Fibronectin Stimulates Macrophage Uptake of Low Density Lipoprotein-Heparin-Collagen Complexes

Domenick J. Falcone and Brian G.J. Salisbury

In this study, we investigated whether fibronectin will enhance macrophage uptake of particulate complexes of low density lipoproteins (LDL), heparin, and fibrillar collagen and whether fibronectin's opsonic effect could be modulated by the heparin component in these model matrices. We isolated a heparin fraction (HepFn) based on its affinity to fibronectin. HepFn appeared more charged than unfractionated heparin, as evidenced by enhanced electrophoretic mobility and ability to effect a cathodic shift in the electrophoretic migration of fibronectin. HepFn lacked the smaller molecular weight species present in unfractionated heparin. Macrophage endocytosis of LDL-heparin-collagen complexes, as evidenced by the intracellular accumulation of LDL-derived cholesterol esters and endogenously synthesized cholesteryl esters, was enhanced by fibronectin. When LDL matrix complexes were prepared with HepFn, fibronectin's opsonic properties were significantly enhanced. F(ab)_2 fragments of anti-fibronectin, capable of inhibiting fibronectin's opsonization of gelatin-derivated latex particles, inhibited the fibronectin-dependent stimulation of cholesterol ester synthesis by macrophages exposed to LDL-HepFn-collagen complexes. Thus, fibronectin stimulates macrophage endocytosis of LDL matrix complexes. The affinity of the constituent glycosaminoglycan for fibronectin is important in the regulation of this phenomenon. (Arteriosclerosis 8:263–273, May/June 1988)
when complexes were prepared with a heparin fraction exhibiting high affinity to Fn and was blocked by F(ab)\(_2\) fragments of anti-Fn.

Methods

Materials

Fresh, human, platelet-poor plasma for Fn and lipoprotein isolations was provided by the New York Blood Center (New York, NY). Dulbecco's modified Eagle's medium (DME), Roswell Park Memorial Institute (RPMI)-1640, Dulbecco's phosphate-buffered saline (DBPS), penicillin/streptomycin sulfate, and trypsin-EDTA were purchased from Flow Laboratories (McLean, VA). Iodo-1\(^{14}\)C-acetic acid (5 to 15 mCi/mmol), 1\(^{14}\)C-oleic acid (40 to 60 mCi/mmole), 9,10-\(^3\)H-oleic acid (2 to 10 Ci/mmole), cholesteryl-1,2,6,7-\(^3\)H-illioleate (75.3 Ci/mmol), 1,2-\(^3\)H-cholesterol (40 to 60 Ci/mmole), 4-\(^3\)H-cholesterol (50 to 60 Ci/mmole), iodine-125 (17 Ci/mg, carrier-free), and Aquasol were obtained from New England Nuclear (Boston, MA). Gelatin-Sepharose 4B, DEAE-Sephadex, heparin-Sepharose CL-6B, and Sephadex G-200 (Superfine) were obtained from Pharmacia Fine Chemicals (Piscataway, NJ). Heparin (sodium salt) was purchased from Sigma (St. Louis, MO), and chondroitin 6-sulfate (sodium salt) was a product of Seikagaku Kogyo and purchased through Miles (Naperville, IL). Heparan sulfate (sodium salt) was an NIH reference standard previously provided by Martin B. Mathews under NIH Contract No1-AM-5-2205. Calf-skin collagen was purchased from Cabiochem-Behring (La Jolla, CA). F(ab)\(_2\) fragments of anti-Fn (37 mg/ml) prepared from a product of Seikagaku Kogyo and purchased through Miles (Naperville, IL). Carboxylated Fluoresbrite microspheres (0.2\(\mu\)m, 2.5% solids, 2 \(\times\) 10\(^{12}\) particles/ml) were purchased from Polysciences (Warrenton, PA).

Additional specific products included: Durapore membranes and Swinnex filters (Millipore, Bedford, MA); Diaflo YM-2 ultrafiltration membranes (Amicon, Danvers, MA); Nunc tissue culture dishes (Nunc, Denmark); Linbro tissue culture plates (Flow); Isogel (FMC, Rockland, ME); Brilliant blue R (Aldrich, Milwaukee, WI); and Celagram-II cellulose acetate membranes (Shandon Southern, Sewickley, PA). All other chemicals or solvents were reagent grade or better and were obtained from Sigma Chemical Company.

Isolation of Plasma Fibronectin

Fn was isolated according to the procedures described by Ruoslahti et al.\(^{23}\) with minor modifications. Fresh, human plasma was filtered to remove particulates, and 1.0 mM phenylmethylsulfon fluoride (PMSF) was added as a protease inhibitor. The plasma was applied to a column of gelatin-Sepharose. Unbound proteins were washed out with 5 M urea/50 mM Tris-HCl (pH 7.5). The isolated Fn was concentrated and dialyzed as above.

