Transfer of Endothelial Progenitor and Bone Marrow Cells Influences Atherosclerotic Plaque Size and Composition in Apolipoprotein E Knockout Mice

Jacob George, Arnon Afek, Anastasia Abashidze, Haim Shmilovich, Varda Deutsch, Juri Kopolovich, Hylton Miller, Gad Keren

Objectives—Recent clinical trials use cell therapy with bone marrow (BM) cells or endothelial progenitor cells (EPCs) for ischemic syndromes. We explored the effect of BM cell– or spleen cell–derived EPC transfer on plaque size and stability markers in the apolipoprotein E knockout (apoE KO) mouse model.

Methods and Results—ApoE KO mice aged 10 weeks served as recipients. Labeled BM cells and spleen cell–derived EPCs from age-matched apoE KO mice were injected intravenously to 2 groups of recipient mice each. Additional mice served as controls receiving saline. Both protocols were repeated 3 times at 2 weekly intervals. On killing, plaque size and character were studied, lipid profile analyzed, and serum and aortic cytokines assayed. Spleen cell–derived cells contained a significantly larger number of endothelial cell precursors. Labeled EPCs and BM cells were found abundantly in the spleens, yet also in the lesions of the recipient mice. Aortic sinus lesion size was significantly increased in mice receiving BM cells (n=10) in the EPC-treated group (n=10) compared with controls (n=10; a 54% and a 34% increase in aortic sinus plaque area, respectively). Mice receiving EPCs exhibited plaques with larger lipid cores and thinner fibrous caps and a higher number of infiltrating CD3 cells. RT-PCR analysis of aortas revealed reduced expression of mRNA for interleukin-10 (IL-10) in both cell transfer groups. Higher serum concentrations of IL-6 and monocyte chemoattractant protein-1 were found in sera from BM recipients, whereas lower IL-10 levels were found in mice transfused with spleen-derived EPCs.

Conclusions—Transfer of BM cells and EPCs may result in an increase in atherosclerotic lesion size, whereas EPC transfer could also potentially influence plaque stability. (Arterioscler Thromb Vasc Biol. 2005;25:0-0.)

Key Words:
Endothelial progenitor cells (EPCs) have attracted major interest in recent years, particularly when found to be present as a subpopulation of peripheral mononuclear cells. They have been demonstrated to support postnatal angiogenesis and vasculogenesis in experimental models. Moreover, their number and functional properties are compromised in patients with atherosclerotic risk factors and restenosis, whereas tissue ischemia and growth factors have been shown to promote their mobilization from the BM cells, possibly as a compensatory mechanism. The convincing findings with regard to the therapeutic potential of EPC transfer were followed by recent small-scale trials in patients with myocardial infarction in which BM cell and EPC transfer was used for improving cardiac performance with promising initial findings.

In the current study, we investigated the effects of transfer of spleen cell–derived EPC and BM cells on the extent and nature of spontaneously arising atherosclerotic plaques of apoE KO mice.

Materials and Methods

Experimental Design

Ten-week-old male apoE KO mice (Jackson Laboratories) were divided into 3 groups and served as recipients. Group A served as control receiving PBS. Group B received 3 twice-weekly intravenous injections of 10^6 1,1-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI; Molecular Probes)–labeled EPCs prepared as described below from spleens of healthy age-matched male apoE KO mice. Group C received 3 weekly injections of freshly prepared Dil-labeled BM cells (10^6 cells per mouse) from age-matched apoE KO mice euthanized before each transfer. Recipient mice from the 3 groups were euthanized at 18 weeks of age.

Preparation and Labeling of Cells for Transfer

Spleen-derived cells were loaded on ficoll, after which recovered mononuclear cells were seeded on 24-well plates (10^6 per well) coated with fibronectin (Sigma) in 0.5 mL endothelial basal medium (CellSystems) supplemented with 1 μg/mL hydrocortisone, 3 μg/mL bovine brain extract, 30 μg/mL gentamicin, 50 μg/mL amphotericin B, and 10% FCS. After 5 days in culture, cells were washed with normal saline and resuspended. For transfusion experiments, 1×10^6 Dil-labeled cells were resuspended in 500 μL PBS for intravenous injection. BM cells were freshly prepared from tibias and femurs of donor age matched male apoE KO mice and suspended in PBS before labeling and injections. For long-term cultures, 1.5×10^6 spleen-derived EPCs or BM cells were cultured for 14 days in medium 199, with change of medium every third day.

