Angiotensin II Amplifies Macrophage-Driven Atherosclerosis

Ayabe Nobuhiko, Eisuke Suganuma, Vladimir R Babaev, Agnes Fogo, Larry L. Swift, MacRae F. Linton, Sergio Fazio, Iekuni Ichikawa, Valentina Kon

Objective—We evaluated the role of angiotensin II (AII) in a marrow-derived macrophage-driven model of atherosclerosis. Methods and Results—Eight-week-old C57BL/6 wild-type mice were reconstituted with bone marrow harvested from apolipoprotein E-deficient (apoE−/−→apoE+/+) or wild-type for apoE gene (apoE+/+→apoE+/+) mice. At 20 weeks, mice were exposed to either AII (1000 ng/kg per minute subcutaneously) or saline for 2 weeks. Animal did not differ in body weight, blood pressure, cholesterol/triglycerides, or peripheral blood monocyte count. ApoE−/−→apoE+/+ mice exposed to AII had 3-fold greater atherosclerotic area than saline-treated apoE−/−→apoE+/+ mice. By contrast, AII did not affect atherosclerosis in apoE+/+→apoE+/+ mice. Macrophage-positive areas were increased by AII in mice reconstituted with either apoE-deficient or apoE-competent marrow. AII also significantly increased fragmentation of elastin laminae in both apoE−/−→apoE+/+ and apoE+/+→apoE+/+ mice. In vitro, AII caused greater increase in monocyte chemoattractant protein-1–stimulated migration of macrophages harvested from AII-infused versus saline-infused mice. Conclusion—The current studies reveal that AII has both initiating and sustaining proatherogenic effects; by promoting macrophage migration into the vascular intima, AII is pivotal in initiating atherosclerosis. By promoting elastin breaks, a novel mechanism implicated in migration and proliferation of smooth muscle cells, AII may be pivotal in subsequent development and expansion of atherosclerotic lesion. (Arterioscler Thromb Vasc Biol. 2004;24:1-6.)

Key Words:

Elevation in angiotensin II (AII) amplifies atherosclerosis in animal models; conversely, AII inhibition lessens progression of atherosclerotic lesions in animal models and reduces the number of acute cardiovascular sequelae of atherosclerosis in humans. The underlying mechanisms for these effects remain unclear. AII promotion of atherosclerosis is thought to involve activation of the proinflammatory response of the vessel wall while its inhibition quells this response. Specifically, AII has been shown to stimulate adhesion molecules in vascular endothelium including vascular cell adhesion molecule-1, intercellular adhesion molecule-1, chemotactic factors including monocyte chemoattractant protein-1 (MCP-1), cytokines, and growth factors including IL-1, tumor necrosis factor-α, colony-stimulating factor, platelet-derived growth factor, transforming growth factor-β, as well as reactive species that promote monocyte infiltration and smooth muscle migration into the subendothelial space. These cells then take-up lipids to become foam cells that coalesce into atherosclerotic lesions. The pivotal role of the monocyte/macrophage in the initiation and progression of the atherosclerotic lesion has been demonstrated by studies showing that disruption of cytokines, chemokines, and adhesion molecules that lessen monocyte/macrophage recruitment also abrogate lesion development. Although much of the pro-atherogenesis of AII has been linked to its proinflammatory and oxidative effects on cytokine, chemokine, and adhesion molecule interaction with endothelial cells and smooth muscle cells, little is known about the potential effects and interactions of AII on the monocyte/macrophage component of atherogenesis. We and others have previously shown that reconstitution of wild-type mice with bone marrow cells from apolipoprotein E (apoE)-deficient mice promotes atherosclerosis. Moreover, a significantly larger lesion area was occupied by macrophages in mice reconstituted with apoE-deficient marrow than wild-type marrow. These findings not only illustrated the salient protective role of macrophage apoE but also reiterated the central role of macrophage recruitment in development of the early atherosclerotic lesion. The current studies were designed to examine if AII, which can modulate several processes involved in initiation and progression of atherosclerotic lesion, can influence a macrophage-driven model of atherosclerosis.