Fractionation of Heparin

Purified Fn was adsorbed onto a column of gelatin-Sepharose equilibrated with 50 mM Tris acetate (pH 7.0) containing 1.0 mM PMSF and 0.02% sodium azide. The column was washed free of unbound or excess Fn and 5 mg of heparin in water was added. Fractions were collected and monitored for uronic acid and absorbance at 280 nm. Bound heparin (Hep-Fn) was eluted from the column with a 1.5 M NaCl in 50 mM Tris acetate buffer. The eluant was concentrated by ultrafiltration (YM-2 membrane) to approximately 10 to 15 ml and was dialyzed against water. Heparin was isolated by precipitation with 1% CPC in the presence of sulfate ions.\(^{25}\) The heparin-CPC precipitate was dissolved with a small volume of 2 M NaCl/absolute ethanol (100:15, vol/vol), and heparin was recovered by several cycles of ethanol precipitation.\(^{25}\) The recovered Hep-Fn, pooled from several isolations, was approximately 2 mg. In an effort to isolate a heparin fraction that was unable to bind Fn, 3.6 mg of heparin was applied to the gelatin-Sepharose column in which 25 to 30 mg of Fn was adsorbed. Unbound heparin was recovered by the procedures described above and was reapplied to the regenerated affinity column. The unbound heparin fraction was recovered for a second time and fractionated again. The recovered, unbound fraction was approximately 250 \(\mu\)g.

The heparin fractions were analyzed by cellulose acetate electrophoresis in a cadmium acetate buffer (pH 4.1).\(^{26}\) Heparin fractions were also analyzed by chromatography on a Sephadex G-200 column equilibrated with 50 mM NaCl (pH 6.0) containing 0.005% thimerosal.

Isolation of Lipoproteins

LDL (1.019 \(\le\) d \(\le\) 1.063 g/ml) was isolated from fresh human plasma by ultracentrifugation.\(^{27}\) Isolated LDL was dialyzed against 150 mM NaCl/0.3 mM EDTA (pH 7.4) at 4\(^\circ\)C for 24 hours. Purity of the LDL preparation was determined by electrophoresis in composite agar-agarose gels.\(^{28}\) Acetylation of LDL (acetyl LDL) was performed according to the method of Goldstein et al.\(^{29}\) as described previously.\(^{1}\) Acetyl LDL migrated to a more cathodic position than native LDL when electrophoresed in agar-agarose gels. LDL was iodinated by the method described by Bilheimer et al.\(^{30}\) Both labeled and unlabeled LDL preparations co-migrated following electrophoresis in agar-agard,
rose gels. More than 99.9% of the \(^{125}\text{I}\)-LDL (73 811 dpm/
\(\mu\)g protein) was precipitable with trichloroacetic acid. In
addition, LDL was also labeled by incubating LDL with
\(^3\text{H}-\text{cholesterol linoleate in dimethyl sulfoxide and dialyzed}
\text{free of unincorporated label as described previously.}^{31}\) The
percentage of LDL-\(^3\text{H}-\text{cholesterol linoleate (42 873 dpm/}
\(\mu\)g protein) precipitable by acid or heparin was more
than 99%.

Isolation of Mouse Peritoneal Cells

Resident peritoneal macrophages were obtained from
female BALB/c mice (Rockefeller University) or Swiss
Webster mice (Charles River) by the method of Edelson
and Cohn\(^{32}\) as described previously.\(^1\) Peritoneal cells were
harvested in DPBS, were collected by centrifugation
(400 \(g\) for 10 minutes), and were resuspended in DME or
RPMI containing 20% heat-inactivated fetal cell serum,
penicillin (100 \(\text{IU/ml}\)), and streptomycin (100
\(\mu\)g/ml). Mouse peritoneal cells were aliquoted into plastic
Petri dishes (2 \(\times\) 10\(^6\) cells/35 \(\times\) 10 mm) or 12-well Linbro plates
(5.0 \(\times\) 10\(^5\) cells/well) and were incubated in a humidified
CO\(_2\) incubator at 37°C, 5% CO\(_2\) (5%) incubator at 37°C for 2
hours. Dishes were then washed vigorously with DPBS, and monolayers were incu-
ated overnight with supplemented DME or RPMI.
The experiments were performed the next day.

Complexing Heparin and Other Glycosaminoglycans with Fibronectin

The interaction of Fn with various heparin fractions and
other glycosaminoglycans was analyzed by electrophore-
sis in 1% composite agarose-galactomannan gels (Isogel)
with 50 mM Tris acetate buffer (pH 7.0). Gels were run at
150 V/20 mA for 2 to 2.5 hours with cooling. Proteins were
fixed in 10% acetic acid for 30 minutes and were washed
free of buffer and acid overnight in water. After drying,
gels were stained with 0.1% Brilliant blue R in water/ethanol/
acetic acid (65:25:10, vol/vol/vol).

