Mechanisms of HDL Reduction after Probucol
Changes in HDL Subfractions and Increased Reverse Cholesteryl Ester Transfer

Guido Franceschini, Marina Sirtori, Viola Vaccarino, Gemma Gianfranceschi, Laura Rezzonico, Giulia Chiesa, and Cesare R. Sirtori

Treatment with probucol, a widely used cholesterol-lowering agent, is associated with a significant reduction of high density lipoprotein (HDL) cholesterol levels, but with an apparently improved removal of cholesteryl esters from tissues (e.g., from tendon xanthomas). The effects of probucol (500 mg twice daily) on HDL subfraction distribution and cholesteryl ester transfer activity were tested in 12 patients with stable type II hyperlipidemia [low density lipoprotein (LDL) cholesterol >180 mg/dl] after a placebo-controlled cross-over trial. Probucol significantly lowered total cholesterol (−13.8%), LDL cholesterol (−9.1%), and HDL cholesterol (−30%). By rate zonal ultracentrifugation, a marked reduction of HDL₃ cholesterol (−86%) was shown, whereas changes in HDL₂ were less significant (−21%). These findings were confirmed by polyacrylamide gradient gel electrophoresis, typically showing a reduction or disappearance of HDL₂ particles and the prevalence of particles in the HDL₃ range. Cholesteryl ester transfer from HDL to lower density lipoproteins was significantly increased (30%) in all patients. These findings suggest that, in addition to the well-documented in vitro changes (prevention of LDL peroxidation and macrophage uptake), probucol characteristically modifies HDL particle distribution in vivo, and is associated with a significant increase of cholesteryl ester transfer activity. (Arteriosclerosis 9:462–469, July/August 1989)

Probucol is a widely used cholesterol-lowering drug, which reduces the cholesterol content of both low density (LDL) and high density (HDL) lipoproteins. This latter effect is particularly noteworthy since, generally, elevated HDL cholesterol levels are considered as an index of protection from arterial degenerative disease. In spite of this potentially harmful biochemical effect, probucol treatment has been associated with an apparently increased removal of cholesteryl ester stores, for example, from tendinous xanthomas. In this particular case, the reduction of the Achilles tendon thickness was directly related to the decrease of HDL cholesterol levels. Moreover, in numerous animal studies, administration of probucol was associated with a significant improvement of arterial lesions. In an attempt to explain the remarkable antiatherosclerotic activity of the compound in spite of the unfavorable lipoprotein changes, different hypotheses have been suggested. Prominent among these is the inhibition of oxidative changes of LDL resulting in the prevention of lipid accumulation in macrophages. Since the major biochemical finding in probucol-treated patients is the dramatic reduction of HDL cholesterol and protein levels, it was decided to investigate whether this may be a specific target for the antiatherosclerotic activity of the compound. This study seemed to be particularly relevant in view of the lack of clear and definitive information on the activity of probucol on the HDL subfraction distribution, and the resultant very discrepant findings. In addition, our understanding of the dynamics of the HDL system has considerably improved in the last few years. The HDL subfraction distribution is linked to a continuous series of changes, involving the transformation of larger HDL₃ into small HDL₂ particles and vice versa by way of the hepatic lipase (HL), lecithin cholesterol acyltransferase (LCAT), and cholesteryl ester transfer protein (CETP) systems. By these mechanisms, HDL are capable of removing free cholesterol from tissues or from other lipoproteins, esterifying, and finally delivering cholesteryl esters to very low density lipoproteins (VLDL).

A controlled investigation was carried out in a selected group of type II hyperlipoproteinemic patients. We examined changes in the HDL subfraction distribution using a standardized rate zonal ultracentrifugation method and the activity of the CETP during active drug and placebo. The findings are consistent with a major effect of probucol on the HDL system, possibly related to the observed improvement of tissue cholesterol removal after treatment.

Methods

Study Subjects

Twelve patients (eight postmenopausal women and four men, ages 50.7 ± 9.4 years) with stable hypercholes-
terolemia (Fredrickson Type IIa) were selected for the study. Plasma lipid cutoffs were: LDL cholesterol level greater than 180 mg/dl and triglyceride levels less than 200 mg/dl. Five of the patients had familial hypercholesterolemia, that is, several family members with a similar condition; five had a sporadic form of the disease, with no affected member in the kindred; for two patients, family data could not be collected. All 12 patients had been known to our Lipid Clinic for 1 year or more; all were on a low fat (30% of calories) diet with a moderately elevated polyunsaturated/saturated ratio (1.2), which was maintained during the study. Ten patients had been on a prior drug treatment (fenofibrate, cholestyramine, or both), whereas one had been treated for some time with a soybean protein-based diet. All drug treatments and the soybean diet were stopped at least 8 weeks before the beginning of this study. All participating patients were fully informed of the modalities and end-points of the study, which was approved by our Internal Review Board, and the patients signed an informed consent form.

