Synthesis and Secretion of Plasma Cholesteryl Ester Transfer Protein by Human Hepatocarcinoma Cell Line, HepG2

Russell A. Faust and John J. Albers

We have examined the synthesis, secretion, and functional and physical characteristics of a lipid transfer protein synthesized by a human hepatocellular carcinoma line. We found that this protein shares immunochemical determinants and many other properties with the lipid transfer protein, LTP-I, which has been purified from human plasma. We conclude that the human liver cell line, HepG2, synthesizes and secretes LTP-I. Thus, hepatocytes may be the source of LTP-I in human plasma.

(Arteriosclerosis 7:267-275, May/June 1987)

Although the majority of the cholesteryl ester (CE) resides in the low density and very low density lipoproteins (LDL, VLDL) of human plasma, most of plasma CE is generated on the high density lipoprotein (HDL) fraction by the lecithin:cholesterol acyltransferase (LCAT) enzyme from free cholesterol and phospholipid (PL). Since the substrate on which this LCAT reaction occurs is primarily the HDL, the observed distribution of CE among other plasma lipoproteins reflects the movement of CE from HDL to VLDL and LDL. This phenomenon, described in 1965, is now believed to result from the action of a single protein, designated lipid transfer protein-one (LTP-I), which has been purified from both human and rabbit plasma. In addition to promoting CE exchange and transfer, this protein also mediates the exchange and net mass transfer of triglyceride (TG) and PL between the plasma lipoproteins. A second transfer protein in human plasma, LTP-II, facilitates the exchange and transfer of only PL between plasma lipoproteins. The two transfer proteins can be distinguished by several properties: LTP-I, Mr approximately 63 kilodaltons, transfers CE, TG, and PL between the plasma lipoproteins; exhibits no affinity for heparin, and is stable to heat (56°C, 1 hour); LTP-II, Mr approximately 66 kilodaltons, transfers only PL and binds to heparin; virtually all of its activity is destroyed by heating (56°C, 1 hour).

In situ evidence which implicates LTP-I in a fundamental role in plasma sterol homeostasis is rapidly accumulating. LTP-I cholesteryl ester transfer activity modulates the LCAT reaction. It has been suggested that this may be due to the relief of CE product-inhibition of LCAT by transfer of CE out of HDL, since the enhancement of cholesterol esterification by VLDL is dependent upon transfer of CE from HDL to VLDL. LTP-I is postulated to play a role in reverse cholesterol transport of cholesterol from extrahepatic tissues by transferring LCAT-derived CE from HDL to other lipoproteins for uptake by the liver. Excess cholesterol in these lipoproteins is ultimately excreted by the liver into the bile as unesterified cholesterol or bile acid. LTP-I may also mediate transport of cholesteryl ester directly to the liver, and from cells as suggested by recent in vitro models of CE efflux from cellular and extracellular components.

Efforts to understand the function and regulation of the cholesteryl ester transfer protein have increased interest in the tissue source(s) of LTP-I. It is perhaps intuitive that the hepatic parenchymal cell would be the source of a plasma transfer protein intimately involved in lipoprotein sterol metabolism. This expectation seems to be supported by reports of LTP-I transfer activity in concentrated rabbit liver perfusate. On the other hand, there has been no direct demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP-I transfer activity in concentrated rabbit liver perfusate. On the other hand, there has been no direct demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocytes or any liver cell line. Furthermore, our demonstration of LTP synthesis or secretion by hepatocyt...
lection (Rockville, Maryland). All tissue culture reagents were from Gibco (Santa Clara, California). T-75 culture flasks were from Corning (Seattle, Washington) and the six-well culture plates were from Flow Laboratories (McLean, Virginia). Aprotinin and cycloheximide were from Sigma (St. Louis, Missouri). All isotopically-labelled lipids were purchased from New England Nuclear (Boston, Massachusetts). Most column matrices were from Pharmacia (Piscataway, New Jersey); CNBr-activated Sepharose used for immunoaffinity purification of goat antihuman LTP-I was obtained from Sigma. All centrifugation materials and equipment were by Beckman (Palo Alto, California).