Binding of \(^{14}\text{C-Cm-Fibronectin to LDL Heparin or LDL Heparin}^{\text{ }}

LDL (355 \(\mu\)g in 0.15 M NaCl/0.3 mM EDTA) was added
to 3 ml of 7.5 mM CaCl\(_2\) containing 100 \(\mu\)g heparin (Hep) or
Hep\(_{fn}\), and was allowed to stand 1 hour at 4°C. Complexes
(LDL-heparin or LDL-Hep\(_{fn}\)) were diluted to 10 ml
with 7.5 mM CaCl\(_2\) and were dispensed into 1 ml aliquots
to which various concentrations of labeled Fn were added.
The binding of Fn to these complexes was measured in
two ways: by co-precipitation and by a filter binding assay.
The co-precipitation of Fn with LDL-heparin complexes
was performed as previously described.\(^1\) The filter binding
assay was performed as follows by using syringe-loaded
Swinnex filters. Samples (1 ml) containing LDL, heparin,
and labeled Fn were passed through a prewashed 0.2 \(\mu\)m
Durapore filter (GVWP; 13 mm), and the filter was washed
by passing through 5 ml of 7.5 mM CaCl\(_2\). The filters were
removed from the holders and were placed overnight in
500 \(\mu\)l 0.5 M NaOH to solubilize the bound \(^{14}\text{C-Cm-Fn}.
Vials received 10 ml of Aquasol and were assayed in a
liquid scintillation spectrometer.

**Preparation of LDL Complexes with Heparin,
Fibronectin, and Collagen**

Insoluble complexes of native LDL, \(^{125}\text{I}\)-LDL, heparin or
Hep\(_{fn}\), Fn, and denatured collagen were prepared as
previously described,\(^1\) with the following modifications.
Heparin or Hep\(_{fn}\) (100 \(\mu\)g), Fn (1 mg), and denatured collagen
(1 mg) were mixed and allowed to stand at room tempera-
ture for 15 minutes. The volume was adjusted to 2.9 ml
with water, and 355 \(\mu\)g of LDL was added. CaCl\(_2\) was
added to a final concentration of 7.5 mM. Under these
conditions, all of the added LDL and heparin was recov-
ered in the insoluble complexes (data not shown). The
concentrations of Fn and gelatin that co-precipitated with
the LDL-heparin complexes were not determined. LDL
matrix complexes prepared as described above were re-
suspended in DPBS before addition to cell incubation
medium. In addition to the above procedures, lipoprotein matrix
complexes containing calf-skin collagen were prepared as
follows: LDL was complexed to heparin or Hep\(_{fn}\) in the
presence of 7.5 mM CaCl\(_2\). LDL-heparin complexes contain-
ing 100 \(\mu\)g LDL and 28 \(\mu\)g heparin or Hep\(_{fn}\) were
isolated by centrifugation and resuspended in a small vol-
ume of 0.15 M NaCl/0.3 mM EDTA (pH 7.0) containing
280 \(\mu\)g of calf-skin collagen and collagen and 280 \(\mu\)g Fn.
The complexes prepared by this procedure were added
directly to the cell incubation medium.

LDL Uptake, Cell Content, and Degradation

\(^{125}\text{I}\)-LDL incorporated into complexes prepared with
heparin or Hep\(_{fn}\) was incubated with macrophage mono-
layers for 1 hour. LDL uptake, cell content, and degrada-
tion were determined by the method of Goldstein and
Brown\(^{33}\) as described previously.\(^1\) Monolayers were treat-
ed with 0.5% trypsin/0.02% EDTA for 30 minutes to re-
move noningested complex-derived LDL.\(^1\) Cells were
was washed twice with DPBS, and cellular protein was digest-
ed with 0.2 M of NaOH. Aliquots were removed for gamma
counting and protein determinations by the method of
Lowry et al.\(^{34}\) Uptake, cell content, and degradation were
expressed as \(\mu\)g of LDL per mg of cell protein.

Cellular Accumulation of \(^3\text{H}-\text{Cholesteryl Esters}

LDL-\(^3\text{H}-\text{cholesterol linoleate in complexes prepared with}
either heparin or Hep\(_{fn}\), collagen, and increasing con-
centrations of Fn were incubated with macrophage mono-
layers for 5 hours in a humidified CO\(_2\) incubator at 37°C.
Each dish also received excess unlabeled oleic acid (100
\(\text{nM oleic acid/20 mM albumin}\) to serve as a substrate for
re-esterification to \(^3\text{H}-\text{cholesterol liberated during hydrolys-}
sis of LDL-\(^3\text{H}-\text{cholesterol linoleate. After incubation, mono-}
layers were exposed to 0.5% trypsin/0.02% EDTA to re-
move noningested complexes; these were washed twice
with DPBS. Lipids were extracted in situ by the method of
Hara and Randirr\(^{35}\) and were fractionated, together with
carrier lipids, into individual lipid classes by TLC as
described previously.\(^1\) After visualization with rhodamine 6G,
the labeled lipids were scraped into scintillation vials contain-
ing 10 ml Aquasol and were assayed. The cell protein
remaining on the culture dishes was dissolved in 0.2 N NaOH, and an aliquot was removed for protein determination. The accumulation of labeled cholesteryl ester was expressed as dpm/mg of cell protein.