Protocol
Drug and placebo treatments were assigned according to a double-blind, cross-over protocol. Each patient received the active drug (Lurselle, Dow-Lepetit, Milano, Italy) in 0.5-g tablets twice daily and corresponding placebo tablets for two successive periods of 8 weeks separated by 4 weeks without treatment. Assignment of the sequence (placebo-probucol or probucol-placebo) was by random numbers. Before the start of the protocol, two fasting blood samples were collected 2 weeks apart for the determination of lipid, lipoprotein, and apolipoprotein levels (see below). Patients were to be excluded if the variation of total cholesterolemia, between the two samples, exceeded 20%.

During both active and placebo treatments, the patients were seen at 3-, 6-, and 8-week intervals; dietary compliance was evaluated by a registered dietitian; the patients were weighed, and blood pressure was monitored. Before the start of treatment, and at the 3- and 6-week intervals, limited lipid/lipoprotein determinations were carried out, whereas a complete lipoprotein fractionation, including HDL2 and HDL3 subtractions and determination of cholesteryl ester transfer activity, was carried out after 8 weeks of treatment.

Laboratory Procedures
Plasma total (TC), free cholesterol (FC), and triglyceride (TG) levels were determined by enzyme methodologies and were standardized within a WHO Quality Control program. The cholesteryl ester (CE) mass was calculated as \((\text{TC} - \text{FC}) \times 1.68\). HDL cholesterol levels at 3 and 6 weeks were determined after precipitation of the apolipoprotein (apo)-B containing lipoproteins by dextran sulfate-MgCl2. Apo A-I, A-II, and B levels were determined by immunoturbidimetry. At time 0 as well as at the end of both placebo and probucol treatments (8 weeks), a complete lipoprotein fractionation was carried out by sequential ultracentrifugation. At these times, HDL subfractions were separated by rate zonal ultracentrifugation on sera maintained for not more than 1 week in the presence of 5.1 M NaBr, as previously described. The separated HDL subfractions were fully characterized in terms of flotation rate, serum concentrations, and lipid-protein composition. HDL particle size was analyzed by polyacrylamide gradient gel electrophoresis (GGE), according to the method of Nichols et al.

The net mass transfer of CEs from HDL to lower density lipoproteins was determined essentially according to the methodology reported by Fielding et al. Plasma samples were incubated at 37°C under N2 in a shaking water bath in the presence of 0.15 M Na-iodoacetate as the LCAT inhibitor. The addition of the inhibitor, as previously reported for dithionitrobenzoic acid, does not influence the initial rate of CE transfer measured in incubated plasma. At progressive intervals (0, 15, 30, 60 minutes) pentuplicate plasma aliquots were treated with phosphotungstic acid-MgCl2 to precipitate VLDL and LDL; TC and FC were measured by an automated enzyme procedure in each supernatant, and CE mass was calculated as described. The decrease of HDL-CE mass was linear during the 60-minute incubation (Figure 1), in agreement with data from other investigators. Regression lines were obtained for each plasma sample by plotting the HDL-CE values against the incubation time, and the net CE mass transfer from HDL to lower density lipoproteins was calculated as the slope of the regression line. The mean coefficients of variation for the method in our laboratory are: within run, 4.6% and between runs, 8.4%.

Statistically significant differences between the two treatments and between each treatment and the mean pretreatment values were analyzed by an analysis of variance, followed by Duncan’s multiple range test. Logarithmic transformation of TG values was carried out to normalize the skewed distribution usually observed in population studies.

![Figure 1. Decrease in the high density lipoprotein (HDL) cholesteryl ester levels (nm/ml) (means±SEM) during in vitro incubation (min) of whole plasma from 12 hypercholesterolemic patients before (–) and after (– –) treatment with placebo (●) and probucol (■).](image-url)
Results

All participating subjects satisfactorily concluded the study. Compliance to treatment, as determined by pill counting, was greater than 80% in all patients during the whole trial. No specific side effects were reported by any patient, and no significant changes in weight, blood pressure, hematological, or other biochemical parameters were noted.