Methods

Mice
C57BL/6 and apoE−/− mice were obtained from Jackson Laboratories (Bar Arbor, Me). All mice were maintained on a 12-hour light/12-hour dark cycle and fed normal mouse chow (RP5015; PMI Feeds Inc, St. Louis, Mo). Animal care and the experimental

Original received May 28, 2004; final version accepted September 1, 2004. From the Departments of Pediatrics and Medicine and Pathology, Vanderbilt University School of Medicine, Nashville, Tenn. Correspondence to Valentina Kon, MD, Vanderbilt University Medical Center, Nashville, TN 37232-2584. E-mail valentina.kon@vanderbilt.edu © 2004 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol. is available at http://www.atvbaha.org DOI: 10.1161/01.ATV.0000145607.03879.e0
procedures were performed in accordance with National Institutes of Health and Vanderbilt University animal care facility guidelines. Group 1 mice were C57BL/6 recipients transplanted with apoE–/– bone marrow (apoE–/– → apoE+/+, n=27); Group 2 mice were C57BL/6 recipients transplanted with C57BL/6 bone marrow (apoE+/+ → apoE+/+, n=18).

Bone Marrow Transplantation
Eight-week-old female C57BL/6 mice were used as recipients. They were maintained on acidified water (pH 2.0) containing 100 mg/neomycin and 10 mg/polyoxymyxin B for 3 days before and 14 days after transplantation. Four hours before transplantation, recipients were lethally irradiated with 900 rads from a cesium gamma source. Bone marrow was harvested from femurs of either male C57BL/6 or female apoE–/– mice. Each recipient received 5 × 10^6 bone marrow cells in 0.2 mL as previously described.12 After transplantation, mice were maintained on regular mouse chow for the next 6 weeks when they were switched to a high-fat diet (ICN) containing 19.5% fat and 1.25% cholesterol that was continued for the next 8 weeks until the end of the study. Identification of cellular genotype of transplanted mice was verified by reverse-transcriptase polymerase chain reaction using total RNA extracted from the recipient bone marrow at euthanization as previously described for apoE–/– and Zfy mice.13-15

Infusion of All
Two weeks before euthanization, all animals were subcutaneously implanted under isoflurane anesthesia with Alzet osmotic minipumps (model 1002; Duract Corporation, Cupertino, Calif). In group 1 (apoE–/– → apoE+/+), 17 mice received All (1000 ng/min per kg) and 10 were infused with saline. In group II (apoE+/+ → apoE+/+), 10 mice received All (1000 ng/min per kg) and 8 were infused with saline.

Determination of Blood Pressure and Serum Lipids
Systolic blood pressure analysis was determined at the end of All or saline infusions using the Muramachi Systems (Model MK-2000; Muramachi Kikai Co, Osaka, Japan) automated tail-cuff system in saline infusions using the Muramachi Systems (Model MK-2000; Muramachi Kikai Co, Osaka, Japan) automated tail-cuff system in conscious, trained mice. Serum cholesterol and triglycerides were determined as previously described.12

Quantitation of Arterial Atherosclerotic Lesions
Fourteen weeks after bone marrow transplantation (after 2 weeks of All or saline infusion), the hearts and proximal aorta were embedded in OCT and snap-frozen in liquid nitrogen (LN). Cryosections, 10-μm thick, were cut from the proximal aorta beginning at the end of the aortic sinus, stained with oil-red-O, and counterstained with hematoxylin (Sigma, St, Louis, Mo). Quantitative analysis of lesions was performed using Imaging System KS300 (Release 2.0; Kontron Elektronik) on at least 15 sections from each animal12-15 by an operator who was blinded to group assignment.

Immunostaining
Serial cryosections 5-μm thick were sectioned from the proximal aorta, fixed in acetone, and incubated with monoclonal rat antibody to mouse macrophages, MOMA-2 (Serotec, Raleigh, NC) and goat anti-smooth muscle α-actin (Santa Cruz Biotechnology, Santa Cruz, Calif). The area stained with MOMA-2 or α-smooth muscle actin were measured using Imaging System KS300 and the percentage of macrophage infiltration or α-smooth muscle actin calculated as a ratio of the macrophage-stained area of the oil-red-O stained area as previously published.12,14,15

Elastin Fragmentation
Fragmentation (degradation) of elastin was assessed by counting the number of breaks in aortic elastin laminae stained with Verhoeff–van Gieson as previously described.16 We assessed at least 5 serial sections from each of 4 regions of the aorta including aortic arch, thoracic, suprarenal, and infrarenal areas. The number of breaks was expressed per medial area, which was taken to be the area between the internal and external elastic laminae.

