Fenofibric Acid, an Active Form of Fenofibrate, Increases Apolipoprotein A-I–Mediated High-Density Lipoprotein Biogenesis by Enhancing Transcription of ATP-Binding Cassette Transporter A1 Gene in a Liver X Receptor–Dependent Manner

Reijiro Arakawa, Norimasa Tamehiro, Tomoko Nishimaki-Mogami, Kazumitsu Ueda, Shinji Yokoyama

Objective—Fibrates are widely used drugs to reduce plasma triglyceride and increase high-density lipoprotein. Their active forms, fibric acids, are peroxisome proliferator-activated receptor-α activators, but no direct evidence has been demonstrated for their activation of ATP-binding cassette transporter A1 (ABCA1) in relation to clinically used fibrates. We investigated the reaction of fenofibric acid in this regard.

Methods and Results—Fenofibric acid was examined for the effect of increase of ABCA1 activity. It enhanced ABCA1 gene transcription and its protein level in macrophage cell line cells and fibroblasts and increased apolipoprotein A-I–mediated cellular lipid release, all in a dose-dependent manner. Enhancement of the gene transcription was examined by using a reporter assay system for LXRE and its inactive mutant. The results demonstrated that the effect of fenofibric acid is dependent on active LXRE.

Conclusions—Fenofibric acid increased transcription of ABCA1 gene in a liver X receptor–dependent manner. (Arterioscler Thromb Vasc Biol. 2005;25:1-5.)

Key Words: fenofibrate ■ fibrates ■ PPARα ■ ABCA1 ■ HDL ■ cholesterol ■ atherosclerosis

High-density lipoprotein (HDL) is a negative risk factor in coronary atherogenesis, and raising HDL is expected to protect us against atherosclerosis. Such an effect was demonstrated in experimental animals by specific gene expression or inhibition of cholesteryl ester transfer protein (CETP). Although no specific drug is available in clinical use for this purpose, a bile acid–sequestering resin and statins were shown to raise HDL by an unknown mechanism, besides lowering low-density lipoprotein, and subanalysis of these results indicated its independent effect of reducing the atherosclerosis risk. Fibric acids, active forms of fibrate drugs and activators of peroxisome proliferator-activated receptor-α (PPARα), are also known for an HDL-raising effect. This group of drugs has been widely used for a long time for the treatment of hyperlipoproteinemia, especially types IIb, III, and VI. Fibric acids enhance fatty acid catabolism and accordingly reduce plasma lipid level, predominantly triglyceride (TG). Increase of TG-rich lipoprotein results in increase of TG transfer to HDL in exchange with its cholesteryl ester by CETP, and therefore leads to production of small cholesterol-poor HDL as TG is hydrolyzed. Consequently, reduction of TG-rich lipoprotein by fibrates leads to the increase of HDL cholesterol by reversing this mechanism. Fibric acids were also shown to enhance transcription of the gene of apolipoprotein A-I (apoA-I) in the liver. A PPARα activator, Wy14643, was shown to upregulate the gene of ATP-binding cassette transporter A1 (ABCA1) that mediates and rate-limits biogenesis of HDL by the interaction of helical apolipoprotein and cells. ABCA1 expression is enhanced by loading cholesterol to cells via the liver X receptor (LXR), presumably because of the increase of oxysterol. The effect of Wy14643 was interpreted by the activation of the LXR pathway as it increased LXR. However, there has been no direct demonstration of the ABCA1 upregulation by fibric acids derived from fibrate drugs clinically used. In mouse atherosclerosis models, PPARα agonists did not appear to enhance ABCA1 expression in atherosclerotic lesion despite their effect of the regression. Here we report in vitro observation that fenofibric acid increases the expression of ABCA1 and apoA-I–mediated HDL production. The effect on ABCA1 expression was through the enhancement of the transcription of the ABCA1 gene being dependent on LXR.
Materials and Methods

Cell Culture
RAW264 cells were maintained in 2% TCM (ICN)-DMEM/F-12 (1:1) medium (IWAKI Glass) at 37°C in 5% CO2.25 Cells in 6-well plates at the concentration of 1.5×10⁶ cells per well were incubated 24 hours before the experiments.24 THP-1 cells (4.0×10⁶ cells per well) were differentiated with 3.2×10⁻⁷ M phorbol 12-myristate 13-acetate (PMA; Wako) in 10% FBS (PAA Laboratories)-RPMI 1640 medium (IWAKI Glass) for 72 hours.26 BALB/3T3 clone A313 (obtained from RIKEN Cell Bank) was incubated in Eagle’s minimum essential medium (MEM) with 10% FCS. All cell lines were incubated at 37°C in a humidified atmosphere of 5% CO2, 10% FBS (PAA Laboratories)-RPMI 1640 medium, and 0.1% BSA-MEM, respectively. Cholesterol and choline-phospholipid released into the medium by apoA-I were determined enzymatically.25 Adherent cells were dissolved in 0.1 N NaOH for protein determination by bicinchoninic acid protein assay system (Pierce).