Cell Culture

The human hepatocarcinoma cell lines, HepG2 and Hep3B, were grown in minimal essential medium (MEM) with Hank’s salts, 10 mM HEPES, 6.8 mM glucose, penicillin and streptomycin, and nonessential amino acids, supplemented with 10% heat-inactivated fetal bovine serum (FBS), and incubated at 37°C under 5% CO2/95% air atmosphere. The media were replaced with fresh MEM-FBS every three days, and the cells were subcultured weekly: 1:3 for HepG2 and 1:6 for Hep3B. The cells were utilized for experiments within 10 days of plating upon reaching approximately 90% confluency, corresponding to approximately 2 × 10⁶ cells/T-75 flask.

For timecourse secretion studies, cells were grown in six-well plates and allowed to reach approximately 90% confluency before use in experiments. At T₀ all growth media were aspirated, cell layers were washed twice with 1.5 ml serum-free MEM (SF-MEM), and replaced in 1.0 ml SF-MEM cell wash from the start of the experiment incubated with d/a substrate at 37°C. Aliquots of partially purified LTP from human plasma, *PS-pool,* (eluted from phenyl-Sepharose CL-6B with H₂O, purified approximately 250-fold) were stored at −70°C for use as a positive reference standard; the activity of this standard was observed to remain stable over the course of these investigations. After the sample incubations, two methods were employed for separating the labelled-HDL₃ donor lipoproteins from the acceptor lipoproteins. In the first method, separation of HDL₃ donor from d < 1.006 g/ml acceptor lipoproteins was achieved by ultracentrifugation in a Beckman Ti 42.2 rotor (230 μl sample volume) at 40,000 rpm, 48 hours, 4°C. Following ultracentrifugation, sample tubes were flash-frozen in liquid nitrogen, and the d < and > 1.006 g/ml fractions were obtained by tube slicing. Each fraction was counted in its entirety to obtain the percent of labelled lipid transferred from the HDL₃ donor to the d < 1.006 g/ml fraction when incubated at 37°C with HepG2 CM. Alternatively, labelled HDL₃ donor lipoproteins were separated from d < 1.063 g/ml acceptor lipoproteins by precipitating d < 1.063 g/ml acceptor lipoproteins with 50 kDa dextran-sulfate-MgCl₂ as described previously. Aliquots of the donor supernatants were taken for calculation of labelled substrate lipid transferred. For both methods the transfer activity was defined as the percentage of transfer of l-
HepG2 secretion of lipid transfer protein, LTP-I

Faust and Albers

...was eluted with a pH gradient running from pH 5.5 to 3.9 at a flow rate of 18 cm hr⁻¹. To determine the pl of transfer activity in the presence of urea, chromatofocusing was carried out as above, with 1 M urea present in all buffers and samples. Fractions of 600 µl were collected, their pH was recorded, and 1 M Tris (pH 7.4) was added to a final concentration of 10 mM to equilibrate all samples before assay; aliquots were assayed in triplicate for CE- and PC-transfer activity. A sample of plasma PS-pool was chromatographed as above, with and without 1 M urea, for comparison.

Heparin-Affinity Chromatography of HepG2 Neutral Lipid Transfer Activity

An aliquot of CM collected after a 24-hour exposure to HepG2 was diluted 1:3 with distilled, deionized H₂O to lower its ionic strength to equal that of 50 mM NaCl; it was applied to a heparin-Sepharose CL-6B column equilibrated with 50 mM NaCl, 10 mM Tris (pH 7.4). Aliquots of the starting material and of the nonbinding volume were assayed for CE-, TG-, and PC-transfer activity to determine the percentage of the activity that remained bound to heparin-Sepharose.