**Cellular Incorporation of
\(^{14}\)C- or
\(^{3}\)H-Oleic Acid Into Cholesteryl Oleate**

To each dish, an aliquot of \(^{14}\)C- or \(^{3}\)H-oleic acid and albumin mixture prepared as described by Goldstein et al. was added to give a final concentration of 100 \(\mu\)M oleic acid. After a 5-hour incubation in a humidified CO\(_2\) incubator at 37°C, the cultured cells were washed twice with DPBS. Lipid was extracted and fractionated as outlined above. Esterification was expressed as the nmoles of labeled oleic acid incorporated into cholesteryl esters per mg of cell protein.

Fluorescent Phagocytosis Assay

Phagocytosis of gelatin-derivatized fluorescent latex particles (0.28 \(\mu\)m) was determined as previously described. On the day of the assay, macrophages were washed to remove serum and were incubated with media (RPMI containing 100 \(\mu\)g/ml heparin); the media were supplemented with Fn (50 \(\mu\)g/ml) or Fn and F(ab)_2 fragments of anti-Fn (Ab; diluted 1:100, vol/vol. Each well then received 10\(^{6}\) gelatin-derivatized fluorescent latex particles. After a 1.5-hour incubation, nonigested particles were removed by trypsinization (0.5% trypsin and 0.02% EDTA, 20 minutes). Cells were solubilized with 0.2 N NaOH and fluorescence was measured in a Turner filter fluorometer.

Statistical Analysis

When indicated by variance ratio testing, heteroscedastic data were converted by log transformation \([x'] = \log(x + 1)\) before parametric analysis. The mean cellular uptake of LDL matrix complexes containing either heparin or HepFn were compared by using the \(t\) test. The mean cellular incorporation of labeled oleic acid into cholesteryl esters stimulated by various LDL matrix complexes was compared by using a single-factor analysis of variance. When indicated by a significant \(F\)-statistic, pairwise comparisons were performed by multiple range testing procedures. The uptake of fluorescent latex particles by control cells and cells exposed to either Fn or Fn and anti-Fn were compared by single-factor analysis of variance. The effect of Fn on mean cellular accumulation of \(^{3}\)H-cholesterol esters by macrophages incubated with LDL-\(^{3}\)H-cholesterol linoleate complexed with either heparin or HepFn and collagen was analyzed by using two-factor analysis of variance.

Results

Properties of Heparin Fraction Isolated by Its Affinity to Fibronectin

Commercial heparin was fractionated on a gelatin-Sepharose column to which purified Fn was first adsorbed. When analyzed by cellulose acetate electrophoresis, the unfractonated heparin was resolved into two bands: a diffuse cathodic band and an adjacent denser anodic band (Figure 1). The various heparin fractions migrated in a fashion similar to commercial heparin (two bands) with little or no difference in the diffuse band. In contrast, there were clear differences in the migration of the dense anodic band. In the case of HepFn, the trailing edge of this band was shifted cathodically (Figure 1, Lane 2). This was a characteristic and reproducible property of various HepFn isolates and was unaffected by the buffer system. In contrast to HepFn, the leading edge of the anodic band of a heparin fraction serially depleted of Fn binding activity was shifted more anodically (Figure 1, Lane 3).

The size distributions of heparin fractions were compared by chromatographing equivalent amounts of heparin and HepFn (Figure 2) on a Sephadex G-200 column. Un-
fractionated heparin eluted at an approximate K_v of 0.35, slightly skewed to the right. HeP$_{Fn}$ eluted at a similar K_v; however, its elution profile was less polydisperse and did not contain a population of smaller species present in the unfractionated heparin. An insufficient amount of unbound heparin precluded its analysis.

Interaction of Heparin and Fibronectin

Since heparin is polyanionic, its binding to Fn should alter Fn migration in an electric field. We tested for heparin-induced shifts in Fn migration by use of uncharged agarose-galactomannan gels. As seen in Figure 3A, the pre-incubation of Fn with unfractionated or fractionated heparins leads to an increased cathodic migration. HeP$_{Fn}$, isolated by its affinity to adsorbed Fn, was most effective in this regard (Figure 3A, Lane 2). Surprisingly, a heparin species that did not bind to Fn adsorbed on gelatin-Seph- arous bound to soluble Fn under identical ionic conditions. This was evidenced by the relatively small shift in the migration of Fn observed when depleted heparin was mixed with Fn (Figure 3A, Lane 4). For comparison, two other polyanions were also examined (Figure 3B). Chondroitin sulfate had no effect on Fn migration (Lane 3), whereas the addition of heparan sulfate led to a small, but discernible, increase in Fn mobility (Lane 2).

