Activation of Human Platelets by Misfolded Proteins

Eszter Herczenik, Barend Bouma, Suzanne J.A. Korporaal, Remo Strangi, Qinghong Zeng, Piet Gros, Miranda Van Eck, Theo J.C. Van Berkel, Martijn F.B.G. Gebbink, Jan-Willem N. Akkerman

Objective—Protein misfolding diseases result from the deposition of insoluble protein aggregates that often contain fibrils called amyloid. Amyloids are found in Alzheimer disease, atherosclerosis, diabetes mellitus, and systemic amyloidosis, which are diseases where platelet activation might be implicated.

Methods and Results—We induced amyloid properties in 6 unrelated proteins and found that all induced platelet aggregation in contrast to fresh controls. Amyloid-induced platelet aggregation was independent of thromboxane A₂ formation and ADP secretion but enhanced by feedback stimulation through these pathways. Treatments that raised cAMP (iloprost), sequestered Ca²⁺ (BAPTA-AM) or prevented amyloid-platelet interaction (sRAGE, tissue-type plasminogen activator [tPA]) induced almost complete inhibition. Modulation of the function of CD36 (CD36⁻/⁻ mice), p38MAPK (SB203580), COX-1 (indomethacin), and glycoprotein Ibα (Nk-protease, 6D1 antibody) induced ≈50% inhibition. Interference with fibrinogen binding (RGDS) revealed a major contribution of α₂β₁-independent aggregation (agglutination).

Conclusions—Protein misfolding resulting in the appearance of amyloid induces platelet aggregation. Amyloid activates platelets through 2 pathways: one is through CD36, p38MAPK, thromboxane A₂-mediated induction of aggregation; the other is through glycoprotein Ibα-mediated aggregation and agglutination. The platelet stimulating properties of amyloid might explain the enhanced platelet activation observed in many diseases accompanied by the appearance of misfolded proteins with amyloid. (Arterioscler Thromb Vasc Biol. 2007;27:0-0.)

Key Words: amyloid • platelet activation • sRAGE • tissue plasminogen activator • CD36 • glycoprotein Ibα

Proteins typically adopt a well-defined 3-dimensional structure. There is now an increasing amount of evidence that abnormalities in this process can lead to serious consequences for human health. Certain mutations or posttranslational modifications, such as glycation and oxidation interfering with proper folding, result in protein misfolding, aggregation, and ultimately polymerization into insoluble fibrils called amyloid. The term amyloidoses defines a group of systemic and localized diseases associated with the deposition of amyloid in different tissues. Alzheimer disease is caused by abnormal folding of amyloid-β and formation of amyloid-rich plaques that obstruct neurons and microvessels of the brain. One has argued that these plaques cause the hyperreactivity of platelets observed in these patients as illustrated by P-selectin positive platelets and increased levels of urinary thromboxane A₂ metabolite. An environmental risk factor for Alzheimer disease is herpes simplex virus. It contains glycoprotein B, a protein fragment that assembles into fibrils that are ultrastructurally indistinguishable from amyloid-β.

Protein misfolding is not restricted to Alzheimer disease but is a common feature in the pathology of atherosclerosis, diabetes mellitus, and systemic amyloidosis. Atherosclerotic plaques contain oxidized low density lipoprotein (LDL) which has amyloid properties and activates platelets. Interestingly, herpes simplex virus also contributes to initiation and progression of coronary atherosclerosis. In diabetic mellitus type 2 the high blood glucose glycates hemoglobin and albumin introducing amyloid properties that might contribute to the hyperactivity of platelets in these patients. Several types of systemic amyloidosis are also known to be associated with thrombosis.

Amyloids are filamentous protein structures rich in β-sheets that share a structural motif, the cross-β structure. Amyloids have been defined in a number of different ways: operationally in terms of their capacity to bind dyes like Congo Red and thioflavin derivatives, morphologically as 6- to 10-nm filaments, and structurally as “cross-β structure” fibrils in X-ray diffraction. The term cross-β refers to the stacking of β-sheets perpendicular to the fibril axis. Proteins with amyloid may meet these definitions independent of amino acid sequence. We recently showed that tissue-type plasminogen activator (tPA) selectively binds to amyloid.
Structural characterization and biochemical analysis of fibril assembly revealed that amyloid forms through a transition of soluble oligomers into intermediate elements that form the fibrils. Consequently, most amyloids are heterogenous in nature. We here use the term amyloid properties to refer to nonnative protein aggregates, containing extended β-sheet arrangement, including oligomeric intermediates, amorphous aggregates, and end-stage fibrils. There is growing consensus that misfolding and formation of amyloid is an intrinsic property of any protein. Amyloid formation can be caused by mutations that affect protein folding, an increase in temperature, changes in pH, oxidation, glycation, and contact with a negatively charged surface. These conditions enhance the relative β-sheet structure content of proteins that subsequently aggregate and polymerize into fibrils. This may occur within the cells and at extracellular locations and greatly interferes with proper cell function.