Characterization of Cells Employed for Transfer

Fourteen days after culture in EC conditions, colonies with EC-like identity of the colonies. EC lineage was further confirmed by indirect immunostaining with the use of phycoerythrin-conjugated detection antibodies to form sandwich complexes. After incubation, washing, and acquisition of fluorescence data, the results were generated in graphical format using the BD CBA software. The concentrations of interferon-γ (IFN-γ) IFN-β, interleukin-6 (IL-6), IL-10, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), and IL-12/27 were measured using the inflammatory cytokine CBA kits (BD Pharmingen). The coefficients of variation for all cytokine assays were <10%.

Determination of Serum-Antioxidized LDL Antibodies

Ninety-six–well plates were coated with either oxidized LDL (ox-LDL; at concentration of 10 μg/mL in PBS) or native LDL overnight at 4°C. The next steps were performed as described previously.

RT-PCR of Aortas

Aortas from all groups, obtained on killing, were removed and cleaned of the surrounding tissues after perfusion with RNS-free PBS. Total RNA was obtained using the RNEasy Kit (Qiagen Ltd.) and primed with oligo(dT) according to protocol provided with the T1, one-tube RT-PCR kit (Roche Molecular Diagnostics). The PCR (40 cycles) was performed using the ReddyMix PCR Master Mix (Abgene). The following primers were used: IFN-γ (sense) CTTCTTCAGCAACAGCAAGGCCAAA; IFN-γ (antisense) CCCCCAG TACAAACCCCGCAATCA; IL-4 (sense) GAGCC CATATCCACGGATGCGACA; IL-4 (antisense) CATGTC GGCTCAGTACTACAGGTA; IL-10 (sense) CTGGAACAACTACGT AACGCC; IL-10 (antisense) ATTCATTTACGGTGC TTGT AGACACC; transforming growth factor-β (TGF-β; sense) AGAGGGAAACAGGGCTTGGTAGCA; TGF-β (antisense) CTG TGCCCTGGCAGCCACGATG; matrix metalloproteinase-2 (MMP-2; sense) GAGACTGCAGCAACAGCACA; MMP-2 (antisense) TTACCTGAAGCTGGAGA; MMP-9 (sense) CGACGAGTGGTG GTCGG; MMP-9 (antisense) GCCTGACTGAAGCTTTGCTACGT; tissue inhibitors of metalloproteinase-1 (TIMP-1; sense) CTTGGC CCCACC; TIMP-1 (antisense) AAGGGTCTCAGTCACT; TIMP-2 (sense) TCGAGCTGTCCCGGTG; and TIMP-2 (antisense) TTAATGTCCTCCGTAGTCC.

Assessment of Atherosclerosis

Quantiﬁcation of atherosclerotic lesions was done by calculating the lesion size in the aortic sinus as described previously.

Assessment of Plaque Stability Markers by Histochemistry and Immunohistochemistry

Staining with Masson’s trichrome was used to determine ﬁbrous cap to lipid core ratio determined by quantitative morphometry. CD3 lymphocytes and macrophage staining were performed as described previously.

Statistical Analysis

Antibody and cytokine levels as well as plaque sizing and features were compared between the 3 groups using a 1-way ANOVA.
coexpression of Sca-1 and Flk-1 was 2% compared with BM cells (0.3% versus 0.1%; Figure 1A). The cell–derived EPCs were more likely to express this marker compared with BM cells (a mean of 0.85%). A similar trend was evident with regard to the expression of Flk-1; namely, spleen cell–derived EPCs expressed the Sca-1 marker (a mean of 5.04%) compared with BM cells (a mean of 0.59%). Representative FACS sheets from these experiments are shown in Figure 1A.