When comparing the two sequences of treatment, that is, probucol followed by placebo and placebo followed by probucol (Figure 2), a remarkable stability of total cholesterol was noted during the placebo phase: a reduction from 8% (week 6) to 13.8% (week 8) was recorded during the active drug treatment. Triglyceridemia was only modestly affected by both treatments, whereas probucol caused consistent reductions in the HDL cholesterol levels (around -30%) as well as in total plasma apo A-I (-22.3%) (Table 1). Remarkably, in spite of a small but statistically significant reduction of LDL cholesterol (-9.1% at the end of treatment), apo B levels were essentially unchanged by probucol. Variations in an opposite direction were noted for TG in LDL and HDL (Table 1): LDL became relatively TG-enriched at the end of treatment (30.5%), with a concomitant significant decrease of plasma HDL-TG levels (-23.5%).

These lipoprotein/apolipoprotein changes led to significant alterations in the relative proportions of different components in plasma and in the separated lipoproteins. The apo A-I/B ratio was reduced from 1.09±0.33 to 0.88±0.49 after drug treatment (p < 0.05), and similarly, the apo A-I/A-II ratio exhibited a significant fall (from 3.73±0.62 to 3.11±0.78, p < 0.01). A slight, statistically significant reduction in the cholesterol transport capacity for HDL (HDL cholesterol/apo A-I) was noted (from 0.40±0.03 to 0.37±0.03, p < 0.01), and the TG enrichment of LDL was also significantly decreased by the reduced LDL TC/TG ratio (from 6.63±2.6 to 4.67±2.56, p < 0.05). These same ratios were stable throughout the placebo treatment.

Examination of the HDL₂/HDL₃ subtraction pattern provided a clear and definitive evidence that the HDL₂ subtraction is dramatically reduced after probucol administration (Figure 3); the HDL₂ peak was essentially deleted in 9 of the 12 patients. This occurred independent of sex and of the relative plasma total and HDL cholesterol reductions. From the zonal ultracentrifugal profiles, a slightly reduced flotation rate of the HDL₃ subtraction after treatment was noted.

The mass, relative composition, and size of the HDL₂ and HDL₃ subfractions showed an excellent stability dur-

Table 1. Plasma Lipid, Lipoprotein, and Apolipoprotein Levels in 12 Hypercholesterolemic Patients Treated with Probucol and Placebo

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>8 weeks</th>
<th>Baseline</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>305.3±12.1</td>
<td>263.2±12.1†</td>
<td>317.8±14.1</td>
<td>312.0±13.0</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>139.9±17.4</td>
<td>131.3±27.2</td>
<td>126.1±18.2</td>
<td>113.9±13.2</td>
</tr>
<tr>
<td>VLDL-cholesterol</td>
<td>26.9±4.6</td>
<td>21.8±4.6</td>
<td>22.3±4.1</td>
<td>20.0±2.5</td>
</tr>
<tr>
<td>VLDL-triglycerides</td>
<td>87.8±17.0</td>
<td>68.1±21.7</td>
<td>68.3±13.6</td>
<td>59.1±11.1</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>229.3±13.8</td>
<td>208.3±12.6†</td>
<td>246.7±17.1</td>
<td>240.5±14.8</td>
</tr>
<tr>
<td>LDL-triglycerides</td>
<td>34.4±3.2</td>
<td>44.9±5.6</td>
<td>43.5±5.3</td>
<td>39.2±4.0</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>48.3±2.9</td>
<td>33.1±2.9†</td>
<td>48.8±2.7</td>
<td>51.5±2.7</td>
</tr>
<tr>
<td>HDL-triglycerides</td>
<td>22.6±4.4</td>
<td>17.3±3.7*</td>
<td>19.3±3.4</td>
<td>21.6±3.8</td>
</tr>
<tr>
<td>Apolipoprotein A-I</td>
<td>121.7±5.5</td>
<td>88.7±7.3†</td>
<td>118.4±5.8</td>
<td>123.2±5.4</td>
</tr>
<tr>
<td>Apolipoprotein A-II</td>
<td>33.7±2.4</td>
<td>30.2±3.4</td>
<td>35.3±3.6</td>
<td>32.6±3.0</td>
</tr>
<tr>
<td>Apolipoprotein B</td>
<td>113.8±5.9</td>
<td>109.6±6.2</td>
<td>116.3±6.2</td>
<td>115.4±5.1</td>
</tr>
</tbody>
</table>

Values are given as mg/dl (means±SEM).
*p<0.05, †p<0.01, ‡p<0.001 vs. baseline.
VLDL=very low density lipoprotein, LDL=low density lipoprotein, HDL=high density lipoprotein.
EFFECTS OF PROBUCOL ON HDL SYSTEM Franceschini et al.