Chromatographic Isolation of an Inhibitor of LTP-I Activity from HepG2

HepG2 CM and heparin-Sepharose gel were prepared as described above for heparin-affinity chromatography. Approximately 50 ml of HepG2-CM (diluted 1:3 with ddH₂O) were applied to a 0.75 x 8 cm heparin-Sepharose CL-6B column at approximately 20 ml/hr. The nonbinding volume was collected and the column was washed with 50 mM NaCl, 10 mM Tris (pH 7.4) until optical absorption at 280 nm returned to baseline. The column was then eluted with a gradient generated from 50 mM to 500 mM NaCl, 10 mM Tris (pH 7.4), and 1 M urea. The optical density at 280 nm was determined for each 3 ml fraction collected, and fractions comprising the single protein peak were pooled, dialyzed against TBS, and tested for inhibitory activity against HepG2 and partially purified plasma CE transfer activity.

LTP-I Inhibitor Assay

Inhibitory activity against cholesteryl ester transfer activity was taken to indicate inhibition of LTP-I. The inhibition assay used was similar to that described previously. Briefly, donor and acceptor lipoproteins (d/a) were incubated with samples containing either HepG2 culture medium or partially purified plasma lipid transfer activity (PS-pool) as sources of positive CE transfer activity. Aliquots of the test sample (bound protein which was eluted from heparin-Sepharose and dialyzed against TBS) were added to tubes of this d/a-transfer activity mixture in varying amounts. The final volumes of all tubes were equilibrated by addition of TBS. Percent inhibition was calculated as the percent decrease in apparent CE-label transferred from HDL₃ donor lipoproteins to d < 1.063 g/ml acceptor lipoproteins in incubations containing test samples, as compared to incubations containing no inhibitory activity (TBS).
Isolation and Characterization of Anti-LTP-I

LTP-I was purified from plasma to homogeneity (as determined by SDS-polyacrylamide electrophoresis) by sequential chromatographic isolation on phenyl-Sepharose, diethylaminoethyl-Sepharose, carboxymethyl-cellulose, heparin-Sepharose, and hydroxyapatite-BioGel, and finally eluted from a 2 M urea gel. This sample was used for the initial inoculation of a goat, with a booster injection administered 3 weeks later. The goat was bled prior to inoculation and 1 week after the booster shots. Both samples were brought to d = 1.21 g/ml by addition of solid KBr and ultracentrifuged at 48,000 rpm, 4°C, for 40 hours. Any endogenous goat LTP-I activity which might have yielded spurious activity in the neutral lipid transfer assay was removed from d > 1.21 g/ml goat plasma by hydrophobic-interaction chromatography on a phenyl-Sepharose CL-6B column equilibrated with 2 M NaCl. The nonbinding volume was pooled, dialyzed vs TBS, and assayed for CE transfer activity to confirm that it contained no residual LTP-I activity in a transfer assay using human HDL_ as donor, and human d < 1.063 g/ml lipoproteins as acceptor.

Western blot analysis of this polyclonal antibody preparation revealed the presence of contaminant antibodies that recognized human serum albumin (HSA). These were subsequently removed by passage of the antibody preparation over HSA-Sepharose (Sigma fraction-V, 17.6 mg donor, and human d < 1.063 g/ml lipoproteins as acceptor.

Further analysis of this antibody preparation revealed the following characteristics:
1) This affinity-purified anti-LTP-I does not immunoprecipitate radiolabeled apoproteins A-I, A-II, D, E, or LCAT.
2) This antibody does not interfere with recognition of these antigens by their respective antibodies in radioimmunoassay.
3) Western immunoblot analysis of plasma, partially-purified LTP-I (PS-pool), apoproteins A-I, A-II, D, E, LCAT, and HSA demonstrate no immunoreactivity of this antibody with A-I, A-II, D, E, LCAT, or HSA.
4) In addition to its immunoprecipitation of LTP-I activity, this antibody has the ability to directly inhibit LTP-I activity when incubated with LTP-I that has been purified to homogeneity, as determined by SDS-PAGE.