The cathodic shift in Fn migration observed in the presence of heparin was dependent on heparin concentration (Figure 3C). As little as 1 µg of heparin per 100 µg Fn resulted in increased mobility. This was further accentuated with 10 µg of heparin; however, no further displacement was observed with 100 µg of heparin. Additionally, heparin induces Fn aggregation. This is evidenced in Figures 3A and 3C by the darkly stained material remaining at the origin. Furthermore, under similar conditions, HeP$_{Fn}$ induced greater aggregation than unfractionated heparin (Figure 3A, Lane 2 vs. Lanes 3 or 4).

In addition to multiple heparin binding domains, each Fn molecule contains two domains that bind collagen and gelatin. We tested whether the migration of Fn could...
be modified by its interaction with another ligand to which it strongly interacts. As seen in Figure 3D, gelatin migrates anodically (Lane 1); Fn migrates cathodically, and its cathodic migration is enhanced by heparin (Lanes 2 to 4). The addition of gelatin to Fn led to band dispersion, which was accentuated in the presence of heparin or HepFn (Lanes 5 to 7).

We have previously demonstrated the incorporation of Fn into LDL-heparin complexes.1 Since HepFn was isolated by its ability to bind adsorbed Fn, LDL-heparin complexes prepared with HepFn should bind more Fn. We examined this possibility by measuring the incorporation of 14C-Cm-Fn into LDL-heparin complexes. When compared to native Fn, Cm generated a large fraction of Fn that failed to bind to heparin-Sepharose (Figures 4A and 4B). Only Cm-Fn, which did bind the heparin-Sepharose and eluted at a similar ionic strength as native Fn, was used in the subsequent binding studies. As indicated in Figure 5, in both assay systems, more labeled Fn bound to LDL-HepFn than to LDL-heparin complexes.

Modulation of Macrophage Catabolism of LDL Matrix by Interaction of Heparin with Fibronectin

We investigated whether the incorporation of a fraction of heparin with high affinity to Fn into LDL-heparin-Fn-denatured collagen complexes would modulate their uptake by macrophages. For these purposes, we used 125I-LDL as a tracer for endocytosis of apolipoproteins. As seen in Table 1, macrophages internalized significantly more (60%) LDL when insolubilized in a matrix containing HepFn (p<0.05). Furthermore, more than 75% of endocytosed LDL remained undegraded. These results confirm a previous report,1 and demonstrate that the macrophage's hydrolytic apparatus is rapidly overwhelmed by the uptake of these insoluble LDL matrix complexes. Similar accumulation of undegraded LDL was observed when macrophages were exposed to insoluble LDL proteoglycan2 and LDL-dextran sulfate complexes.41,42 However, once internalized, macrophages can slowly degrade LDL matrix and liberate hydrolytic products, including free cholesterol. Since endogenous cholesteryl ester synthesis is dependent on the availability of lipoprotein-derived cholesterol, the differential uptake of these complexes should be reflected in differential rates of endogenous cholesteryl ester synthesis. Therefore, we measured the incorporation of 14C-oleic acid into cholesteryl esters by macrophages exposed to LDL matrix complexes (Table 2). Our results demonstrate that esterification increased threefold in cells exposed to LDL matrix complexes prepared with unfraccionated heparin as compared to LDL alone (p<0.005).
Likewise, a fivefold increase in the incorporation of 14C-oleic acid was found in cells receiving complexes prepared with HepFn (p < 0.001). Neither complex was as stimulatory as soluble acetyl LDL, which is rapidly internalized and degraded.1,29 These results (the stimulatory effect of HepFn on the uptake of LDL sequestered in a model matrix containing heparin, Fn, and gelatin) provide indirect evidence that the interaction of Fn with components of the LDL matrix complex is important for stimulating uptake by scavenger cells.

To test directly whether the binding of Fn to insoluble LDL matrix complexes modulated their uptake by macrophages, it was necessary to prepare a matrix containing calf-skin collagen instead of gelatin. Acid-soluble collagen forms fibrils at neutral pH and will co-precipitate with heparin, whereas gelatin is not easily precipitated by heparin except in the presence of Fn. The effect of Fn on scavenger cell uptake of insoluble LDL matrix complexes was assessed by measuring both the obligatory increase in cholesteryl ester synthesis after endocytosis and hydrolysis of LDL, and the accumulation of undegraded lipoprotein derived cholesteryl esters. Incubating macrophages with LDL-HepFn complexes did not stimulate cholesteryl ester synthesis as compared to that observed in cells receiving LDL (Table 3) or in media controls (data not shown). Esterification observed in macrophages incubated with particulate LDL-heparin-collagen complexes increased 2.5-fold over controls (p < 0.01) and approximately fivefold when Fn was present (LDL-heparin-collagen vs. LDL-heparin-collagen-Fn; p < 0.05). Complexes prepared with LDL-HepFn-collagen dramatically stimulated cholesterol esterification as compared to controls and similar complexes prepared with unfractionated heparin (p < 0.001). As expected, the incorporation of oleic acid into cholesteryl esters stimulated by the ingestion and hydrolysis of LDL-HepFn-collagen complexes was further enhanced by Fn (p < 0.001). LDL matrix complexes prepared with chondroitin sulfate, dermatan sulfate, or heparan sulfate failed to insolubilize LDL or to stimulate endogenous cholesteryl ester synthesis at concentrations of glycosaminoglycan equivalent to that used for heparin in these studies (data not shown).