Figure 3. Changes in distribution of the plasma high density lipoprotein (HDL) subfractions in two hypercholesterolemic patients treated with probucol. The rate zonal ultracentrifugation profiles from a female patient (top panel) and a male patient (bottom panel) show the dramatic effect of probucol on plasma HDL₂ (right peak). The HDL₃ concentration (left peak) increased in the woman and decreased in the man after treatment. Note the slight decrease of the HDL₃ flotation rate after probucol in both patients. The HDL subtraction separations were carried out before (—) and after (---) 8 weeks of drug treatment.

Probucol was reduced to less than one-third of the pretreatment value, with a concomitant reduction of HDL₂ cholesterol (Table 2). The HDL₃ concentration in plasma was only moderately modified by probucol treatment: mass was reduced by 12%, and the total cholesterol content, by 21.5%. An obvious consequence of these changes was the significant reduction of the HDL₂/HDL₃ ratio, again to about one-third of pretreatment values, both for mass (from 0.232±0.034 to 0.072±0.014, p<0.001) and for cholesterol (from 0.300±0.044 to 0.105±0.020, p<0.001). The composition of HDL₂, as well as of HDL₃, was not dramatically changed, except for a 44% increase of free cholesterol in HDL₂ and for a decrease of the CE content in both HDL₂ (−12%) and HDL₃ (−14%) (Table 3).

The separation of HDL particles according to size identified two major populations of particles (namely HDL₂₀ and HDL₃₁) in all the examined patients (Figure 4). The mean particle size of these two components remained stable throughout the study (Table 4); however, a dramatic change in the relative contributions of the two peaks was observed after probucol treatment; there was a nearly complete disappearance of the HDL₂₀ peak in 9 of the 12 patients (Figure 4). These results were consistent with the rate zonal ultracentrifugal data.

Finally, the net CE mass transfer between HDL and lower density lipoproteins during in vitro incubation of whole plasma in the presence of an LCAT inhibitor was determined. The decrease of HDL-CE mass was linear with time over the 60-minute assay period either before treatment or after placebo and probucol (Figure 1). With placebo treatment, no change was observed in the CE transfer (from 28.5±14.1 nM/ml/hour to 27.5±14.2 nM/ml/hour) (Figure 5); in contrast, probucol administration led to a 30% increase in the transfer rate, from 28.8±14.8 nM/ml/hr to 37.9±17.4 nM/ml/hr (p<0.005) (Figures 1 and 5). The pretreatment net CE transfer was positively correlated with log TG (r=0.79, p<0.05), VLDL-C (r=0.61, p<0.05), and log VLDL-TG (r=0.78, p<0.05), and inversely with the TC/TG ratio in VLDL (r=0.76, p<0.05) (Figure 6). A weak positive correlation was found with HDL-TG (r=0.58, p<0.05), but not with HDL-TC (r=0.41) or the TC/TG ratio in HDL (r=0.50). The latter correlation was also positively correlated with the ratio between acceptor and donor lipoproteins, expressed as log VLDL-TG/HDL-C (Figure 6). All these correlations were maintained during placebo treatment (data not shown).

By contrast, probucol administration was followed by dramatic changes in the relationships between transfer activity and lipoprotein parameters. After treatment, the net CE transfer was no longer correlated with log TG (r=0.54) or VLDL-TG (r=0.37); a weak positive correla-