Determination of Macrophage Migrating Activity
Peritoneal macrophages were collected from additional wild-type mice or from angiotensin receptor type 1-deficient (Agtr1–/–) mice generated in our laboratory7 that were infused with All (1000 ng/min per kg) (n=4 each genotype) or saline (n=4 each genotype) for 2 weeks as described. Four days before euthanization, mice underwent peritoneal injection of 3% thiglycollate and were harvested as previously described.18 Ex vivo studies of these cells exposed in vivo to All or saline was performed in 96-well microchemotaxis chamber in which the upper compartment was separated from the lower compartment by an uncoated polycarbonate filter (5-μm pore diameter; Neuroprobe, Cabin John, Md). The cells were suspended in DMEM without fetal bovine serum and added to the upper compartment at a density of 5 × 10^4 cells per well. Chemottractant 0.1 μg/mL of MCP-1 (recombinant murine JE; Peprotech Inc, Rocky Hill, NJ) was added to the lower compartment. Migrated cells adhering to the lower surface of the membrane were counted manually under the microscope. Quadruplicate wells were used for each experimental condition, and >3 fields (×400) were counted for each well.

3H-Cholesterol Efflux Studies in Macrophages
Cholesterol efflux in ex vivo macrophages harvested from wild-type (n=10) or apoE–/– (n=4) mice infused with All (1000 ng/min per kg) or saline for 14 days was determined by a modified procedure of Lin.19 Fractionation of lipoproteins from fasted normolipidemic human volunteers was performed by raising the density of serum to 1.019 g/mL for very-low-density lipoprotein, 1.040 for low-density lipoprotein, and 1.210 for high-density lipoprotein. Acetyl–low-density lipoprotein was prepared by repeated addition of acetic anhydride (Sigma) to low-density lipoprotein. Macrophages harvested from the described mice were plated in 24-well plates. After 24-hour incubation in DMEM with 10% fetal calf serum, media replaced with a loading media containing 2.0 μCi/mL of 3H-cholesterol (PerkinElmer, Wellesley, Mass) and 70 μg/mL of acetyl–low-density lipoprotein. Cells were then loaded for 48 hours. Cells were incubated in efflux media with 15 μg/mL of h-apoAI as acceptor and 100 μL samples were removed from each well at 0, 6, and 24 hours and assayed for 3H-cholesterol. At the end of incubation, cell monolayers were counted and protein assayed using the Lowry method. Cholesterol efflux was based on the number of counts in media at each time point and expressed as percentage of the cellular counts at the beginning of efflux incubation.

Statistical Analysis
Results are expressed as mean±SEM. Statistical difference was assessed by a single-factor variance (analysis of variance [ANOVA]) followed by unpaired t test as appropriate. Nonparametric data were compared by Mann–Whitney U test. P<0.05 was considered to be significant.

Whole Animal Studies
Polymerase chain reaction analysis of bone marrow DNA extracted from recipient mice 14 weeks after transplantation showed complete replacement with apoE-deficient (apoE–/– → apoE+/+) or Zfy (apoE+/+ male → apoE+/+ female) marrow indicating that the recipient bone marrow population had been reconstituted by donor bone marrow. Body weight was comparable in the 2 groups before All or saline infusion and increased similarly over the length of the study (apoE–/– → apoE+/+ +AII weighed 17.2±0.4 grams plus saline weighed 18.1±0.5 grams, P=NS;
apoE+/+ → apoE+/+ + AII weighed 18.3±0.3 grams and saline weighed 18.1±0.3 grams, P=NS).