Cellular Lipid Release
RAW264 cells were washed with PBS and cultured an additional 48 hours in the presence of fenofibric acid or Wy14643 in DMEM/F-12 (1:1) medium containing 2% TCM and 0.2% BSA. During the last 24 hours of the drug treatment, 300 μmol/L of dibutyryl cAMP (dbcAMP; Wako) and apoA-I (10 μg/mL) were added to the medium.23 THP-1 cells and BALB/3T3 cells were also treated with the PPARγ activators and apoA-I in 0.2% BSA-RPMI 1640 medium and 0.1% BSA-MEM, respectively. Cholesterol and choline-phospholipid released into the medium by apoA-I were determined enzymatically.25 Adherent cells were dissolved in 0.1 N NaOH for protein determination by bicinchoninic acid protein assay system (Pierce).

Reporter Gene Assay
The effects of fenofibric acid and Wy14643 on expression of ABCA1 in RAW264 cells pretreated with dbcAMP and THP-1 cells differentiated with PMA and BALB/3T3 fibroblasts. Messages of ABCA1 and GAPDH were detected by RT-PCR, and protein level of ABCA1 was determined by immunoblotting, as described in the text in each type of cell in the presence of the agonists (μmol/L) and 9-cis-retinoic acid (RA).

Results
Expression of ABCA1
The effects of fenofibric acid and Wy14643 on expression of ABCA1 are shown in Figures 1 and 2. The message of ABCA1 increased by fenofibric acid and Wy14643 in all types of cells examined: RAW264 cells treated with dbcAMP, PMA-differentiated THP-1 cells, and BALB/3T3 cells. ABCA1 protein also increased by the PPARγ agonists being demonstrated by its immunoblotting analysis in all these cells (Figures 1 and 2).

ApoA-I–Mediated Cellular Lipid Release
ApoA-I induced release of cellular cholesterol and phospholipids into the medium from the cells examined. PPARγ agonists fenofibric acid and Wy14643 increased the apoA-I–mediated release of cholesterol and phospholipids in a dose-dependent manner (Figure 3). The increment of lipids released by the drugs was more prominent in cholesterol than phospholipid in RAW264 cells pretreated by dbcAMP. The maximum effect (102% increase in cholesterol release) was observed when the cells were treated with 25 μmol/L of fenofibric acid.

Reporter Gene Assay
Transcription of the ABCA1 gene was examined by using the reporter genes (pABCA1-Luc) in the dbcAMP-treated RAW264 cells (Figure 4). Fenofibric acid and Wy14642
enhanced transcription of the ABCA1 reporter gene in a
dose-dependent manner (Figure 4A and 4B). These effects
were cancelled by substitute transfection of the mutant
LXRE-containing reporter vector (pABCA1-mutant LXRE-
Luc) to inactivate LXRE (Figure 4A and 4B), whereas 9-
cis-retionic acid, a ligand for retinoid X receptor (RXR),
and 22-oxysterol, a ligand for LXR, failed to increase the
transcription of the mutant ABCA1 gene (Figure 4C).

Discussion
PPARs belong to the nuclear receptor superfamily group and
act as ligand-activated transcription factors regulating the
expression of certain target genes.29 The PPAR family con-
tains 3 different subtypes, designated PPAR\(\alpha\), PPAR\(\beta/\delta\), and
PPAR\(\gamma\). PPAR subtypes display distinct expression patterns,
different ligand specificities, and distinct biological func-
tions.30–32 PPARs are activated by fatty acids and its metab-
olites and accordingly exert various effects in lipid homeosta-
sis.33 Several subtype-specific synthetic compounds have
been developed for clinical use, including fibric acids
(PPAR\(\alpha\) agonist) and glitazones (PPAR\(\gamma\) agonist).34 Fibrates
are widely used drugs for hyperlipidemic patients because
they significantly improve plasma lipid profiles by reducing
TG-rich lipoprotein and raising HDL.35,36 The primary effects
of fibric acids, active forms of fibrates, on plasma lipids have
been attributed to their PPAR\(\alpha\)-mediated expression of the
genes of various enzymes that regulate lipid metabolism.7,8
For HDL metabolism, the effects are partly explained by
reduction of plasma TG itself and CETP reaction9,10 and by
increased expression of the apoA-I gene.13–15 In addition,
Wy14643, a nonclinical PPAR\(\alpha\) activator, was shown to
enhance ABCA1 gene expression.16 Because LXR was also
activated in the condition used in that work,16 and ABCA1 is
known to be regulated by the LXR/RXR pathway, it was
hypothesized that Wy14643 increases the transcription of
ABCA1 gene via the LXR pathway.