<table>
<thead>
<tr>
<th>Table 2. Plasma Levels and Elution Volumes of HDL Subfractions In 12 Hypercholesterolemic Patients Treated with Probucol and Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL₂</td>
</tr>
<tr>
<td>Total mass (mg/dl)</td>
</tr>
<tr>
<td>Associated cholesterol (mg/dl)</td>
</tr>
<tr>
<td>Elution volume (ml)</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>8 weeks</td>
</tr>
<tr>
<td>HDL₃</td>
</tr>
<tr>
<td>Total mass (mg/dl)</td>
</tr>
<tr>
<td>Associated cholesterol (mg/dl)</td>
</tr>
<tr>
<td>Elution volume (ml)</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>8 weeks</td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>Total mass (mg/dl)</td>
</tr>
<tr>
<td>Associated cholesterol (mg/dl)</td>
</tr>
<tr>
<td>Elution volume (ml)</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>8 weeks</td>
</tr>
<tr>
<td>HDL₃</td>
</tr>
<tr>
<td>Total mass (mg/dl)</td>
</tr>
<tr>
<td>Associated cholesterol (mg/dl)</td>
</tr>
<tr>
<td>Elution volume (ml)</td>
</tr>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>8 weeks</td>
</tr>
</tbody>
</table>

Values are the means±SEM.

*p<0.01, †p<0.001 vs. baseline.

HDL=high density lipoprotein.
Table 3. Composition of HDL Subfractions in 12 Hypercholesterolemic Patients Treated with Probucol and Placebo

<table>
<thead>
<tr>
<th>Subfraction</th>
<th>Probulol Baseline</th>
<th>Probulol 8 weeks</th>
<th>Placebo Baseline</th>
<th>Placebo 8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL₂ FC</td>
<td>4.3±0.4</td>
<td>6.2±1.4†</td>
<td>4.0±0.7</td>
<td>4.0±0.7</td>
</tr>
<tr>
<td>HDL₂ CE</td>
<td>20.7±3.4</td>
<td>18.3±3.5*</td>
<td>21.3±3.0</td>
<td>20.6±3.1</td>
</tr>
<tr>
<td>HDL₂ TG</td>
<td>5.3±2.5</td>
<td>4.9±2.2</td>
<td>4.5±1.9</td>
<td>4.9±2.0</td>
</tr>
<tr>
<td>HDL₂ PL</td>
<td>28.1±2.5</td>
<td>29.4±4.3</td>
<td>28.2±2.3</td>
<td>28.6±3.1</td>
</tr>
<tr>
<td>HDL₂ P</td>
<td>41.6±4.4</td>
<td>41.2±4.4</td>
<td>42.0±3.1</td>
<td>41.9±3.4</td>
</tr>
<tr>
<td>HDL₃ FC</td>
<td>2.2±0.1</td>
<td>2.4±0.5</td>
<td>2.0±0.2</td>
<td>2.1±0.9</td>
</tr>
<tr>
<td>HDL₃ CE</td>
<td>17.8±2.2</td>
<td>15.3±2.3*</td>
<td>17.5±1.3</td>
<td>16.9±2.1</td>
</tr>
<tr>
<td>HDL₃ TG</td>
<td>2.8±1.3</td>
<td>3.4±1.7</td>
<td>2.7±0.8</td>
<td>2.3±0.6</td>
</tr>
<tr>
<td>HDL₃ PL</td>
<td>25.4±1.8</td>
<td>24.2±3.5</td>
<td>25.2±2.5</td>
<td>24.3±1.9</td>
</tr>
<tr>
<td>HDL₃ P</td>
<td>51.7±2.8</td>
<td>54.7±3.5</td>
<td>52.5±2.7</td>
<td>54.8±2.2</td>
</tr>
</tbody>
</table>

Values are the means±SD of % of weight.
HDL=high density lipoprotein, FC=free cholesterol, CE=cholesterol esters, TG=triglycerides, PL=phospholipids, P=protein.

* p<0.01, † p<0.001 vs. baseline.

Table 4. High Density Lipoprotein Particle Size in 12 Hypercholesterolemic Patients Treated with Probucol and Placebo

<table>
<thead>
<tr>
<th>Subfraction</th>
<th>Probulol Baseline</th>
<th>Probulol 8 weeks</th>
<th>Placebo Baseline</th>
<th>Placebo 8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL₁₂₀</td>
<td>100.5±2.2</td>
<td>101.5±1.8</td>
<td>99.1±0.9</td>
<td>99.9±1.4</td>
</tr>
<tr>
<td>HDL₁₃₀</td>
<td>85.3±1.8</td>
<td>85.6±1.2</td>
<td>84.1±0.8</td>
<td>84.5±0.9</td>
</tr>
</tbody>
</table>

High density lipoprotein (HDL) particle diameter (Å) was determined by polyacrylamide gradient gel electrophoresis. The values are the means±SD.