Serum lipids were not affected by exposure to AII in mice reconstituted with either bone marrow. At euthanization, apoE−/− → apoE+/+ AII-infused mice had serum cholesterol of 178.7±11.2 mg/dL and triglyceride of 107.5±10.5 mg/dL, whereas in saline-infused mice, cholesterol level was 172.7±22.3 mg/dL (P=NS) and triglyceride was 103.9±5.0 mg/dL (P=NS). Similarly, at euthanization, apoE+/+ → apoE+/+ plus AII had serum cholesterol of 175.6±19.7 mg/dL and triglyceride of 94.8±7.4 mg/dL, not different than in saline-infused mice (cholesterol of 184.8±8.7 mg/dL and triglyceride of 104.1±11.0 mg/dL, P=NS).

The systemic blood pressure was not different between mice exposed to AII versus saline. In apoE−/− → apoE+/+ plus AII, the blood pressure was 118.7±2.8 mm Hg compared with 116.8±3.8 in saline-infused mice (P=NS). In apoE−/− → apoE+/+ + plus AII, the blood pressure was 112.5±2.8 mm Hg compared with 113.0±2.2 in saline-infused mice (P=NS). At euthanization, the peripheral white blood cell, neutrophil, monocyte, and red blood cell counts were similar in all groups except for the total white blood cell count in apoE+/+ → apoE+/+ mice exposed to AII. In apoE−/− → apoE+/+ plus AII, white blood cell, neutrophil, monocyte, and red blood cell counts were 11.4±1.9×10⁶/µL, 0.3±0.1%, 2.6±0.5%, and 10.4±0.4×10⁶/µL, whereas, in saline-infused mice these values were 14.3±2.1 (P=NS), 0.3±0.1 (P=NS), 2.3±0.3 (P=NS), and 9.6±0.5 (P=NS). In apoE+/+ → apoE+/+ plus AII, white blood cell, neutrophil, monocyte, and red blood cell counts were 19.0±2.0×10⁶/µL, 0.4±0.1%, 2.9±0.3%, and 10.6±0.4×10⁶/µL, whereas in saline-infused mice, these values were 10.6±1.2 (P<0.05 versus apoE+/+ → apoE+/+ + AII), 0.1±0.3 (P=NS), 2.4±0.5 (P=NS), and 10.1±0.3 (P=NS). There were no apparent infections or other apparent reasons for this increased white blood cell count in the apoE+/+ → apoE+/+ mice exposed with AII.

Atherosclerosis

Two weeks of AII infusion did not change the extent of atherosclerotic lesions in wild-type bone marrow-reconstituted mice. Thus, at the end of AII infusion, the mean lesion area of 3862±1725 µm² not different from mice infected with saline (3723±1387 µm², P=NS; Figure 1). By contrast, apoE−/− → apoE+/+ plus AII had 3-times greater atherosclerotic lesions in the proximal aorta than apoE−/− → apoE+/+ mice exposed to saline. Mean lesion area in AII-infused apoE−/− → apoE+/+ mice was 19171±6550 versus 6099±1647 µm² in apoE−/− → apoE+/+ animals exposed to saline (P=0.003). The proximal aortic lesion after AII in apoE−/− → apoE+/+ animals was also significantly greater than in either AII-exposed (19171±6550 versus 3862±1725 µm², P=0.030) or saline-exposed (19171±6550 versus 3723±1387 µm², P<0.001) apoE+/+ → apoE+/+ mice. These observations indicate that AII exposure with high-fat diet amplifies atherosclerotic progression in mice reconstituted with apoE-deficient bone marrow, but not in mice reconstituted with wild-type bone marrow.