In the present study we addressed the question whether protein aggregates with amyloid properties have the capacity to activate platelets. To avoid bias by other peptide domains, a number of unrelated proteins was modified and the appearance of amyloid properties was evaluated in platelet activation assays. The results reveal that proteins with amyloid properties have potent and specific platelet activating properties that might underlie the development of atherothrombosis observed in diseases known to be associated with formation of amyloid.

Methods

For the detailed Methods section, please see http://atvb.ahajournals.org.

Results

Appearance of Amyloid Properties in a Number of Unrelated Proteins

Treatment of freshly prepared amyloid-β with a trifluoroacetic acid/hexafluor propanol mixture to introduce monomers followed by evaporation and prolonged incubation in PBS introduced amyloid as illustrated by the binding of Thioflavin T to Congo Red, the capacity to activate TPA, and a fibrillar structure in electron micrographs (supplement Figure I, available online at http://atvb.ahajournals.org). These observations indicate that the modified amyloid-β met the criteria for amyloid-containing proteins. Freshly prepared amyloid-β did not show these characteristics illustrating that is was devoid of amyloid. Also Hb-AGE, BSA-AGE, modified glycoprotein B and fibrin peptides 12 and -13 met these requirements whereas Hb, BSA, and fibrin peptide 10 were negative in these assays (data not shown). Thus, there was a clear separation between protein samples with and without amyloid properties in these unrelated proteins.

Amyloid Proteins Induce Platelet Aggregation

Amyloid-β induced platelet aggregation (Figure 1). At 12.5 μg/mL amyloid-β there was a slight shape change followed by little aggregation. Higher concentrations induced a dose-dependent increase in aggregation reaching a maximum at 50 to 100 μg/mL amyloid-β. A similar response was induced by glycohemoglobin (Hb-AGE) although aggregation was slightly weaker than with modified amyloid-β. Also glycated BSA (BSA-AGE) induced aggregation but there was a delay of about 500 seconds at low and 250 seconds at high concentration. Aggregation induced by Herpes Simplex glycoprotein-B was rapid, but responses were weaker than seen with the other proteins. The fibrin peptides 12 and -13 also induced aggregation, but higher concentrations were required to obtain an effect. None of the fresh control proteins/peptides had platelet-activating properties, and also fibrin peptide 10 which lacks amyloid failed to induce aggregation (not shown). Using aggregation by a suboptimal concentration of TRAP as an inter assay reference, studies were repeated in platelets from 5 different donors for calculation of dose-response relationships (Figure 1B), maximal aggregation (Figure 1C), and EC50 data (Figure 1D). Amyloid-β and Hb-AGE induced the highest aggregation. BSA-AGE, modified glycoprotein-B, and fibrin peptide 12 were slightly less effective, and fibrin peptide 13 induced the lowest response. Hb-AGE and BSA-AGE had the lowest EC50 (about 10 μg/mL), amyloid-β, glycoprotein-B and fibrin peptide 12 showed an intermediate activity (about 30 μg/mL), and fibrin peptide 13 had the highest EC50 (about 100 μg/mL). Thus, different proteins with only amyloid properties in common induce platelet aggregation and the extent of aggregation varies with individual amyloid proteins.

Effect of Inhibitors on Amyloid-Induced Platelet Aggregation

Because amyloid proteins possess a fibrillar structure and therefore might trap platelets resulting in agglutination rather than aggregation, platelets were treated with the stable prostacyclin analog iloprost to raise cAMP. This treatment completely abolished responses induced by modified amyloid-β, Hb-AGE, and BSA-AGE as well as the aggregation by TRAP (Figure 2A). Thus the change in light transmission of platelet suspensions stimulated with amyloid proteins depends on undisturbed platelet activating sequences. Aggregation is known to be enhanced by formation of thromboxane A2, followed by stimulation of TP-receptors and by release of ADP from β granules followed by stimulation of P2Y1 and P2Y12 receptors. Blockade of thromboxane A2 synthesis with the COX-1 blocker indomethacin inhibited aggregation induced by amyloid-β by 30%. Interference with the P2Y12 receptor with AR-C69931MX reduced the response by 40%. When both inhibitors were present there was a further reduction of the aggregation. Similar results were found with Hb-AGE and BSA-AGE (Figure 2B and 2C). Thus, depending on the type of amyloid protein, 20% to 50% of the aggregation was the result of direct platelet activation by these proteins, which was enhanced by feedback stimulation by thromboxane A2 and ADP.

To investigate whether other activating pathways contributed to amyloid-induced aggregation, platelets were treated with different metabolic inhibitors. There was about 50% inhibition by an inhibitor of mitogen activated kinase (PD98059), an upstream regulator of ERK1/2, 80% to 90% inhibition by an inhibitor of Src family kinases (PP1) and a Ca2+ chelator (BAPTA-AM), whereas an inhibitor of the P2Y1, ADP receptor (A3P5PS) induced only 15% to 30% inhibition (supplemental Table I).
Amyloid-Induced Platelet Aggregation Is Inhibited by sRAGE and tPA