Immunoinhibition of HepG2 Lipid Transfer Activity

This immunoaffinity-purified goat antihuman LTP-I preparation was subsequently used for immunoinhibition assays, as described by Abbey et al. Briefly, equal aliquots of HepG2 CM were incubated for 20 hours at 4°C with increasing volumes of immune serum while maintaining a constant final volume (total incubation volumes were 2.4 ml: 2 ml CM incubated with increasing amounts of antisera, from 10 to 400 μl; samples were qs to 2.4 ml with TBS). After an end-over-end, 18-hour pre-incubation of cell CM with antiserum at 4°C, samples were centrifuged at 1000 g for 20 minutes to precipitate antibody-antigen complexes, and 100 μl aliquots of the supernatant were assayed for LTP-I activity. Control incubations were run in parallel and substituted pre-immune goat serum subjected to the same treatment, or TBS, for the immune serum. Conditioned media from Hep3B cells were treated, as for HepG2-CM, for determination of anti-LTP-I immunoprecipitation of cholesteryl ester transfer activity.

Radioimmunoassay of Apoprotein A-I

Apolipoprotein A-I was labelled by the iodine monochloride method. The radioimmunoassay (RIA) buffer contained 1% BSA and 1 mM EDTA (pH 7.4) in TBS. All samples and standards were diluted in RIA buffer to which 0.04% Tween 20 was added. Each assay tube contained 100 μl of sample, standard, or buffer, 100 μl of 125I-labeled apoprotein A-I (2 mg/ml), and 100 μl of affinity-purified, rabbit antihuman A-I sera diluted in RIA buffer. After an overnight incubation at 4°C, 100 μl of normal rabbit serum and 300 μl of sheep antirabbit IgG serum were added and tubes were incubated again; the precipitates were washed and counted in a similar method to that of Albers et al.

Results

The viability of HepG2 and Hep3B cells in vitro was found to exceed 85% in all cases and to average greater than 95% for all experiments. Even though cells were seeded in medium supplemented with 10% fetal bovine serum, which is considered to have virtually no cholesteryl ester transfer activity, we determined the extent to which this small amount of exogenously applied LTP-I could account for the observed activity in HepG2 conditioned medium. Of the total amount of cholesteryl ester transfer activity and apoprotein in cell growth medium, less than 6% cholesteryl ester transfer activity, and less than 1% of the A-I mass, were detectable in the first wash of serum-free medium, and neither residual CE transfer activity nor apoprotein A-I mass were detectable in the second wash. Thus, in all experiments described here, the cell layers were washed three times with serum-free minimal essential medium (SF-MEM) before making final aliquots of SF-MEM for HepG2 incubation.

CE-, TG-, and PC-transfer activities were assayed by the method of Albers et al., by use of both ultracentrifugation and dextran-sulfate/MgCl_ precipitation to separate labeled donor HDL from acceptor VLDL. The results obtained by these two methods were found to agree within 10%. Therefore, separation of donor and acceptor for most assays was carried out by the method of dextran precipitation for the sake of convenience.

The secretion of CE transfer activity into HepG2 serum-free culture medium was observed to be linear for at least 24 hours (Figure 1A), with 28.7% transfer (%T/20 μl/20 hr incubation) secreted by the cells during the first 24 hours in vitro. Freezing HepG2 CM at −70°C over the course of these experiments did not diminish detectable lipid transfer activity. The transfer of radiolabelled cholesteryl ester by HepG2 CM collected at 24 hours exhibited a linear, dose-dependent increase in activity (Figure 2A), and also...
HEPG2 SECRETION OF LIPID TRANSFER PROTEIN, LTP-I
Faust and Albers