Atherosclerotic Lesion Characteristics

To analyze the effects of AII exposure on macrophages in the lesions, immunohistochemical staining for macrophages was performed and revealed more staining in apoE−/− → apoE+/+ plus AII than saline (90.8%±6.6 MOMA positivity of total lipid stained area versus 57.7±4.8, P=0.030; Figure 2A). AII also caused more macrophage-positive area in lesions of apoE+/+ → apoE+/+ mice (67.5%±13.9 of total lipid area stained macrophage positive versus 20.6±10.2, P=0.019). Thus, AII exposure caused increased vascular macrophage infiltration regardless of the type of marrow that was transplanted.
All increase in fragmentation of the elastic laminae also did not depend on the origin of the donor bone marrow. Compared with apoE−/−→apoE+/+ mice infused with saline, apoE−/−→apoE+/+ plus AII had 60% more breaks in elastin laminae (P=0.009; Figure 2B). Similarly, All increased elastin breaks in apoE+/+→apoE+/+ mice, which increased by 30% above the saline-infused apoE+/+→apoE+/+ group (P=0.049). This elastolytic effect was not confined to any region, but rather uniform destruction along the length of the aorta. In view of these findings that AII causes elastin breaks, and the recent recognition that elastin degradation per se can stimulate smooth muscle cell migration and proliferation, we assessed α-smooth muscle actin in AII versus saline-exposed apoE−/−→apoE+/+ mice. However, comparison of α-smooth muscle actin immunostaining in apoE−/−→apoE+/+ plus AII versus saline showed no difference at this early stage of the atherosclerotic lesion.

Macrophage Migrating Activity
In the absence of MCP-1, there was no difference in migration between macrophages harvested from mice infused with saline or AII (Figure 3). Exposure of macrophages from saline-infused mice to MCP-1 caused a significant increase in the chemotactic response, from 6.6±1.1 to 10.8±1.0 cells per high-power field (P=0.011). MCP-1 also significantly potentiated the response in macrophages from AII-infused mice; however, the chemotactic response in these macrophages from AII-infused mice was even 40% greater (10.8±1.0 in saline-infused versus 14.7±0.8 cells per field in AII-infused; P=0.0003). These results suggesting that AII can directly stimulate motility of monocyte/macrophage coactivated by MCP-1 are further supported by our additional findings in macrophages harvested from (Agtr1−/−) mice. As in the wild-type macrophages, in vitro exposure of Agtr1−/−→macrophages to MCP-1 significantly increased migration by 76% in macrophages from saline-infused mice and 81% in AII-infused mice. Further, chemotactic potentiation observed in wild-type macrophages was not reproduced by studying macrophages in vitro that were harvested from Agtr1−/− mice exposed in vivo to AII (data not shown).

Cholesterol Efflux in Peritoneal Macrophage
At time 0, the specific activity, expressed as the cellular cpm/cellular protein, was not different in macrophages har- vested from wild-type or apoE−/− mice that had been infused with AII or saline. However, compared with saline infusion, macrophages harvested from wild-type mice infused with AII had increased efflux at the other 2 time points, ie, 6.6±0.3% at 6 hours and 21.1±0.4% at 24 hours in cells from AII-exposed mice versus 4.7±0.2% (P<0.05) and 16.8±0.3% (P<0.05) in cells from saline-exposed mice. Macrophage from apoE−/− mice exposed to AII or saline had similar efflux at these time points, ie, 5.3±0.9% at 6 hours and 15.5±1.8% at 24 hours in cells from AII-exposed apoE−/− mice versus 5.3±0.9% (P=NS) and 14.9±1.3% (P=NS) in saline-exposed apoE−/− mice.

Discussion
Although AII has been shown to contribute to atherosclerosis in genetically engineered hyperlipidemic mouse models and cholesterol-fed susceptible strains of rabbits and primates,1,2,19 the current studies reveal for the first time to our knowledge that AII amplifies macrophage-driven atherosclerosis. The results show that even short-term 2-week exposure to AII amplifies the proatherogenic effects imparted by disruption of local macrophage production of apoE. Thus, compared with apoE−/− reconstituted mice infused with saline, apoE−/− reconstituted mice infused with AII had 3-times as much atherosclerosis. This proatherogenic effect occurred in the absence of changes in systemic blood pressure, serum lipids, or peripheral blood cell counts between the AII-infused and saline-infused mice. Notably, 2 weeks of AII in a hyperlipidemic environment did not amplify atherosclerotic lesions in mice reconstituted with wild-type marrow. These findings reiterate the pivotal role for macrophage apoE, although they do not rule out the possibility that a more persistent elevation of AII on the background of a hyperlipidemic environment promotes atherosclerosis even in the absence of macrophages null for apoE. Such synergy between hyperlipidemia and AII may be especially germane if combined with other risk factors, such as elevation in blood pressure. Indeed, 14 weeks of atherogenic diet in hypertensive transgenic mice carrying both the human renin and angiotensinogen genes caused 4-times as much atherosclerosis than identically fed mice without activated renin-angiotensin system.31 In some circumstances, even transiently heightened AII sets up injurious processes. Thus, exposure to AII in the current study did not increase lipid deposition in vessels of mice reconstituted with wild-type marrow, AII encouraged intimal infiltration of both apoE-deficient and wild-type monocytes, suggesting that AII affects accumulation of monocytes and/or modulates the monocyte–vessel interaction.