Amyloids, including amyloid-β and glycated proteins, are ligands for the receptor for advanced glycated end products (RAGE). The presence of soluble RAGE strongly interfered with platelet aggregation induced by amyloid-β, Hb-AGE, and BSA-AGE, demonstrating that binding of sRAGE to amyloid-β neutralized its platelet activating properties. In contrast, sRAGE did not interfere with the aggregation induced by TRAP and collagen (Figure 3A, 3C, and 3E). Also tPA binds with high affinity to proteins with amyloid. Again, the platelet activating properties in amyloid-β, Hb-AGE, and BSA-AGE, demonstrating that binding of sRAGE to amyloid-β neutralized its platelet activating properties. In contrast, sRAGE did not interfere with the aggregation induced by TRAP and collagen (Figure 3A, 3C, and 3E). Also tPA binds with high affinity to proteins with amyloid.17

Figure 1. Amyloid-like proteins induce platelet aggregation. A, Platelets were stimulated with Amyloid-β, Hb-AGE, BSA-AGE, and glycoprotein B (Glyco-B) at indicated final concentrations. Freshly dissolved Amyloid-β, Hb, BSA, and amyloid-free fibrin-derived peptide 10 (FP10) served as controls. Note that aggregation scales are different. B, Dose-response relation of Amyloid-β induced aggregation expressed as percentage of aggregation induced by 8 μmol/L TRAP. C, Maximal platelet aggregation induced by 100 μg/mL Amyloid-β, Hb-AGE, BSA-AGE, Glyco-B, and 600 μg/mL fibrin peptide 12 (FP12) and fibrin peptide 13 (FP13). D, EC50 values calculated from dose–response curves of each amyloid protein or peptide. (Means±SD, n=5).
AGE, and BSA-AGE were abolished by tPA but TRAP- and collagen-induced aggregation were not affected (Figure 3B, 3D, and 3F). Taken together, these findings illustrate that amyloid proteins activate platelets through the epitope for sRAGE and tPA binding, which is apparently absent in collagen and TRAP.

Soluble Amyloid Proteins Retain Platelet-Activating Properties

Amyloid proteins show varying degrees of multimerization ranging from oligomers to matured fibrils. To determine the effect of multimerization on the platelet activating properties, preparations of amyloid-β/H9252 and related proteins were centrifuged to separate soluble and insoluble fractions. The soluble fractions of amyloid-β/H9252, Hb-AGE, and BSA-AGE contained fibrils and retained aggregation-inducing properties (supplemental Figure II).

Amyloid Proteins Activate Platelets in Part Through p38MAPK, COX-1, and CD36

Because amyloid proteins are known to bind to scavenger receptors, we investigated whether amyloid-containing proteins and peptides initiated platelet aggregation through p38MAPK. Amyloid-induced platelet aggregation was strongly inhibited by the p38MAPK inhibitor SB203580 (Figure 4A). The presence of indomethacin left this inhibition unchanged suggesting that part of the amyloid induced aggregation was the result of thromboxane A2 formation through p38MAPK and COX-1. Indeed, there was a potent dose-dependent activation of p38MAPK by modified amyloid-β, Hb-AGE, and BSA-AGE, but not by the fresh controls (Figure 4B).

A major scavenger receptor on platelets is CD36 (glycoprotein IV), which is a class-B receptor. To address the role of CD36 in platelet activation by amyloid, platelets from wild-type and CD36-deficient mice were incubated with amyloid-β, Hb-AGE, and BSA-AGE and fresh controls, and the activation of p38MAPK was measured. Again, amyloid proteins induced a 3- to 4-fold activation of p38 MAPK in wild-type platelets as seen in their human counterparts (Figure 4C). In CD36-deficient platelets p38MAPK activation was strongly impaired and reached the range found after addition of buffer or fresh proteins. Aggregation experiments showed that amyloid-β-induced aggregation was approximately 50% lower in CD34-deficient platelets compared with wild-type controls (Figure 4D). Thus, a major part of amyloid-induced platelet aggregation is the result of signaling through CD36, p38MAPK, and COX-1, which are upstream steps in the formation of thromboxane A2.

Amyloid Proteins Activate Platelets in Part Through Glycoprotein Ibα

Because inhibition of CD36 signaling blocked only part of the amyloid-induced aggregation, the nature of CD36-independent aggregation was investigated in more detail. An inhibitor of fibrinogen binding to αIbβ3 caused 80% inhibition of TRAP-induced aggregation but left about half of amyloid-induced aggregation unchanged (Figure 5A). This αIbβ3-independent aggregation is generally referred to as agglutination and typically observed when fixed platelets are...
treated with a von Willebrand factor (vWF)-ristocetin mixture. In contrast to activated vWF, amyloid proteins failed to induce agglutination of fixed platelets. In intact platelets activated vWF triggers agglutination/aggregation by signal transduction through the vWF receptor glycoprotein (GP) Ibα, which is part of the GP(Ib)2V(IX)2 complex. Removal of the extracellular part of GPIbα by treatment with Nk-protease reduced aggregation to 40%, the remainder probably reflecting CD36-mediated aggregation (Figure 5B). A similar effect was seen in the presence of anti-GPIbα antibody 6D1 (Figure 5C). RDGS reduced aggregation by Nk-protease–treated platelets to the range found with iloprost-treated platelets, suggesting that signaling through GPIbα induced aggregation as well as agglutination.