We next determined if the Fn-dependent stimulation of endogenous cholesteryl ester synthesis observed in macrophages exposed to LDL-HepFn-collagen complexes could be inhibited in the presence of F(ab)2 fragments of anti-Fn. The ability of F(ab)2 anti-Fn to block the opsonic activity of Fn was first tested by monitoring cellular uptake of gelatin-derivatized fluorescent latex particles. Macrophage phagocytosis of gelatin-derivatized fluorescent latex particles increased from 3.0 ± 0.2 to 7.9 ± 2.8 × 106 particles/μg cell protein (mean ± SD, n = 4) in the presence of Fn (p < 0.001). When cells were incubated with media containing gelatin-derivatized particles, Fn and F(ab)2 anti-Fn (1:100, vol/vol), uptake was reduced to 0.8 ± 0.2 × 106 particles/μg cell protein. Likewise, the Fn-dependent stimulation of cholesteryl ester synthesis in macrophages exposed to particulate LDL-HepFn-collagen complexes (p < 0.01) was blocked by the addition of F(ab)2 fragments of anti-Fn (Table 4).

As shown in Table 1, cells exposed to LDL insolubilized in a matrix rapidly accumulate undegraded lipoprotein, which would not contribute to the stimulation in the incorporation of oleic acid into cholesteryl esters observed in Table 3. We therefore used LDL-3H-cholesterol linolate as a tracer for the accumulation of undegraded lipoprotein-derived cholesteryl esters (Figure 6). However, since LDL-3H-cholesterol linolate was isolated by TLC, it was necessary to prepare a matrix containing LDL-heparin-collagen complexes.
cholesteryl linoleate is labeled in the cholesterol moiety, a fraction of 3H-cholesterol liberated as a consequence of limited hydrolysis may contribute to endogenously synthesized cholesteryl esters. As expected, exposure of macrophages to LDL cholesteryl 3H-linoleate insolubilized with heparin (or HepFn) and collagen led to the intracellular accumulation of 3H-cholesteryl esters. When either LDL-Hep-collagen or LDL-HepFn-collagen complexes were prepared with increasing concentrations of Fn, macrophage accumulation of 3H-cholesteryl esters increased significantly ($p<0.001$). Furthermore, as seen in Figure 6, Fn effected a greater dose-dependent increase in 3H-cholesteryl ester accumulation when complexes were prepared with HepFn ($p<0.05$).

Discussion

In experiments reported here, we investigated whether the interaction of Fn with LDL matrix complexes can modulate their uptake by scavenger cells. For these purposes, we used two complementary approaches. First, we isolated and partially characterized a heparin fraction, based on its affinity to Fn. If the interaction of Fn with heparin and gelatin is important to scavenger cell uptake of LDL matrix, then complexes prepared with HepFn should be internalized more efficiently. Second, using insoluble complexes of heparin, fibrillar collagen, and LDL, we determined directly if Fn can modulate the uptake of LDL matrix complexes.

When compared to unfractionated heparin, HepFn displayed a small cathodic shift in its migration in cellulose acetate, reflecting its greater charge or sulfation. In contrast, heparin serially depleted of Fn-binding species was less charged by the same criteria (Figure 1). These results are supported by the observation that heparan sulfate fractions, successively isolated from heparan sulfate-CPC complexes by dissolution with increasing NaCl concentrations, migrated more cathodically in cellulose acetate. When heparan sulfate was subsequently fractionated on Fn-Sepharose, low sulfated heparan sulfate did not bind to adsorbed Fn, whereas the fraction with the greatest charge demonstrated the highest affinity to Fn. Likewise, when heparan was fractionated on Fn-Sepharose by elution with stepwise increases in NaCl, fractions that eluted at higher ionic strength contained more sulfate.

We observed that the size distribution of HepFn was more homogeneous and more charged than unfractionated heparin. HepFn did not contain a population of smaller heparin molecules (Figure 2). These results are consistent with the observations of others who have demonstrated a correlation between larger heparin molecules or longer heparin chains and a higher affinity to Fn. In our studies, a shift in K_w was not apparent; however, we did not fractionate Fn-binding heparin into the low or into the several high affinity fractions that reportedly display a considerable range in K_w values with Sephadex G-100.