Recruitment of monocytes is one of the earliest events in initiation of atherosclerotic lesion. Disruption in processes for
monocyte recruitment abrogates initiation and progression of atherosclerosis, whereas neointimal formation and plaque progression is enhanced by processes that promote macrophage infiltration.9,10,21,22 The present studies show that AII promotes infiltration of macrophages. Thus, although 50% of the lesion in apoE−/− mice is occupied by macrophages, ≈90% of the lesion area of apoE−/− apoE+/+ mice exposed to AII is macrophage-positive (Figure 2A). These findings indicate that factors that promote accumulation of abnormal macrophages unable to secrete apoE lead to more foam cell formation and promote atherosclerotic lesions. AII enhanced monocyte infiltration into the vessel wall not only in mice reconstituted with apoE-deficient marrow but also in mice reconstituted with wild-type marrow, although in the absence of the proatherogenic macrophages, increase in atherosclerosis did not ensue. Thus, apoE+/+ apoE+/+ exposed to AII had significantly more macrophage-positive area than apoE+/+ apoE+/+ mice infused with saline. Because oil-red-O staining was similar between these 2 groups of mice, it is possible that more of the lipids were contained within the macrophages. The association between AII and macrophage infiltration has been made in other circumstances, including renal fibrosis and in ischemic heart disease.23,24 The potentially injurious effect of AI has been linked to augmentation of inflammatory cytokines such as tumor necrosis factor-α, IL-6, and chemokines such as MCP-1 and CCR2 in the arterial wall, kidney, and heart. We and others have shown the pivotal effect of AII on MCP-1 and CCR2 in atherogenesis such that AII increases while antagonism of AII lessens their gene expression and immunostaining.3,25 These observations support the possibility that AII stimulation of MCP-1 is an early proatherogenic factor. However, there is less known about the effects of AII on monocyte/macrophage function in atherogenesis. Our data show that AII affects cholesterol efflux in intact macrophages but not in apoE−/− cells. The net result of this cholesterol efflux in vivo remains to be determined.

Monocytes have receptors for AII and respond to the ligand with increased lipid oxidation and uptake, as well as augmentation of their immune functions such as stimulation of MCP-1.26,27 The current studies show that AII also has direct effects on macrophage migration. Thus, MCP-1 significantly increased migration of macrophages from both saline-exposed and AII-exposed mice. However, the migratory response was significantly greater in macrophages from the AII-exposed versus saline-exposed mice. The finding that AII strongly potentiates the chemotactic response was further solidified in experiments in macrophages harvested from AGTR1-deficient mice. As expected, macrophage migration was not different between AII-infused and saline-infused AGTR-1-deficient mice. As in the wild-type mice, MCP-1 still increased the migratory response in macrophages from AGTR-1 mice. However, contrasting the result in wild-type mice, the increased chemotaxis in response to MCP-1 was unaltered by in vivo exposure to AII. The current studies of effects of in vivo exposure to AII on macrophage function recapitulate previous in vitro findings, which showed greater migration in association with phosphorylation of 2 cytoskeletal proteins, proline-rich tyrosine kinase 2, and paxillin, after exposure to AII.28 Cumulatively, these studies show that AII potentiates macrophage migration and that this response is mediated by the AGTR-1 on the macrophage.