Discussion

The present work demonstrates that a number of unrelated proteins, but with common amyloid properties, induce platelet aggregation. This capacity is absent in the fresh proteins and neutralized by sRAGE and tPA which are specific high-affinity blockers of amyloid. Platelet activation by amyloid-containing proteins is mediated through 2 mutually independent pathways. One pathway signals through CD36, activation of p38MAPK, and COX-1, which are intermediates in thromboxane A2 formation, and starts a normal β3-mediated aggregation response. The second pathway signals through the vWF receptor GPIbα and triggers aggregation as well as agglutination.

Proteins with amyloid properties initiate a minor shape change response followed by a rather weak aggregation, which is enhanced by thromboxane A2 formation and ADP secretion. Because CD36-induced aggregation and GPIbα-induced aggregation/agglutination start immediately after...
platelet contact with amyloid, both pathways signal hand in hand. It is possible that the agglutination induced by GPIb/H9251 interferes with the shape change induced by amyloid and reduces the fall in light transmission normally seen with platelet activating agents. Aggregation is inhibited by pros-tacyclin analog, probably reflecting inhibition of p38MAPK signaling because this enzyme is extremely sensitive to elevated cAMP levels.30 Of interest is the observation that

Figure 4. Amyloid proteins activate platelets in part through p38MAPK, COX-1, and CD36. A, left, Platelet aggregation without and with the p38MAPK inhibitor (SB203580, 10 μmol/L) induced by TRAP (8 μmol/L) and by Amyloid-β, Hb-AGE, and BSA-AGE (50 μg/mL each). Right, SB203580 does not induce more inhibition in indomethacin-treated platelets. B, Platelets were stimulated with Amyloid-β, Hb-AGE, and BSA-AGE (1 minute, 37°C). Samples were analyzed by SDS-PAGE and immunoblot with an antibody against phosphorylated P38MAPK. C, Similar experiments in wild-type and CD36-deficient mice. Densities were expressed as a percentage of samples after addition of vehicle (buffer) and are means±SD, n=4. D, Platelet aggregation induced by Amyloid-β (100 μg/mL) in wild-type and CD34-deficient mice platelets (n=6).
inhibition by iloprost is complete, indicating that also the GPIbα-mediated aggregation/agglutination is blocked by high cAMP. Studies with RDGS reveal that \(\approx 50\% \) of the GPIbα-induced response reflects αIIbβ3-mediated aggregation, which is blocked by elevated cAMP. The finding that also agglutination is absent suggests that it is the result of an earlier, cAMP-sensitive platelet aggregation initiated by GPIbα. Also Ca\(^{2+}\) sequestration by BAPTA-AM and inhibition of Src-family kinases by PPI led to almost complete inhibition, confirming the importance of signaling steps in the induction of aggregation and agglutination by amyloid proteins.

Whereas these inhibitors of intracellular activation pathways induced complete inhibition of amyloid-induced aggregation/agglutination, the interference by extracellular inhibitors was incomplete. Indomethacin and an inhibitor mimicking the action of the clopidogrel metabolite Act-Met induced a 50\% to 60\% reduction, suggesting that platelet activation by amyloid through GPIbα is largely insensitive to interference with \(\text{P}2\text{Y}_{12} \) signaling. This observation might have important clinical implications because it indicates that in vivo activation through this pathway is partially unresponsive to aspirin and clopidogrel, which are important drugs against arterial thrombosis. In addition, the agglutination

Figure 5. Amyloid proteins activate platelets in part through glycoprotein Ibα. A, left, Effect of αIIbβ3 blockade by RGDS on aggregation induced by TRAP and amyloid proteins. Right, vWF–ristocetin mixture induces agglutination of fixed platelets but amyloid proteins do not. B, left, Cleavage of GPIbα by the snake venom Nk-protease reduces amyloid-β (100 μg/mL)-induced aggregation; RDGS induces a further inhibition. Right, Amyloid-β (100 μg/mL) induces aggregation that is inhibited in part by Nk-protease; vWF–ristocetin induced aggregation is fully inhibited by Nk-protease. C, The anti-GPIbα antibody 6D1 induces the same inhibition as Nk-protease.
occurs independent of αIIbβ3 and is therefore unresponsive to abciximab and other antagonists of ligand binding to αIIbβ3.

Although each of the amyloid proteins activates platelets, their capacity to do so varies considerably. Modified amyloid-β and Hb-AGE induce the strongest aggregations whereas fibrin peptide 13 is relatively weak. In contrast, EC50 data show that Hb-AGE and BSA-AGE are the most effective proteins inducing aggregation at relatively low concentrations. Combinations of different amyloid proteins added in suboptimal concentrations showed that one protein could enhance the activation by the other. Saturating concentrations failed to show additive effects. Each of the modified proteins was positive in the Thioflavin T binding and Congo Red assays, but it is difficult to assess the role of amyloid in quantitative terms. Amyloid preparations are highly heterogeneous in nature, varying from small soluble oligomeric species and amorphous aggregates to large insoluble fibrils. Their structural similarities are limited to binding to Congo Red, Thioflavin T, and tPA, but the precise nature of the binding epitopes for these compounds and for the platelet receptors that respond to amyloid remains to be elucidated.