Fn contains a series of heparin binding domains. When isolated by proteolytic cleavage and affinity chromatography on heparin-Sepharose, these domains possessed a basic pl. The binding of polyanions to positively-charged amino acids in these domains should result in a cathodic shift in the migration of Fn in an uncharged gel medium. This was evident in Figure 3. Furthermore, this shift in Fn migration was dependent on the nature of the polyanion. For example, the HepFn fraction of heparin caused the largest cathodic shift, whereas chondroitin sulfate had no effect. This observation is consistent with the finding that Fn has little affinity with free chondroitin sulfate. Even heparin that was serially depleted of Fn binding fractions by affinity chromatography to adsorbed Fn was able to bind to soluble Fn, resulting in a small cathodic shift. These results strongly suggest that the reported failure of a putative non-binding heparin fraction to adsorb Fn may have resulted from the masking of heparin binding sites normally available when Fn is soluble.

The substitution of HepFn for unfractionated heparin in particulate complexes of LDL, heparin, denatured collagen, and Fn resulted in the enhanced uptake of complex-derived LDL and the subsequent cholesteryl ester synthesis by scavenger cells (Tables 1 and 2). Since complexes prepared with HepFn bind more Fn, these data suggest that the cellular uptake of particulate LDL matrix complexes may be regulated by their interaction with Fn. To directly test the role of Fn in macrophage ingestion of LDL matrix complexes, insoluble Fn-free complexes were prepared with LDL, heparin, and acid-soluble calf-skin collagen.
Whereas gelatin is not easily insolubilized by heparin except in the presence of Fn, acid-soluble collagen forms fibrils at neutral pH and co-precipitates with heparin. Cellular uptake of complex-derived LDL was monitored by quantitating cholesteryl ester synthesis and the accumulation of undegraded LDL-derived cholesteryl esters over an equivalent incubation period. Since internalized LDL-derived cholesteryl ester is either degraded and re-esterified or remains undegraded, then monitoring both processes provides an index of uptake.

The dramatic effect of insolubilizing LDL with matrix components on the stimulation of endogenous cholesteryl ester synthesis by scavenger cells is demonstrated in Table 3. Particulate complexes of LDL, heparin or HepFn, and fibrillar collagen stimulated cholesteryl ester synthesis, whereas soluble LDL or LDL-heparin complexes did not. Furthermore, the rate of cholesteryl ester synthesis in macrophages exposed to complexes prepared with HepFn was fourfold greater than that observed in cells exposed to complexes prepared with unfraccionated heparin. There are two possible explanations for these observations. Since the stimulation in cholesteryl ester synthesis is dependent on LDL uptake and hydrolysis, the data suggest that either: 1) more of the complexes prepared with HepFn are internalized, or 2) complexes prepared with unfraccionated heparin are not degraded. Since the intracellular accumulation of undegraded LDL-derived cholesteryl esters was similar in cells exposed to complexes prepared with heparin or HepFn, the first possibility is more likely in the absence of Fn (Figure 6). The enhanced uptake of LDL-HepFn-collagen complexes may reflect the increased anionic charge of HepFn. In these experiments, equivalent amounts of heparin and HepFn completely insolubilized LDL under conditions of low ionic strength. When complexes were suspended in physiologic saline containing collagen fibrils, more of the LDL co-precipitated with the collagen in the presence of HepFn (data not shown). In the absence of heparin or HepFn, LDL did not co-precipitate with fibrillar collagen. In the absence of collagen, LDL-heparin (or HepFn) complexes were soluble and did not stimulate macrophage cholesteryl ester synthesis (Table 3). Therefore, HepFn stimulates macrophage uptake of LDL by its more effective binding to collagen.

It would appear from these studies that the observed stimulation in ingestion of matrix-derived LDL was largely a consequence of its insolubilization. Indeed, macrophages readily ingest LDL insolubilized through complexation with other large polyanions. However, the results of these experiments showed that Fn can enhance scavenger cell ingestion of LDL matrix complexes. This conclusion is based on the observation that Fn stimulated both cholesteryl ester synthesis and the accumulation of undegraded lipoprotein-derived cholesteryl esters in cells exposed to LDL matrix complexes (Table 3, Figure 6). By using the same criteria, the opsonic effect of Fn was further enhanced when complexes were prepared with a heparin fraction exhibiting high affinity to Fn. This shows for the first time that Fn can indeed opsonize extracellular matrix components and thereby stimulate uptake of sequestered ligands. However, it should be emphasized that enhanced phagocytosis is not an obligatory response by macrophages to Fn-coated targets. Thus, the interaction of Fn, collagen, and heparin may be specific.