The important role for cellular migration in atherogenesis has recently been shown to be, at least in part, dependent on degradation of extracellular matrix, specifically elastin, which contributes to the structural integrity of the vessels. The present studies show that AII causes significant fragmentation of elastin fibers. This elastolytic effect was not dependent on characteristics of the donor marrow. Similar to its effect to promote macrophage migration, AII creates a milieu that may be conducive to atherosclerosis. However, the increased elastolysis was associated with increased atherosclerosis only in the presence of proatherogenic apoE−/− macrophages, suggesting that in the setting of wild-type macrophages, the AII-induced vascular damage is not sufficient to establish atherosclerosis. Nonetheless, in view of the recent recognition of elastolysis as a novel mechanism to stimulate migration and proliferation of smooth muscle cells,16,29 we hypothesize that as the lesion progresses, AII-induced elastin breaks will augment influx of smooth muscle cells from the tunica media into the intima. Determination of α-actin-positive cells in the current study found no difference between AII-exposed and saline-exposed mice reconstituted with marrow, further underscoring the fact that the lesion is composed primarily of macrophage-generated foam cells and not smooth muscle cells. By contrast, preliminary studies in apoE-deficient mice with established atherosclerosis treated with the angiotensin receptor type 1 antagonist, losartan, for 3 months have dramatically less atherosclerosis, fewer individual lesions, fewer elastin breaks, and fewer α-actin-positive cells in the intima of these lesions.30 It is noteworthy that antagonism of AII actions ameliorated ruptured arterial internal lamina in the Brown Norway rat, independently of blood pressure.31 Similarly, angiotensin inhibition prevented the increase in serum and aortic elastolytic activity in cholesterol-fed rabbits.32 These data point to a key role of intact versus injured elastin in maintaining vascular integrity.

In summary, these findings indicate that AII promotes macrophage migration into the vascular intima, which in the setting of disrupted macrophage function encourages formation of foam cells. In addition, AII causes elastin breaks that may be an important, novel mechanism to facilitate influx of smooth muscle cells, which expands atherosclerotic lesions.

Acknowledgments

This work was supported in part by grants from National Institutes of Health DK44757 (V.K.), DK37868 (I.I.), HL 53989 (M.F.L), HL 57509, and 57986 (S.F.), The Lipid, Lipoprotein, and Atherosclerosis Core of the Vanderbilt Mouse Metabolic Phenotyping Center (National Institutes of Health DK59637–01), and the Clinical Nutrition Research Unit. The authors acknowledge the expert technical assistance of Cathy ZhiQi Xu and Youming Zhang.