A better insight in the activating properties of amyloid proteins is also crucial for our understanding of conformational diseases. In Alzheimer disease, amyloid plaques correlate poorly in number, appearance, and distribution with the clinical progression of brain injury, and the small oligomeric species generated from a variety of proteins are better inducers of neuronal damage than the mature amyloid fibrils. Removal of insoluble fractions by high speed centrifugation preserved the property to activate platelets in most of the amyloid containing proteins. An exception was fibrin peptide 12 which lost most of its biological properties after centrifugation. Thus, both the soluble and insoluble form of amyloid proteins contain platelet activating epitopes.

CD36 is a multiligand receptor that binds modified proteins such as amyloid-β and glycated proteins, each known to contain amyloid properties. The recent demonstration of amyloid in oxidized low-density lipoprotein (oxLDL) is in line with these observations because oxLDL is a potent platelet activator. CD36 has a short cytosolic tail and no recognized signaling motif. It is therefore possible that CD36 is simply functioning as an adhesion receptor and thereby bringing the misfolded proteins to other low affinity signaling receptors. Candidates for such a role are multiligand receptors such as low density lipoprotein receptor-related protein (LRP) and RAGE which bind proteins with amyloid, but their contribution to platelet activation is still uncertain. The results also raise the possibility that the absence of CD36 in 5% of the Asian population offers protection against the platelet-activating component of amyloid-based diseases, a result that has important implications.

Recent publications described the presence of amyloid-β in platelet-derived microparticles in healthy subjects and in patients with atherosclerotic disease and type 2 Diabetes Mellitus. These particles are a source of tissue factor, which is the prime initiator of coagulation. This property, together with the capacity of amyloid to activate platelets shown in this study, makes these particles potent triggers for a combined activation of the coagulation cascade and formation of a platelet thrombus.

Protein misfolding and the generation of amyloid occurs in Alzheimer disease, atherosclerosis, diabetes mellitus, and systemic amyloidosis. Our observation that amyloid activates platelets suggests that protein misfolding should be considered as a risk factor for thrombotic disease.

Acknowledgments

We thank Miranda van Berkel for advice during the preparation of the manuscript.

Sources of Funding

This study was supported by International Visegrad Fund, Huygens Scholarship Programme, The Netherlands, The Dutch Thrombosis Foundation, and the International Society for Alzheimer Research (ISAO).

Disclosures

None.

References

Activation of Human Platelets by Misfolded Proteins
Eszter Herczenik, Barend Bouma, Suzanne J.A. Korporaal, Remo Strangi, Qinghong Zeng, Piet Gros, Miranda Van Eck, Theo J.C. Van Berkel, Martijn F.B.G. Gebbink and Jan-Willem N. Akkerman

Arterioscler Thromb Vasc Biol. published online May 17, 2007;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2007/05/17/ATVBAHA.107.143479.citation

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2007/05/22/ATVBAHA.107.143479.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Activation of human platelets by misfolded proteins

Eszter Herczenik¹, Barend Bouma¹², Suzanne J.A. Korporen¹, Remo Strangi², Qinghong Zeng³, Piet Gros³, Miranda Van Eck⁴, Theo J.C. Van Berkel¹, Martijn F.B.G. Gebbink¹² and Jan-Willem N. Akkerman¹

Supplemental file
Methods

Reagents

We purchased the following reagents: plasmin-specific chromogenic substrate S-2251 (Chromogenix; Milano, Italy), PGI₁ (prostacyclin, Cayman Chemical; Ann Arbor, MI), PGI₂ analog iloprost (Schering AG; Berlin, Germany), renaissance chemiluminescence western blot reagent (PerkinElmer Life Sciences; Boston, MA), collagen (collagen type I/III fibrils from Horm, Lins, Austria), p38MAPK inhibitor SB203580 (Alexis Biochemicals, San Diego, CA), tissue-type plasminogen activator, tPA (Boehringer-Ingelheim; Alkmaar, The Netherlands), D-glucose-6-phosphate disodium salt hydrate (ICN; Aurora, OH), trifluoroacetic acid (Pierce Biotechnology, Rockford, IL), 1,1,1,3,3,3-hexafluor-2-propanol, Thioflavin T, Congo Red, indomethacin, human haemoglobin (Hb, H7379-1G) and bovine serum albumin (BSA, A-7906) all from Sigma; St.Louis, MO, USA. We purchased polyclonal antibodies against phosphorylated p38MAPK (phosphoplas p38MAPK) and horseradish peroxidase-labeled anti-rabbit IgG from New England Biolabs (Beverly, MA), monoclonal anti-actin antibody Clone AC-40 from Sigma (St.Louis, MO, USA) and rabbit anti-mouse IgG from DakoCytomation (Glostrup, Denmark). AR-C69931MX was a kind gift from Astra Zeneca (Loughborough, UK). The soluble extra-cellular fragment of the receptor for advanced glycation end-products (sRAGE) was prepared by cloning human RAGE cDNA (clone IRALp962E1737Q2, RZPD, Berlin, Germany) into a pTT3 vector containing an N-terminal His-tag. sRAGE was expressed in 293E human embryonic kidney cells and purified from the culture medium using a Hi-trap Ni²⁺-NTA column. After concentration, the buffer was exchanged for 20 mM Tris-HCl, 200 mM NaCl, pH 8.0. Plasminogen was purified as described. Thrombin receptor (PAR1)-activating peptide (TRAP, SFLLRN) was synthesized with a semi-automatic peptide synthesizer (Labortec AG SP650, Switzerland).