Figure 1. Time course of LTP-I (A) and apoprotein A-I (B) secretion by HepG2 in culture. Serum-free HepG2 culture media were harvested at 6, 12, 24, and 48 hours for assay of cholesteryl ester transfer activity and radioimmunoassay of apo A-I mass. LTP-I activity is expressed as % labelled cholesteryl ester transferred during a 20-hour assay incubation, by 200 µl HepG2 conditioned media collected at the times indicated on the abscissa. Data points represent the mean ± SD from five dishes, with LTP-I activity and apo A-I mass assayed in sextuplicate and triplicate, respectively.

showed a linear increase in activity during incubation with substrate donor and acceptor lipoproteins (Figure 2B). The level of CE transfer activity in HepG2 CM between experiments was variable, with the 24-hour HepG2 culture medium exhibiting a mean of 14.0 ± 6.4% T/100 µl/20 hr incubation (mean ± SD, n = 5; range = 5–19.5% T). The levels of transfer of the different lipid substrates were similarly variant, and depended in large part on each respective donor/acceptor lipoprotein substrate preparation as has been reported by others.31

The detection of apo A-I mass in unconcentrated HepG2 culture medium revealed a pattern of secretion with time similar to that observed for CE transfer activity (Figure 1B), and very similar to that reported by Chen et al.22 The detectable rate of apo A-I secretion was 5.7 mg/g of cell protein per day, not accounting for endocytosis or degradation of secreted protein. This is in close agreement with the rate of secretion (4.5 mg/g/day) recently reported by Thrift et al.17

The secretion of CE transfer activity was inhibited in a dose-dependent manner by cycloheximide and was completely blocked by 5.0 µM cycloheximide (Figure 3A) suggesting that active protein synthesis is required for the appearance of LTP-I transfer activity in HepG2 CM. Apoprotein A-I secretion followed a similar pattern of dose-dependent inhibition (Figure 3B). There were no differences in cell viability between cycloheximide-treated and ethanol-treated controls.

As summarized in Table 1, further characterization of the lipid transfer protein secreted by HepG2 revealed it to have many physical and functional properties indistinguishable from those of human plasma LTP-I, as follows:

Immunoinhibition. CE transfer activity secreted by HepG2 was inhibited in a dose-dependent manner by preincubation with goat antihuman-LTP-I (Figure 4A). CE transfer activity secreted in vitro by another human liver cell line, Hep3B, was similarly inhibited by this antiserum (Figure 4B). Pre-immune goat serum did not inhibit secreted transfer activity, and there were no differences between CE transfer activity in samples incubated with pre-immune goat serum and those incubated with Tris-saline buffer.

Lipid Substrates. In accordance with observations on substrate transfer by LTP-I purified from human plasma, HepG2-conditioned medium promoted transfer of labelled CE, TG, and PC at approximately the same rate, with 8% 14C-HDL3-CE, 8% 3H-HDL3-TG, and 7% 3H-HDL3-PC transferred to d < 1.063 g/ml lipoproteins/100 µl CM/12 hour incubation.

Isoelectric Point. Analysis of the HepG2 CE- and PC-transfer activity profiles off chromatofocusing (Figure 5A) revealed these transfer activities to co-elute at a pH of 4.8 ± 0.1 (mean ± SD, n = 5). There was no shift in the pl of either CE or PC HepG2-secreted transfer activity when

Figure 2. Linear increase in CE transfer activity with increasing concentration of HepG2 culture medium (A) and with increasing time of incubation with donor/acceptor lipoprotein substrates (B). HepG2 conditioned media assayed for both A and B were collected following 24-hour incubation with cells. Data for both A and B are expressed as the mean of six determinations per point and the line of regression shown; symbols encompass ± SD for each respective data point.