In previous and present studies, heparin was used as a convenient and standardized reagent with which to model insoluble complexes of LDL and extracellular matrix components that may be present in the arterial wall. Heparin's high anionic charge may mimic the high charge density exhibited by arterial proteoglycans. For example, although aortic chondroitin sulfate-dermatan sulfate proteoglycan is as potent and selective as heparin in precipitating LDL, the ability of its constitutive glycosaminoglycan chains to insolubilize LDL is significantly less. In a similar manner, the ionic interaction of Fn and polyanions is dependent on charge density. Chondroitin sulfate proteoglycan can effectively bind Fn, whereas free chondroitin sulfate cannot.

In addition to exhibiting a high charge density, a general property of proteoglycans, heparin may be considered as a surrogate for heparin-like molecules in the arterial wall (i.e., heparan sulfate proteoglycans). Heparan sulfate is heterogeneous due to differences in hexuronic acid composition and sulfation. It has been reported that the physiochemical characteristics of heparan sulfate synthesized by endothelial and smooth muscle cells vary depending on their growth state. These structural differences are related to functional properties, such as the ability to inhibit smooth muscle cell proliferation. In addition, there may be local differences in the nature of the heparan sulfates in the arterial wall, such as the increased charge of heparan sulfate found in an area of pigeon aorta predisposed to lesion development. Highly charged heparan sulfate proteoglycan may play a role similar to the HepFn used in this study.

In the blood vessel, as elsewhere, glycosaminoglycan chains are linked to a protein core of a parent proteoglycan molecule. Free glycosaminoglycans or portions thereof could be generated in atherosclerotic lesions by the action of platelet and macrophage endoglycosidases and macrophage proteases. Released glycosaminoglycan chains or oligosaccharides of sufficient length possess LDL binding capacity; however, it is unlikely that free glycosaminoglycan chains (unless very highly charged) would insolubilize LDL at physiologic ionic strength. In the experiments reported here, LDL matrix complexes prepared with chondroitin sulfate, dermatan sulfate, and heparan sulfate failed to insolubilize LDL or to stimulate cholesteryl ester synthesis in macrophages. Consequently, heparin and the higher charged HepFn are analogous to intact proteoglycans, which insolubilize LDL and co-precipitate with collagen fibrils. This binding to Fn. These findings have important implications for understanding scavenger cell function in the lipoprotein-rich, extracellular compartment of atherosclerotic lesions.

References
2. Salisbury BGJ, Falcone DJ, Minlck CR. Insoluble low-density lipoprotein-proteoglycan complexes enhance cholesteryl...
est accumulation in macrophages. Am J Pathol 1985; 120:6-11

3. Vijayagopal P, Srivinasa S, Jones KM, Redhrakshana

murthy B, Berenson GS. Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholester

ey est accumulation in mouse peritoneal macrophages. Biochim Biophys Acta 1985;837:251-261

4. Orekhov AN, Tertov YV, Muklin DN, et al. Association of low-density lipoprotein with connective tissue matrix compo

nents enhances cholesterol acculation in cultured suben

dothelial cells of human aorta. Biochim Biophys Acta 1987; 928:251-258

5. Bervillecuq MP, Amrani D, Mosesson MW, Blanco C. Recep

tors for cold-insoluble globulin (plasma fibronectin) on hu

15. Smith DE, Furcht LT. Localization of two unique heparin binding domains of human plasma fibronectin with mono

27. Falcone DJ, Hajjar DP, Minck CR. Lipoprotein and albumin accumulation in reendothelialized and deendothelialized aor

ta. Am J Pathol 1984;114:112-120

31. Edelson PJ, Cohn KA. Purification and cultivation of monocy

32. Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts: Compari

son of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 1974;249:5153-5162

34. Hara A, Randin NA. Lipid extraction of tissues with low
toxicity solvent. Anal Biochem 1978;90:420-426

36. Falcone DJ. Florescent opsonization assay: Binding of plas

ma fibronectin to fibrin-derivatized fluorescent particles does not enhance their uptake by macrophages. J Leukocyte Biol 1986;39:1-12

40. Kielland MC, Steinman RM, Cohn ZA. Intralysosomal accumu

41. Kielland MC, Cohn ZA. Intralysosomal accumulation of poly

42. Ogamo A, Nagai A, Nagaoka A. Binding of heparin fraction

tions and other polysulfated polysaccharides to plasma fibro

nectin. Effects of molecular size and degree of sulfation of polysaccharides. Biochim Biophys Acta 1985;841:30-41

43. Richter H, Hormann H. Early and late cadherin D-derived frag

ments of fibronectin containing the C-terminal disulfide cross-link. Hoppe-Seyer's Physiol Chem 1982;363:351-364
Index Terms: macrophage • fibronectin • collagen • heparin • extracellular matrix • LDL
Fibronectin stimulates macrophage uptake of low density lipoprotein-heparin-collagen complexes.
D J Falcone and B G Salisbury

doi: 10.1161/01.ATV.8.3.263

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/8/3/263

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/