mg/mL) to prevent oxidation of PE. Isometric contractions were digitized using Myodaq V2.01 and converted using Myodata software (Myonic Technology).

Stimulation With TLR4 Antagonist

Rings were kept in Dulbeccos Modified Eagle Medium (DMEM) (37°C, 5% CO2, 95% oxygen) as (1) controls or coincubated with either (2) E.coli LPS (1 μg/mL) or (3) LPS (1 μg/mL) and lipid A antagonist Eritoran (2 μg/mL; EISAI; with Eritoran administered every 2 hours).7,22,23 Afterward concentration response curves to PE were recorded as described above. The Eritoran concentration was chosen according to previous in vitro experiments from our group on isolated cardiac myocytes.8 We tested a concentration of 1 μg/mL Eritoran and 1 μg/L LPS, which was not able to prevent the cardiac depressive action of LPS. However, 2 μg/mL of Eritoran, exceeding the LPS concentration twice, were sufficient to block LPS associated cardiac depression. Therefore we applied the same concentration of Eritoran in our experiments on aortic rings.

Inhibition of NOS

Another set of PE concentration response curves was recorded after 20 minutes incubation of the isolated aortic rings with the nonspecific NOS-inhibitor N-Nitro-l-arginine-methylester (L-NAME, 100 μmol/L, Sigma #N5751) or the specific iNOS inhibitor S-Methylisothiourea (SMT, 100 μmol/L, Sigma #67730).24

Cytokine mRNA Isolation and Real-Time PCR

Animals were injected i.p. with 20 mg/kg BW LPS for 6 hour prior to isolation of the aortae. Aortae were flash frozen in liquid nitrogen (LN2) and conserved at −80°C. For RNA extractions the whole material was homogenized and RNA was isolated as described elsewhere.25 For initiation of cDNA-synthesis an Oligo-(d-T)₁₅ Primer for Avian Myeloblastosis Virus Reverse Transcriptase was used and 1 μg RNA transcribed to cDNA. To estimate the specific cDNA-amount a PCR for β-actin, as house-keeping gene, was performed. The resulting PCR-products were seperated using 1.5%-agarosegels. Primers for iNos, tumor necrosis factor (TNF)α, interleukin (IL)-1β, IL-6 and ADM were selected using Primer Express Software (Applied Biosystems, Foster City, CA, USA) (Search parameters: ampliconsize 100 bp, annealing-temperature 60°C, GC-content 60%). The reaction mixtures were prepared using the Master SYBR Green PCR kit (Eurogentec, Liège, Belgium). Primer sequences and amplicon lengths were defined as shown in the Table. The reaction was processed in a TaqMan PCR system (Applied Biosystems), and the results were analyzed by calculating the ratio of relative target accumulation over relative β-actin accumulation.

Statistical Analysis

Numerical results are given as mean±SEM of n observations, where n is the number of tested animals. For analysis of numerical data, Student unpaired t test was used to compare means between groups. Probability values ≤0.05 (*) are indicated.

Results

Clinical Manifestations of Infection

Six hours postinjection, clinical manifestations of shock could be observed in LPS-injected controls. These included diarrhea and lethargy beginning 2 hours after injection. C3H/HeJ mice remained unaffected by LPS injection. These
findings are consistent with those reported by numerous
groups and confirm the LPS hyporesponsive phenotype of the
C3H/HeJ strain and the LPS responsiveness of the control
strain.3,5,10