We further pursued comparatively the ability of BM cells and spleen cell–derived EPCs to differentiate into ECs by monitoring their ability to form colony-forming units (cfu) after 14 days of culture in EC medium on fibronectin-coated surfaces. Indeed, cfu were formed by both cell populations and stained positive for several mature EC markers, namely: Tie-2, vascular endothelial growth factor receptor 2, CD31, and vWF (Figure 1B).

Transfer of either BM cells or EPCs did not alter the general health of the recipient apoE KO mice, nor were there differences evident in their weight on killing (data not shown).

Next, we explored whether fluorescently labeled cells used for transfer were homing to the atherosclerotic plaques, spleens, lungs, and liver. We observed that intravenously injected cells were present in all plaques, BM cells more abundantly populating the lesions compared with EPCs, although not statistically significant (2.9±0.3 versus 2.4±0.4 labeled cells per plaque). Similar numbers of labeled cells were also found in the spleen (28±7 versus 31±6 labeled cells per high-power field, respectively), in the lungs (9±3 versus 11±5 labeled cells per high-power field, respectively), and in the liver (5±3 versus 5±2 labeled cells per high-power field, respectively). The injected cells were found predominantly within the lipid core of the plaques and not in the endothelial or subendothelial regions.

We then evaluated a panel of serum cytokines thought to be involved in the pathogenesis of atherosclerotic plaques in apoE KO mice. No significant differences between the 3 experimental groups were evident with respect to serum IFN-γ, TNF-α, MCP-1, or IL-12 (data not shown). However, we found that a significantly increased level of IL-6 was present in the BM cell–treated mice (144±6 pg/mL) compared with EPC–treated mice (128±2 pg/mL; P<0.05) or controls (132±2 pg/mL; P<0.05). A similar trend was evident with regard to MCP-1. However, IL-10 serum levels were reduced in EPC–treated mice (123±10 pg/mL) compared with BM cell–treated mice (198±28 pg/mL; P<0.01) or controls (212±42 pg/mL; P<0.05).

Next, we studied cytokine expression in the atherosclerotic aortas by RT-PCR. We found that expression of mRNA for IL-10, but not IL-4, IFN-γ, TGF-β, or MMPs, was significantly decreased in the aortas of mice receiving EPCs and BM cells (Figure 2).

Atherosclerotic aortic sinus lesion size was increased in EPC–treated and BM cell–treated apoE KO mice compared with controls (Figure 3). Assessment of plaque stability by evaluating fibrous cap and lipid core using Masson’s trichrome staining demonstrated a significant decrease in fibrous cap area in mice receiving EPCs.
content 39±3.1%) compared with BM cell–treated mice (51±3%; P<0.05) or controls (54±4%; P<0.05; Figure 3).

We then explored the presence of antibodies to oxLDL in the 3 recipient groups and found that IgG levels significantly increased in EPC-treated mice (mean OD 0.44±0.1) compared with controls (OD 0.21±0.09; P<0.05) and BM cell–treated animals (0.16±0.01; P<0.05; Figure 4A).

We then further studied plaques immunohistochemically and found that plaques from EPC-infused animals were more abundantly infiltrated by CD3 cells compared with lesions from BM cell–treated and control animals (Figure 4). No differences were observed in the number of macrophages infiltrating the plaques from the 3 groups (Figure 4).

Discussion

The purpose of the study was to explore the potential of BM cells and spleen cell–derived EPCs to influence atherosclerotic plaque size and phenotype in the apoE KO mouse model. There has been a growing number of studies involving intracoronary transfer of BM cells and EPCs in patients with ischemic heart disease and preliminary results to support a beneficial role in improving cardiac performance.18–20 However, BM cells and EPCs are principally mononuclear in origin-harboring proinflammatory properties, and we have thus reasoned that they may influence plaque size and stability markers.