Amyloid-β (DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV; 1-40) and an amyloidogenic peptide of Herpes simplex virus called glycoprotein B, (GDVGRAVGKVMGIVGGVVSA) were synthesized by the Netherlands Cancer Institute NKI (Amsterdam, The Netherlands). To induce amyloid properties, freshly prepared amyloid-β (fresh amyloid-β, in short) was first treated with a 1:1 (v/v) mixture of trifluoro-acetic acid and 1,1,1,3,3,3-hexafluor-2-propanol to introduce peptide monomers. After evaporation amyloid-β monomers were dissolved in phosphate buffered saline (PBS) and incubated for 1 week at 37°C to obtain modified amyloid-β (referred to as amyloid-β). Glycoprotein B is a membrane protein required for the cellular entry of herpes simplex virus. Fresh glycoprotein B was dissolved in destilled water and incubated for 48 hours at 37°C to obtain amyloid containing modified glycoprotein B. Glycated haemoglobin (Hb-AGE) and bovine serum albumin (BSA-AGE) were prepared by incubating 10 mg/mL human Hb and 100 mg/mL BSA in the dark at 37°C with 1M D-glucose-6-phosphate disodium salt hydrate and 0.05% NaN₃ for 75 and 70 weeks respectively. Samples were extensively dialyzed against distilled water to remove remaining free glucose. Human fibrin α-chain derived sequences 10 (148KRLEVDIDIK157), -12 (148KRLEVDIDIKIR159) and -13
(148KRLEVDIDIKIRS060) were synthesized by Pepscan Systems (Lelystad, The Netherlands) and incubated for 1 week at 37°C. Fibrin peptides 12 and 13 form β-sheets and amyloid, but fibrin peptide 10 is composed solely of α-helices and does not form amyloid under the present conditions. The presence of amyloid cross-β structure in proteins was demonstrated by binding of Thioflavin T and Congo Red, tPA binding and activation assays (see below) and fibrillar structures in transmission electron microscopy. Freshly dissolved amyloid-β/glycoprotein B, non-glycated Hb/BSA and fibrin peptide 10 were negative in these analyses and used as amyloid negative controls.

Detection of amyloid proteins by tPA-mediated plasminogen activation

Aliquots of 25 µg/mL amyloid-containing proteins/peptides or amyloid-free controls were mixed with 400 pM tPA, 20 µg/mL plasminogen and 0.42 mM plasmin-specific chromogenic substrate S-2251 in Hepes-buffered saline (20 mM HEPES, 4 mM KCl, 3 mM CaCl₂, pH 7.4). The conversion of plasminogen to plasmin was inferred from the liberation of p-nitroaniline at 405 nm at 1 minute intervals for 3 hours at 37°C in 96-well plates (Corning Incorporation, NY).

Platelet isolation

Freshly drawn venous blood from healthy volunteers with informed consent was collected into 0.1 volume 130 mmol/L trisodium citrate. The donors claimed not to have taken any medication during 2 weeks prior to blood collection. After centrifugation (15 minutes, 150 g, 20°C), the platelet rich plasma (PRP) was removed and the pH was lowered to 6.5 by adding 10% ACD buffer (2.5% trisodium citrate, 2% D-glucose and 1.5% citric acid) to avoid platelet activation. Following centrifugation (15 minutes, 300 g, 20°C), the pellet was resuspended in Hepes-Tyrode buffer (145 mmol/L NaCl, 5 mmol/L KCl, 0.5 mmol/L Na₂HPO₄, 1 mmol/L MgSO₄, 10 mmol/L Hepes, 5 mmol/L D-glucose, pH 6.5), 10 ng/mL PGI₂ (final concentration) was added and the wash step was repeated. The platelet pellet was then resuspended in Hepes-Tyrode buffer pH 7.2 to a final platelet count of 2 x 10¹¹ platelets/L. Before the start of the experiments, the platelets were kept at 37°C for at least 30 minutes to achieve a resting state.

C57Bl/6 mice were obtained from Charles River (Maastricht, The Netherlands). CD36-deficient mice were kindly provided by Dr. M. Febbraio (Department of Medicine, Weill Medical College of Cornell University, New York, USA). Mice had unlimited access to water and regular chow diet, containing 4.3% (w/w) fat with no added cholesterol (RM3, Special Diet Services, Witham, UK). All experimental protocols were approved by the local ethics committees for animal experiments. For the isolation of murine platelets, mice were anesthetized by subcutaneous injection of a mixture of xylazine (5 mg/mL), ketamine (40 mg/L) and atropine (0.05 mg/mL), and blood was subsequently collected into 0.1 volume 130 mmol/L trisodium citrate and 0.1 volume of ACD by heart puncture. PRP was obtained by centrifugation (15 minutes, 87g, 20°C). The remainder of the blood was diluted with Hepes-Tyrode buffer pH 6.5 and 0.1 volume of ACD.
and centrifuged again (15 minutes, 87g, 20°C). PRP samples were pooled, and platelets were isolated by centrifugation (15 minutes, 350g, 20°C) in the presence of 0.1 volume of ACD buffer and resuspended in Hepes-Tyrode buffer (pH 6.5). PGI₂ was added to a final concentration of 10 ng/mL, and the washing procedure was repeated once. The platelet pellet was resuspended in Hepes-Tyrode buffer (pH 7.2). Platelet count was adjusted to 1 x 10¹¹ platelets/L.