Hemodynamic Results
To demonstrate the fact that LPS induces hemodynamic insta-
bility characteristic of septic shock, endotoxin responsive control
mice were injected i.p. with E.coli LPS (n=10) or with saline as
control (n=10). In response to a 6-hour challenge of LPS 20
mg/kg bodyweight the mean arterial blood pressure (MAP) of
control animals was significantly reduced by 29% compared
with controls (ie, 65.72±5.27 mm Hg in LPS treated animals;
91.99±2.20 in controls, not shown). The reduction of MAP
originated in a LPS-dependent decrease in both systolic
(106.12±2.80 mm Hg in controls and 73.30±5.33 mm Hg in
treated mice; Figure 1A) and diastolic blood pressure
(80.80±2.3 mm Hg in controls and 58.46±5.26 mm Hg in
treated mice Figure 1B). The heart rate of LPS-treated control
animals was significantly increased by 120% (612.62±44.87
beats per minute [bpm] versus 512.46±18.38 bpm in control
mice; Figure 1C). However, this increase in heart rate was not
sufficient to compensate for a loss of blood pressure. In TLR4-
deficient mice of the C3H/HeJ strain none of the above mentioned
parameters was significantly reduced (Figure 1A–C).

Figure 1. Hemodynamics. Six-hour LPS stimulation (20 mg/kg
i.p.) depresses arterial blood pressure in controls and upregu-
lates heart rate. A, Systolic arterial blood pressure. B, Diastolic
arterial blood pressure. C, Heart rate (n=10, *P<0.05; all values
are mean±SEM).

Expression of Cytokines in the Murine Aorta
To determine which cytokines are increased in aortic tissue
after LPS stimulation we quantified the mRNA amounts of
IL-1β, IL-6, TNFα. In addition, iNOS and ADM were also
monitored.

LPS application for 6 hours led to a significant increase of
mRNA for the proinflammatory cytokines IL-1β, IL-6, TNFα in
control mice, but not in LPS hyporesponsive C3H/HeJ mice.

LPS stimulation caused a pronounced induction of iNOS in
control mice compared with saline-treated control mice. LPS
did not induce a significant upregulation of iNOS in LPS
hyporesponsive C3H/HeJ mice. Comparable results were
detected for adrenomedullin, showing a significant increase of
ADM in LPS-treated control mice but not in LPS hypore-
sponsive C3H/HeJ mice (Figure 3).
Discussion

The aim of our study was to elucidate whether TLR4 is involved in the regulation of vascular contractility during sepsis. Furthermore we wanted to clarify whether TLR4 antagonism can serve as therapeutic target during sepsis.

We demonstrate that blood pressure and vascular contractility are attenuated during septic shock. These results are in accordance with previous findings from other groups, proving the functionality of our model. Additionally our data show that animals lacking a functional TLR4 are not developing LPS-dependent downregulation of circulatory function (Figure 1). A major new finding of this study is that LPS-induced vascular relaxation depends on TLR4 expressed in the vessel wall. Moreover we show for the first time that a vascular block of TLR4 or iNOS can prevent LPS-induced changes of vascular contractility. Thus Eritoran might serve as a new tool in the clinical treatment of septic hypotension.