Analysis of BM cells and spleen cell–derived EPCs demonstrated their in vitro ability to form colonies that stained positive for several mature EC markers such as Flk-1, Tie-2, vWF, and CD31, supporting their endothelial progenitor properties. When studied by FACS, we found that spleen cell–derived EPCs were more abundantly expressing several markers that are attributed to endothelial progenitors such as Sca-1, Flk-1, and both. This is consistent with the ex vivo culture and positive selection of spleen cell–derived mononuclear cells on fibronectin and EC medium for 5 days, similar to the conditions used by Werner et al.12 We used a 3-injection transfer protocol based on the realization that an intravenous administration of 10^6 cells per mouse is unlikely to simulate intracoronary administration because most of the cells are likely to be trapped within the spleen before reaching the plaque.12 Most of the clinical trials in patients with acute myocardial infarction and ischemic heart disease used a single dose of 10^7–10^9 cells per injection.21 However, the nature of the administered cells is different in each of the studies as well as the mode of delivery, preventing an accurate comparative analysis. In mice, it is extremely diffi-
disclosed a significantly reduced expression of mRNA for the EPC-infused mice. Analysis of atherosclerotic aortas recipients, whereas serum IL-10 concentrations were reduced in MCP-1 were significantly increased in BM cell–treated re- atherogenesis. Indeed, we found that serum levels of IL-6 and harbored by the transferred cells may contribute to enhanced We have thus reasoned that proinflammatory properties of the injected cells. Additionally, Yoon et al27 recently observed intramyocardial calcification in rats transferred with BM cells by the intracoronary route, suggesting a direct involvement of the injected cells in this process. It is also consistent with the findings of Saha et al,28 which showed that BM-derived cells form a significant number of smooth muscle cells that constitute the atherosclerotic plaque in experimental models.

In this study, the EPC-treated mice were also found to have an increased levels of anti-oxLDL antibodies suggestive of a heightened state of oxidative stress that may be related to the proinflammatory properties of the transferred cells. These anti-oxLDL antibodies and the decreased levels of IL-1029 in the EPC– and BM cell–treated mice compared with the controls, suggesting that a proinflammatory state and perhaps partial skewing of T-helper 2 to T-helper 1 may occur in the context cell transfer. These 3 cytokines were shown in several studies23–26 to influence atherosclerotic lesion size and could have thus partially mediated the proatherogenic effects.

An additional intriguing finding in this study was a destabilizing effect of EPC transfer. We found that plaques from apoE KO mice infused with spleen cell–derived EPCs contained smaller fibrous caps and larger lipid cores. These results were also consistent with a larger number of CD3 cells within these lesions that may have contributed to plaque softening and vulnerability. In this context, 2 studies should be mentioned: the MAGIC Trial,19 in which recruitment of BM cells by granulocyte/macrophage colony-stimulating factor injections to humans was followed by increased rate of restenosis, an effect proposed to be caused by proinflammatory properties of the injected cells. Additionally, Yoon et al27 recently observed intramyocardial calcification in rats transferred with BM cells by the intracoronary route, suggesting a direct involvement of the injected cells in this process. It is also consistent with the findings of Saha et al,28 which showed that BM-derived cells form a significant number of smooth muscle cells that constitute the atherosclerotic plaque in experimental models.

In conclusion, we found that transfer of spleen cell–derived EPCs and BM cells accelerated atherosclerosis in apoE KO mice, whereas EPC transfer reduced markers associated with plaque stability. These findings call for caution in the dosing and scheduling protocols of cell therapy in future studies.

References

Transfer of Endothelial Progenitor and Bone Marrow Cells Influences Atherosclerotic Plaque Size and Composition in Apolipoprotein E Knockout Mice

Jacob George, Arnon Afek, Anastasia Abashidze, Haim Shmilovich, Varda Deutsch, Juri Kopolovich, Hylton Miller and Gad Keren

Arterioscler Thromb Vasc Biol, published online September 29, 2005;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2005/09/29/01.ATV.0000188554.49745.9e.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Arteriosclerosis, Thrombosis, and Vascular Biology_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Arteriosclerosis, Thrombosis, and Vascular Biology_ is online at:
http://atvb.ahajournals.org//subscriptions/