We demonstrated the increase of ABCA1 by fenofibric
acid, an active form of clinically used fibrate drug fenofi-
bic acid, in macrophage cell line cells and in mouse fibroblasts.
These effects were also reproduced by a positive control
Wy14643. To examine the mechanism, the reporter gene

Figure 2. Effects of PPAR\(\alpha\) agonists fenofibric acid
(FFB; \(\mu\)mol/L) and Wy14643 (Wy; \(\mu\)mol/L) on expression of
ABCA1. The results of RT-PCR and Western blotting from
the same experiments shown in Figure 1 were semiquantified by
digital scanning in an Epson GT9500. Message of ABCA1 was
standardized for that of GAPDH. Data points represent
mean±SE of 3 independent experiments. Significance of the
increase from the controls was examined by Student's t
and indicated as *\(P<0.05\) and **\(P<0.01\).

Figure 3. Lipid release by apoA-I from the cells examined in the
presence of PPAR\(\alpha\) agonists fenofibric acid (FFB; \(\mu\)mol/L) and
Wy14643 (Wy; \(\mu\)mol/L). Releases of cholesterol and phospho-
lipid are expressed as percentage of the control for RAW264
cells (cholesterol 2.39 \(\mu\)g/mg cell protein and phospholipid 5.89
\(\mu\)g/mg cell protein), and for THP-1 cells (cholesterol 2.45 \(\mu\)g/mg
cell protein and phospholipid 4.26 \(\mu\)g/mg cell protein). Data
points in A and B represent mean±SE of triplicate measure-
ment, and those in C represent the average of duplicate mea-
surement. Significance of the increase from the controls was
examined using Student’s t test and indicated as *\(P<0.05\) and
**\(P<0.01\).

Figure 4. Luciferase reporter gene assay of ABCA1. The
reporter genes for the ABCA1 promoter were constructed as
described in the text. Wt-LXRE and Mut-LXRE indicate the
genes without and with introduction of mutation in LXRE to in-
activate the responsive element. The effects of fenofibric acid
(FFB; \(\mu\)mol/L) and Wy14643 (Wy; \(\mu\)mol/L) were examined, as
well as those of 9-cis-retionic acid (RA) and 22-oxysterol
(22OHC). Data points represent mean±SE of triplicate measure-
ment. Significance of the increase was examined using Stu-
dent’s t test and indicated as *\(P<0.05\) from the blanks (no com-
pound), **\(P<0.05\) from the controls (mutant LXRE), and
***\(P<0.05\) from both.
assay was used via a promoter of the ABCA1 gene by introducing a mutation in LXR response element. Inactivation of this element was verified by abolishment of its response to 9-cis retinoic acid and 22-oxysterol, and fenofibrate failed to enhance transcription of the mutant reporter gene. Therefore, PPARα in fact activates the ABCA1 gene by the LXR-dependent pathway. The results were inconsistent with the finding that PPARs form a heterodimeric complex with the RXR (not LXR) and bind to specific PPAR-response elements in the promoter region of target gene. However, a direct ligand of RXR, 9-cis retinoic acid, failed to activate the mutant gene, consistent with the established finding that dimerization of RXR with LXR is essential for enhancing ABCA1 gene transcription.

Fenofibrate and Wy14643 reportedly have different affinity and distinct specificity to murine and human PPARs. However, both compounds showed equivalent capability in transactivation assays at the concentration effect of this drug on the HDL biogenesis is based on the finding that an agonist of PPARδ induces HDL synthesis in culture cells and in monkeys. Therefore, the effects of Wy14643 may include combined activation of various PPARs. In contrast, fenofibric acid is highly specific for activation of PPARα, at least up to 100 μmol/L. Because Cmax of fenofibrate is 30 μmol/L when it is orally administered to human, it is most likely that the effect of this drug on the HDL biogenesis is based on the enhancement of ABCAT expression by the mechanism shown in this article.

Fenofibrate has been shown to retard progression of coronary atherosclerosis, consistent with the findings of reducing a risk of coronary heart disease by other fibrate drugs. The clinical effects of these drugs are attributed to improvement of plasma lipoprotein profile by reducing TG and raising HDL. Although decrease of TG and increased of HDL are limited in human by the action of CETP, the increase of ABCA1 activity may more directly contribute to raising HDL and prevention of lipid accumulation in vascular cells.

References

Fenofibric Acid, an Active Form of Fenofibrate, Increases Apolipoprotein A-I-Mediated High-Density Lipoprotein Biogenesis by Enhancing Transcription of ATP-Binding Cassette Transporter A1 Gene in a Liver X Receptor-Dependent Manner

Reijiro Arakawa, Norimasa Tamehiro, Tomoko Nishimaki-Mogami, Kazumitsu Ueda and Shinji Yokoyama

Arterioscler Thromb Vasc Biol. published online March 24, 2005;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2005/03/24/01.ATV.0000163844.07815.c4.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Arteriosclerosis, Thrombosis, and Vascular Biology_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Arteriosclerosis, Thrombosis, and Vascular Biology_ is online at:
http://atvb.ahajournals.org//subscriptions/