References

2. Keidar S, Heinrich R, Kaplan M, Hayek T, Aviram M. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of...
10. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in
13. Fazio S, Babaev VR, Murray AB, Hasty AH, Carter KJ, Gleaves LA,
16. Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M,
11. Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis.
6 Arterioscler Thromb Vasc Biol.
3. Dol F, Martin G, Staels B, Mares AM, Cazaubon C, Nisato D, Bidouard
4. Candiolo R, Jandelet-Dahn KA, Cao Z, Nesteroff SP, Burns WC, Twigg
SM, Dilley RJ, Cooper ME, Allen TJ. Prevention of accelerated athero-
sclerosis by angiotensin-converting enzyme inhibition in diabetic apo-
5. Pfeffer MA, Braunwald E, Moye LA, Moye LA, Basta L, Brown EJ Jr.,
Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC. Effect of captopril
on mortality and morbidity in patients with left ventricular
dysfunction after myocardial infarction. Results of the survival and ven-
Effects of an angiotensin-converting enzyme inhibitor, ramipril, on car-
145–153.
7. Jacoby DS, Rader DJ. Renin-angiotensin system and atherothrombotic
disease: from genes to treatment. Arch Intern Med. 2003;163:
1115–1164.
8. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of
Absence of monocyte chemotactic protein-1 reduces atherosclerosis in
low density lipoprotein receptor-deficient mice. Mol Cell. 1998;2:
275–281.
10. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in
CCR2–/– mice reveals a role for chemokines in the initiation of ath-
11. Linton MF, Fazio S. Macrophages, inflammation, and atherosclerosis.
12. Linton MF, Atkinson JB, Fazio S. Prevention of atherosclerosis in apol-
oprotein E-deficient mice by bone marrow transplantation. Science.
13. Fazio S, Babaev VR, Murray AB, Hasty AH, Carter KJ, Gleaves LA,
Atkinson JB, Linton MF. Increased atherosclerosis in mice reconstituted
with apolipoprotein E null macrophages. Proc Natl Acad Sci USA.
1997;94:4647–4652.
PH, Van Berkel TJ. Bone marrow transplantation in apolipoprotein
E-deficient mice. Effect of ApoE gene dosage on serum lipid concen-
trations, (beta) VLDL catabolism, and atherosclerosis. Arterioscler
15. Fazio S, Babaev VR, Burleigh ME, Major AS, Hasty AH, Linton MF.
Physiological expression of macrophage apoE in the artery wall reduces
atherosclerosis in severely hyperlipidemic mice. J Lipid Res. 2002;43:
1602–1609.
16. Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M,
Kodama T, Tsimakis S, Wittram JL, Lu ML, Sakara Y, Chun MT, Libby
P, Shi GP. Deficiency of cathepsin S reduces atherosclerosis in LDL-
JM, Linton MF, Fazio S, Homma T, Yoshida H, Ichikawa I. Absence of
angiotensin II type 1 receptor in bone marrow-derived cells is detrimental
18. Lin CY, Duan H, Mazzone T. Apolipoprotein E-dependent cholesterol
eflux from macrophages: kinetic study and divergent mechanisms for endogenous versus exogenous apolipoprotein E. J Lipid Res.
19. Ayabe N, Babaev VR, Tang YW, Tanizawa T, Fogo AB, Linton MF,
Ichikawa I, Fazio S, Kon V. Angiotensin II has distinct effects on
atherosclerosis and aneurysm formation in hyperlipidemic mice. J Am Soc
Nephrol. 2002;13:366A.
Tanimoto K, Murakami K, Fukamizu A, Yagami K. Acceleration of
atherosclerotic lesions in transgenic mice with hypertension by the acti-
Hsas K, Nishida K, Takeshita A. Anti-monocyte chemotactant
protein-1 gene therapy limits progression and destabilization of estab-
2002;106:2700–2706.
22. van Ruyen N, Hofer I, Bottiger M, Hua J, Grundmann S, Voskuil M,
Bode C, Schaper W, Buschmann I, Piek JJ. Local monocyte chemoo-
tractant protein-1 therapy increases collateral artery formation in apoli-
poprotein E-deficient mice but induces systemic monocyte CD11b
expression, neointimal formation, and plaque progression. Circ Res.
23. Van Goor H, Ding G, Kees-Folts D, Grond J, Schreiner GF, Diamond JR.
24. Ren G, Dewald O, Frangogiannis NG. Inflammatory mechanisms in
myocardial infarction. Curr Drug Targets Inflamm Allergy. 2003;2:
242–256.
type 1 receptor blocker for anti-atherosclerotic effects in monkeys fed a
M. Hypercholesterolemia is associated with enhanced angiotensin AT1-
27. Keidar S, Kaplan M, Aviram M. Angiotensin II-Modified LDL Is taken
up by macrophages via the scavenger receptor, leading to cellular cho-
tensin II induces migration and Pyk2/Paxillin phosphorylation of human
29. Brooke BS, Karkuk SK. Li DY. Extracellular matrix in vascular morpho-
51–56.
30. Sagamama E, Babaev VR, Linton MF, Fazio S, Ichikawa I, Kon V.
Antagonism of angiotensin II actions stabilizes atherosclerotic plaque.
31. Huang W, Alhenc Gelas F, Osborne-Pellegrin MJ. Protection of the
arterial internal elastic lamina by inhibition of the renin-angiotensin
32. Wojakowski W, Gmmski J, Sielenmanowicz K, Goss M, Machalski M.
The influence of angiotensin-converting enzyme inhibitors on the aorta elastin
metabolism in diet-induced hypercholesterolemia in rabbits. J Renin
Angiotensin II Amplifies Macrophage-Driven Atherosclerosis
Ayabe Nobuhiko, Eisuke Suganuma, Vladimir R Babaev, Agnes Fogo, Larry L. Swift, MacRae F. Linton, Sergio Fazio, Iekuni Ichikawa and Valentina Kon

Arterioscler Thromb Vasc Biol. published online September 16, 2004;
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/early/2004/09/16/01.ATV.0000145607.03879.e0.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/