Figure 2. Vascular ring contractions. A, LPS-induced hypocontractility in control mice (C3H/HeN; control LPS) but not in saline treated controls (control NaCl). B, This effect was not observed in C3H/HeJ mice. C, NOS inhibition by L-NAME restored contractility in LPS-treated control mice (control LPS+L-NAME). D, L-NAME increased contractility in C3H/HeJ mice (C3H/HeJ NaCl+L-NAME) at PE concentrations above 10⁻⁸ mol/L compared with rings from saline-treated animals (C3H/HeJ NaCl). E, NO-inhibition by the iNOS-specific blocker SMT also completely restored vasocontractility of aortic rings from LPS-treated control animals (control LPS+SMT). The same “control+LPS” curve is shown in A, C, E for better comparison. F, Eritoran prevents hypocontractility in LPS-treated control animals. There are significant differences between in vitro Eritoran+LPS-treated rings and rings from in vitro LPS-treated controls. All measurements were done after a 6-hour incubation period with either LPS (control LPS in vitro), LPS+Eritoran (control LPS+Eritoran in vitro), or only DMEM (control NaCl in vitro). (C through F, Groups among which significant differences were detected are marked. n=5, *P<0.05; all values are mean±SEM).
Our data show that isolated aortic rings taken from control animals treated with LPS developed a significantly reduced contractility (Figure 2A), which was comparable to rings incubated with LPS in vitro. This demonstrates that circulating immune cells are not necessary for LPS-induced vascular relaxation (Figure 2F). Because there are usually no immune cells like macrophages in the aortic wall, this response has to be induced by local cells, eg, smooth muscle cells or endothelial cells. Smooth muscle cells are known to express functional Toll Like Receptor 2,30 3,31 and 4.32,33 TLR4 has also been localized on endothelial cells.34,35 Therefore, both cell types are susceptible to TLR4-stimulation and thus LPS is able to induce cytokine as well as iNOS expression in both cell types. The importance of TLR4 is further underlined by the observation that rings from C3H/HeJ animals did not show a loss of contractility after LPS treatment (Figure 2B). The vascular relaxation seems to rely mainly on NO as it can be blocked by L-NAME. SMT was also able to prevent vascular relaxation completely, therefore iNOS appears to play a major role. It has been shown in previous studies that the use of nonspecific NO synthase inhibitors prevents hypotension during sepsis.36–39 In this study we confirmed this effect and show furthermore that arterial iNOS expression is upregulated after LPS treatment (Figure 3), and that nonselective and selective inhibition of iNOS completely restored vascular contractility (Figure 2C-D) in aortae from septic mice.

In addition to the regulation of iNOS we wanted to elucidate how other target genes of the TLR4 cascade are regulated after LPS treatment. We were specifically interested in the regulation of ADM as a potent vasodilator.40 It has been shown that inflammatory stimuli led to an increase of ADM expression and thus to increased angiogenesis and vasodilation.41 Frede et al could show that HIF1α is upregulated in monocytes after LPS stimulation leading to increased ADM expression.42

Figure 3. 6 hour of LPS stimulation induces an upregulation of cytokines in aortae from control mice, compared with aortae from saline treated controls. LPS hyporesponsive mice of the C3H/HeJ strain show no significant differences in cytokine and iNOS and adrenomedullin (ADM) mRNA levels after LPS injection (n=5 in all groups, *P < 0.05, all values are mean±SEM).
demonstrate that ADM upregulation is TLR4-dependent in aortic tissue (Figure 3) and might thus play an important role for catecholamine resistant hypotension in sepsis. However, it remains unclear whether this upregulation of ADM is dependent on the upregulation of HIF1α in aortic tissue or induced by a different pathway.

The LPS-dependent upregulation of ADM should lead to pronounced vasodilation. There are supposed to be 2 different pathways leading to ADM-dependent vasodilatation: (1) direct increase of cAMP and activation of eNOS,43,44 or (2) a combined pathway of cAMP-NO mediated vasorelaxation.45 Those pathways focus on ADMS influence on NO produced by the NOS isoform eNOS.46

However our data suggest an additional interaction between ADM and iNOS, because the inhibition of iNOS also completely restored contractility in aortic rings. We therefore assume that in our experimental surrounding ADM-dependent NO is produced mainly by iNOS, not eNOS. The upregulation of iNOS, ADM, and cytokines, after LPS stimulation, was not detected in C3H/HeJ mice (Figure 3).

The most intriguing result of our data are that LPS-induced vascular relaxation can be inhibited by using a competitive inhibitor of TLR4.22,23,47,48 Eritoran, a second generation analogue of the lipid A component of LPS, prevented the loss of vascular contractility and led to normal vascular contractility and led to normal vascular contractility during endotoxemia.6 Our data demonstrate that Eritoran is of vascular contractility and led to normal vascular contrac-

References

Antagonism of Lipopolysaccharide-Induced Blood Pressure Attenuation and Vascular Contractility

Arterioscler Thromb Vasc Biol. published online July 26, 2007;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2007/07/26/ATVBAHA.107.146100.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/