Figure 4. Polyacrylamide gradient gel electrophoretic profiles of high density lipoprotein (HDL) subfractions in six hypercholesterolemic patients treated with probucol. Two major populations of HDL particles, i.e., HDL₁₂₀ and HDL₁₃₀, were identified in all the examined patients. The HDL₁₂₀ peak was dramatically reduced or deleted after 8 weeks of probucol treatment.

Figure 5. Changes in the net mass transfer of cholesteryl esters (nMml/hr) in 12 hypercholesterolemic patients treated with probucol. Plasma was incubated at 37°C in the presence of a lecithin cholesterol acyltransferase inhibitor; the decrease of the high density lipoprotein-cholesteryl ester mass was measured at 0, 15, 30, and 60 minutes, and the transfer was calculated as the slope of the regression line obtained for each sample. Transfer activity did not change during placebo treatment, and increased by 30% after 8 weeks of probucol treatment (p<0.001 vs. pretreatment).
EFFECTS OF PROBUCOL ON HDL SYSTEM Franceschini et al. 467

tion with log VLDL-TG was still found, and the relationship with the TC/TG ratio in VLDL was maintained (Figure 6). In these latter cases, the slopes of the regression lines calculated from posttreatment values did not differ from pretreatment (t=0.006 and t=0.012, respectively), indicating that the increased CE transfer activity is not a direct function of lipoprotein changes. The correlation between transfer activity and HDL-TG was also lost (r=0.27), as was that with log VLDL-TG/HDL-TC (Figure 6). Finally, no correlation was found between the increase in transfer activity after probucol and the reduction of HDL-TC levels (r=0.18).

Discussion

The major aim of this study was a characterization of the HDL system during probucol treatment. This appeared to be of particular interest in view of the unclear activity of this compound on HDL metabolism, particularly when considering that the reported reduction of HDL levels does not seem to be associated with any harmful effect on the vascular system. Indeed, there is clinical evidence suggesting that regression of xanthomas may be linked to HDL reduction. The results obtained with two different separation techniques based on flotation rate and particle size confirm in a definitive way that the HDL₂ subfraction is more markedly affected by probucol administration, leading in some patients to an almost complete disappearance of HDL₂ from plasma. HDL₃ concentrations, by contrast, were not significantly influenced by probucol treatment.

These findings are, of course, not consistent with some previous data, which showed a more pronounced effect of probucol on the HDL₃ subfraction. These discrepancies may be due either to the use of unreliable separation methods, or to the selection of patients with different types of hyperlipoproteinemia. In the latter study, extrapolation of the data from the three type IIA patients shows a 74% reduction of HDL₂ levels after probucol, that is, close to those reported here. In our study, the effect of probucol on plasma HDL apolipoprotein concentrations was primarily on apo A-I, consistent with the dramatic reduction of apo A-I containing HDL₂ particles; in contrast, the apo A-II-rich HDL₃ were only marginally affected by active drug treatment. A predominant effect of probucol on the HDL₂ subfraction has also been reported by other authors.

Interestingly and most remarkably, probucol administration led to a highly significant increase of the CE transfer activity compared to the placebo treatment. A

![Figure 6. Relationships of individual lipoprotein parameters to the net mass transfer (nM/ml/hr) of cholesteryl esters in 12 hypercholesterolemic patients before (Δ) and after (●) probucol treatment. VLDL = very low density lipoprotein, TG = triglyceride, HDL = high density lipoprotein, TC = total cholesterol.](http://atvb.ahajournals.org/doi/fig/10.1161/01.ATV.9.3.467)
similar improvement in the CE transfer after propucol has been recently reported by Matsuzawa et al. in patients with a primary defect in the system. The net transfer of CE from HDL to lower density lipoproteins depends upon several variables: the amount of CETP in plasma, CETP binding to lipoproteins, the ratio between acceptor and donor lipoproteins, and the composition of these same lipoproteins. Finally, a plasma inhibitor of CETP has been identified. The increased transfer observed after propucol may result from a modification of one or more of these factors.