For inhibitory experiments, platelets were preincubated with 100 µM RGDS (Arg-Gly-Asp-Ser) peptide (15 minutes, 37°C; Bachem, Bubendorf, Switzerland), 20 µM PD98059 (10 minutes, 37°C; Calbiochem, La Jolla, CA), 10 µM BAPTA-AM (2 minutes, 37°C; Calbiochem, La Jolla, CA), 10 µM PP1 (15 minutes, 37°C; Alexis Biochemicals, San Diego, CA) or 500 µM adenosine-3'-phosphate-5'-phosphosulphate (A3P5PS, 2 minutes, 37°C; Sigma, St Louis, MO).

To address the role of GPIbα, platelets were preincubated with 5 µg/ml Nk-protease (20 minutes, 37°C) which cleaves two mucin-like substrates within anionic amino acid sequences containing sulfated tyrosines of the aminoterminal region of GPIbα. The metalloprotease Nk was purified from Naja kaouthia cobra venom (Sigma, St Louis, MO) and was a kind gift of Dr. R. K. Andrews (Monash University, Clayton, Australia). 6D1 is an inhibitory monoclonal antibody directed against GPIb and was a kind gift of Dr. Barry Collar, (Mount Sinai Hospital, New York, NY). Before experiments, platelets were incubated with a 200 fold diluted 6D1 sample (15 minutes, 37°C). As a positive control for agglutination, purified von Willebrand factor (5 µg/ml, purified from 250 IU Haemate P, Behringwerke, Marburg, Germany) was activated by ristocetin (0.5 mg/ml, DiaMed AG, Cressier, Switzerland). Fixed platelets were prepared by incubating washed platelets with 1% paraformaldehyde. After 1 hour of incubation at 37°C, the platelets were spun down and resuspended in Hepes-Tyrode buffer (pH 7.2).

Platelet aggregation

Platelet aggregation was followed in an aggregometer (Chrono-Log Corporation, Havertown, PA, USA) for 15 minutes at 37°C at 900 rpm. A volume of 270 µl platelet suspension was incubated with 30 µl solution containing samples for analysis at indicated concentrations. For inhibition experiments, 270 µl platelet suspension was incubated with 15 µl protein/peptide solution and 15 µl solution with inhibitors. In experiments with inhibitors, amyloid proteins were pre-incubated at 22°C with sRAGE (100 µg/mL) or tPA (500 nM) for 10 minutes, and platelets were pre-incubated at 37°C with the cyclooxygenase inhibitor indomethacin (30 µM, 30 minutes) and the P2Y₁₂-agonist AR-C69931MX (50 nM, 2 minutes). The maximal aggregation was expressed as arbitrary units or as a percentage of the response induced by 8 µM TRAP.
Isolation of soluble amyloid proteins
To analyze the solubility of proteins/peptides, fractions were centrifuged in a Beckman L-80 ultracentrifuge (1 hour at 100,000 x g, 4°C). Supernatants were collected and analyzed in transmission electron microscopy, tPA-mediated plasminogen activation and platelet aggregation.

Transmission Electron Microscopy
For the analysis by transmission electron microscopy, 5 µL solution with amyloid proteins (1 mg/mL) together with appropriate controls was applied on copper-coated grids. After washing with PBS and water, the grids were incubated with 1% methyl-cellulose uranyl pH 4 for 5 minutes at 22°C. The grids were analyzed with a JEM-1200EX electron microscope (JEOL, Tokyo, Japan) at 10.000 x magnification.

p38MAPK phosphorylation assay
A volume of 75 µl platelet suspension was incubated with 25 µl protein/peptide solution at indicated concentrations for 1 minute at 37°C. Cells were fixed with 3% formaldehyde and transferred to ice for 15 minutes. Suspensions were centrifuged (1 minute, 5600g, 20°C) and pellets were resuspended in 60 µl SDS polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer and boiled for 5 minutes. Samples were analyzed by SDS-PAGE in 12% polyacrylamide gel, transferred to nitrocellulose membranes using a mini-protein system (Bio-Rad, Richmond, CA, USA), blocked with 4% w/v BSA and Tween 20 (0.1% (v/v)) in phosphate-buffered saline (PBS); membranes were incubated overnight with polyclonal antibody against phospho-p38 MAPK (Thr-180/Tyr182, 1:2000) at 4°C. Membranes were incubated with horseradish peroxidase-conjugated anti-rabbit IgG (1:3000) for 1 hour at 4°C, and protein bands were visualized by enhanced chemiluminescence reaction and analyzed by ImageQuant software (Molecular Dynamics, Sunnyvale, CA, USA). Since bands of p38MAPK are not resistant against stripping, lane-loading controls were prepared on stripped membranes (1 hour at 80°C in 2% SDS and 0.1% Tween 20 in PBS) by blocking with 4% w/v BSA and Tween 20 (0.1% (v/v)) in PBS and incubation with monoclonal antibody against actin (1:4000 dilution) and thereafter incubated with rabbit anti-mouse antibody (1:4000) for 1 hour at 4°C. Data were expressed as percentage of the activation induced by 5 µM TRAP. In a few experiments platelets were preincubated with 10 µM SB203580 (30 minutes, 37°C), which inhibits p38MAPK by occupying the ATP binding site.

Statistical analysis
Data are means ± SD, with number of observations, n. Statistical analyses were performed by one-way ANOVA with Bonferroni’s multiple comparison post test. Values of P<0.05 were considered significantly different.
Results

Appearance of amyloid properties in a number of unrelated proteins
Treatment of freshly prepared amyloid-β with a trifluoro-acetic acid/hexafluor propanol mixture to introduce monomers followed by evaporation and prolonged incubation in PBS introduced amyloid as illustrated by the binding of Thioflavin T and Congo Red, \(^{21,22}\) the capacity to activate tPA\(^ {17}\) and a fibrillar structure in electron micrographs (Figure I). Fibrin peptide 10 is too short to develop amyloid properties and was negative in these measurements.

Soluble amyloid proteins retain platelet-activating properties
Amyloid proteins show varying degrees of multimerization ranging from oligomers to matured fibrils. To determine the effect of multimerization on the platelet activating properties, preparations of amyloid-β and related proteins were centrifuged at 100,000 g to remove the insoluble part and the supernatants were collected. Total and soluble fractions were then compared in electron micrographs, tPA activation tests and aggregation assays. The soluble fractions of amyloid-β, Hb-AGE and BSA-AGE contained fibrils (Figure IIA) and retained the capacity to activate tPA (Figure IIB) and to initiate platelet aggregation (Figure IIC). In contrast, the soluble fraction of fibrin peptide 12 was devoid of fibrils. This fraction had lost about 50% of its tPA-activating properties and failed to initiate platelet aggregation. Thus, the capacity to activate platelets is present in both the soluble and insoluble fibrillar structure of the amyloid proteins.
Figure I. Demonstration of amyloid properties
The presence of amyloid was analyzed by binding of Thioflavin T and Congo Red (A), the capacity to activate tPA (B) and the presence of fibrillar structures (C,D). Shown are results for amyloid-containing modified amyloid-β (A,B,D) and the fresh control (C). Similar results were obtained with Hb-AGE, BSA-AGE, glycoprotein B and the fibrin peptides 12 and 13 (not shown).

Figure II. Soluble amyloid proteins retain platelet activating properties.
A–C: Amyloid-like proteins (1 mg/mL) were centrifuged (1 hour, 100,000g, 4°C) and supernatants were compared with total fractions by electron microscopy (A), tPA-mediated plasminogen activation (B) and platelet aggregation (C). Supernatants contained fibrils (Amyloid-β) and fibrillar aggregates (Hb-AGE, BSA-AGE) and retained the capacity to stimulate plasminogen activation and to induce aggregation. Supernatant of fibrin peptide 12 (FP12) showed no residual structures and had lost tPA- and platelet activating properties.
<table>
<thead>
<tr>
<th></th>
<th>Amyloid-β (%)</th>
<th>Hb-AGE (%)</th>
<th>BSA-AGE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>PD98059</td>
<td>48.3±9.9</td>
<td>40.3±8.6</td>
<td>46.6±8.3</td>
</tr>
<tr>
<td>PP1</td>
<td>26.4±6.6</td>
<td>9.5±2.8</td>
<td>17.3±7.8</td>
</tr>
<tr>
<td>BAPTA-AM</td>
<td>20.6±5.1</td>
<td>4.0±2.0</td>
<td>12.1±5.2</td>
</tr>
<tr>
<td>A3P5PS</td>
<td>67.0±4.9</td>
<td>72.9±10.0</td>
<td>85.7±12.8</td>
</tr>
</tbody>
</table>

Table I. Effect of metabolic inhibitors on amyloid-induced platelet aggregation

Preincubation of platelets with an inhibitor against p42MAPK (ERK1/2, PD98059) induced a partial inhibition of aggregation induced by 50 µg/ml Amyloid-β, Hb-AGE and BSA-AGE. More inhibition was seen with an inhibitor of Src-family kinases (PP1) and the calcium chelator (BAPTA-AM). An antagonist against P2Y1 ADP receptor (adenosine-3’-phosphate-5’-phosphosulphate, A3P5PS) induced only a slight inhibition (means ± SD, n=4).
Figure I.
Figure II.

A

Amyloid-β

Hb-AGE

BSA-AGE

FP12

soluble fraction

total

B

Amyloid-β total and soluble fraction

Hb-AGE total and soluble fraction

FP12 total and soluble fraction

time (min)

∆ OD (405 nm)

C

aggregation (% of total)

Amyloid-β

Hb-AGE

BSA-AGE

FP12