Confirming previous reports, the present findings indicate that the pretreatment transfer rate is directly related to several lipoprotein parameters, including the amount of TG-rich lipoproteins in plasma, their composition, and the ratio between VLDL and HDL. The increase in transfer activity after propucol is apparently independent from changes in VLDL levels and composition and is not related to parallel rises in the ratio between acceptor and donor lipoproteins (Figure 6). Furthermore, the two major effects of propucol on the HDL system, that is, the drop in HDL cholesterol and the increase in transfer activity, are not correlated. The effect of propucol on CE transfer would appear, therefore, not to be mediated by a modification in the plasma lipoprotein patterns. However, from the present data, a lack of competition by HDL particles as acceptors of the transferred CE, due to the markedly reduced levels, cannot be excluded, and the minor changes in HDL composition observed after treatment (Table 3), may also alter the binding of CETP to these lipoproteins. To evaluate the substrate independent activity of CETP after propucol administration, in vitro experiments on isolated lipoproteins are planned.

Whatever the mechanism(s) responsible for the higher CE transfer rate, the result is the formation of TG-rich HDL₂ particles (an excellent substrate for HL), which are converted back to CE-poor HDL₃ (Table 3). The 30% increase of CETP activity was associated with a 30% fall of HDL cholesterol (partly due to a reduced content of CE in both HDL₂ and HDL₃) and with a concomitant 25% decrease of apo A-I, possibly consequent to an impaired apolipoprotein synthesis. The lack of significant changes in HDL particle size, flotation rate, and composition are consistent with the hypothesis of an activation of the intravascular HDL metabolism, leading to a reduction in the number of circulating HDL₂ particles. The improved CE transfer in plasma may also be associated with an enhancement of the HDL-mediated cholesterol efflux from cells, as demonstrated in cultured human skin fibroblasts incubated with propucol. Altogether, these findings may provide a biochemical ground for the reported association between reduced HDL cholesterol levels and xanthoma regression.

Some other concomitant biochemical changes were noted in the propucol-treated patients. The relative reduction in the cholesterol content of LDL without significant modifications of apo B levels is somewhat discordant with previous data, indicating a doubling of the LDL apo B removal rate after propucol treatment. These data were, however, not confirmed and, moreover, no change in LDL-B mass was reported in either study. The rise of LDL-TG content is of special interest and possibly of concern. In fact, increased LDL-TG has been linked to an impaired LDL receptor interaction in clinical hypertriglyceridemia. On the other hand, this alteration, which is characteristic of type IV patients and correctable with fibrate treatment, is generally associated with reduced LDL cholesterol levels. Whether an impaired receptor activity of LDL may be a consequence of propucol treatment is difficult to establish. Studies in an experimental homozygous condition have suggested that propucol may improve LDL catabolism, by mechanism(s) other than receptor interaction, possibly linked to the prevention of oxidative changes.

The major findings of this study support the hypothesis that, in addition to an antioxidant effect, propucol may modify plasma HDL metabolism, leading to reduced HDL cholesterol and HDL₂ levels, possibly associated with an improvement in the physiological process of tissue cholesterol removal.

Acknowledgments

Gianni Poggi and Homero Guaglianone (Dow Levett, Milano, Italy) are gratefully acknowledged for providing the propucol and for their general interest and support.

References

study of its effects on high and low density lipoproteins. J
Lipid Res 1983;24:588–595
treatment on lipoprotein cholesterol and drug levels in blood
and lipoproteins in familial hypercholesterolemia. Atherosclerosis
1983;59:47–56
of probucol on the composition of lipoproteins and on VLDL
of cholesterylamine and probucol in the treatment of
familial hypercholesterolemia. Atherosclerosis 1984;51:1–7
16. Durrington PN, Miller IP. Double-blind, placebo-controlled,
cross-over trial of probucol in heterozygous familial
17. Patck JR, Prasad S, Gotto AM Jr, Bangstson-
Olivecrona. G. Postprandial lipemia. A key for the conversion
of high density lipoprotein 3 into high density lipoprotein
affecting the conversion of high-density lipoproteins: ex-
periments with pig and human plasma. Biochim Biophys Acta
1985;1035:244–252
19. Fielding PE, Fielding CJ. A cholesteryl ester transfer complex
in human plasma. Proc Natl Acad Sci USA 1980;
77:3327–3330
20. Eisenberg S. High density lipoprotein metabolism. J Lipid
21. Fredrickson DS, Levy RI, Lees RS. Fat transport in lip-
oproteins—an integrated approach to mechanisms and disor-
22. Brown MS, Goldstein JL. Familial hypercholesterolemia: A
genetic defect in the low density lipoprotein receptor. N Engl
J Med 1986;294:1386–1390
23. Mancini M, Farinoro E, Postiglione A, Rubba A, Straz-
zullo P. Role of diet in atherosclerosis. Atherosclerosis Rev
1980;7:157–167
diet increases low density lipoprotein receptor activity in
mononuclear cells from hypercholesterolemic patients. J Clin
Invest 1987;80:1496–1502
25. Röschlau P, Bernt E, Gruber W. Enzymatische Bestim-
26. Aucolo G, David H. Quantitative determination of serum
19:476–482
27. Wernick GR, Benderson J, Albers JJ. Dextran sulfate
precipitation procedure for quantitation of high density lip-
28. Riffal H, King ME. Immunoturbidimetric assays of apolipo-
32:967–981
29. Hauel RJ, Eder HA, Bregdon JH. The distribution and chemi-
ical composition of ultracentrifugally separated lipopro-
30. Franceschini G, Toal C, Moreno Y, Sirtori CR. Effects of
storage on lipoprotein distribution and high density lipopro-
polyacrylamide gradient gel electrophoresis. Methods Enzymol
1986;128:417–431
32. Fielding PE, Fielding CJ, Havel RJ, Kane JP. Cholesterol
net transport, esterification and transfer in human hyperchol-
33. Patck W, Sailer S, Braunstein H. An enzymatic method
for the determination of the initial rate of cholesterol esterfi-
34. Asmann G, Schriever H, Schmitz G, Hagle EO. Quan-
tification of high-density-lipoprotein cholesterol by precipi-
tation with phosphotungstic acid/MgCl2. Clin Chem 1983;
29:2026–2030
35. Marcel YL, Vezina C, Teng B, Sniderman A. Transfer of
cholesterol esters between human high density lipoproteins
and triglyceride-rich lipoproteins controlled by a plasma
36. Chajek T, Fielding CJ. Isolation and characterization of a
human serum cholesteryl ester transfer protein. Proc Natl
Acad Sci USA 1978;75:3445–3449
37. Bliss CI. Comparison of several groups. In: Bliss CI, ed.
38. Simpson HS, Ballantyne FC, Packard CJ, Morgan HG,
Shepherd J. High density lipoprotein subfractions as mea-
sured by differential polyacrylamid precipitation and rate zonal
39. Matsuzawa Y, Yamashita S, Funahashi T, Yamamoto T,
Tarul S. Selective reduction of cholesterol in HDL2 fraction
by probucol in familial hypercholesterolaemia and hyper HDL2
cholesterolaemia with abnormal cholesteryl ester transfer. Am
J Cardiol 1988;62:569–729
40. Albers JJ, Tollefon JH, Chen CH, Steinmetz A. Isolation
and characterization of human plasma lipoprotein transfer proteins.
Atherosclerosis 1984;4:49–58
41. Morton RE, Zilversmit DB. A plasma inhibitor of triglyceride
256:11992–11995
42. Groener JEM, Van Rorer AJ, Erkalwen DW. Cholesteryl
ester transfer activity. Localization and role in distribution of
cholesterol ester among lipoproteins in man. Atherosclerosis
1984;50:261–271
43. Sammett D, Tall AR. Mechanisms of enhancement of
cholesteryl ester transfer protein activity by lipidysis. J Biol
Chem 1985;260:6687–6697
44. Nestal PJ, Billington J. Effects of probucol on low density
lipoprotein removal and high density lipoprotein synthesis.
Atherosclerosis 1981;38:203–209
45. Goldberg RB, Mendez A. Probucol enhances cholesterol
eflux from cultured human skin fibroblasts. Am J Cardiol
46. Kleinman Y, Eisenberg S, Oschryn Y, Gavish D, Steim O,
Stein Y. Defective metabolism of hypertriglyceremic low
density lipoprotein in cultured human skin fibroblasts. Nor-
75:1796–1803
47. Naruszewicz M, Cawey TE, Pittman RC, Witttum JL,
Steinberg D. A novel mechanism by which probucol lowers
low density lipoprotein levels demonstrated in the LDL-

Index Terms: probucol • high density lipoprotein subfractions
• cholesteryl ester transfer • hypercholesterolemia
Mechanisms of HDL reduction after probucol. Changes in HDL subfractions and increased reverse cholesteryl ester transfer.
G Franceschini, M Sirtori, V Vaccarino, G Gianfranceschi, L Rezzonico, G Chiesa and C R Sirtori

doi: 10.1161/01.ATV.9.4.462

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/9/4/462