Downloaded from http://atvb.ahajournals.org/ by guest on August 29, 2017
Figure 3. Cycloheximide inhibition of HepG2 synthesis of cholesteryl ester transfer activity (A) and of apoprotein A-I mass (B). Cells were grown as for time course-secretion studies, and media replaced with SF-MEM containing 0 μM cycloheximide (•), 0.5 μM cycloheximide (○), or 5.0 μM cycloheximide (△) and were incubated at 37°C in 5% CO2-95% air mixture. Media were collected from separate dishes at 6, 12, and 24 hours, respectively, and assayed for CE transfer activity and apo A-I mass. Data are expressed as the percent of the total amount of LTP-I activity or apoprotein mass present at the 24-hour time point in the absence of cycloheximide (ethanol-treated controls). Data points for A and B are plotted as the mean of triplicate determinations ± SD from three and four dishes, respectively. The data-point symbols in B encompass ± their respective SD.

Phenyl-Sepharose Chromatography. A complete 100% of HepG2 LTP-I activity was observed to bind phenyl-Sepharose, and eluted with water containing 1 M urea (Figure 6A). Since the effect of 1 M urea on the elution profile of plasma LTP-I activity from phenyl-Sepharose was unknown, we determined whether human plasma LTP-I continued to elute in the water peak, as we had shown previously, in the presence of urea. Chromatography of human plasma on phenyl-Sepharose in urea did not alter the elution profile of LTP-I CE-transfer activity; as with HepG2 lipid transfer activity, plasma LTP-I activity eluted with the urea-H2O peak (Figure 6B).

Affinity for Heparin-Sepharose. As with human plasma LTP-I, no HepG2-secreted LTP-I activity was observed to bind to heparin-Sepharose. Instead, facilitated CE-, TG-, and PC-transfer activity in the heparin-Sepharose non-binding volume exhibited approximately a 40% increase over the prechromatographed, starting cell medium. This suggested that the HepG2-conditioned medium contains an inhibitor of LTP-I activity which exhibits an affinity for heparin-Sepharose. We therefore investigated the heparin-Sepharose binding material for inhibitory activity against LTP-I activity. When we subsequently eluted the column with a 50 to 500 mM NaCl, 1 M urea gradient, a fraction was obtained that inhibited CE transfer from plasma FS-pool or HepG2-conditioned medium. Under our assay conditions, the ED50 of this HepG2 inhibitory fraction eluted from heparin-Sepharose was 100 μl, or approximately 25 μg of total protein, to inhibit either plasma CE transfer activity (10% transfer) or HepG2-secreted CE transfer activity (8% transfer, corresponding to 100 μl HepG2 CM incubated with transfer substrates for 12 hours at 37°C) and inhibition followed a dose-dependent pattern. Furthermore, the recovered inhibitory activity was sufficient to account for all over-recovery of LTP-I activity in the heparin-Sepharose nonbinding fraction.

Stability

Stability with Time

The half-life of HepG2-secreted cholesteryl ester transfer activity in 0.05% NaN3, 0.5 IU/ml Aprotinin, and 1 mM

<table>
<thead>
<tr>
<th>Property</th>
<th>Human plasma LTP-I</th>
<th>HepG2 neutral lipid transfer protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunoinhibition by goat</td>
<td>100% inhibited</td>
<td>100% inhibited</td>
</tr>
<tr>
<td>Antihuman LTP-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipids transferred</td>
<td>CE, TG, PC</td>
<td>CE, TG, PC</td>
</tr>
<tr>
<td>Pl by chromatofocusing</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Pl by chromatofocusing in 1 M urea</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Phenyl-Sepharose affinity</td>
<td>100% binds, elutes with H2O, urea</td>
<td>100% binds, elutes with H2O, urea</td>
</tr>
<tr>
<td>Heparin-Sepharose affinity</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stability with heat</td>
<td>Stable for 1 hour, 56°C</td>
<td>Stable for 1 hour, 56°C</td>
</tr>
<tr>
<td>Stability with time</td>
<td>Half-life = 6 days, stabilized by urea</td>
<td>Half-life = 6 days,* stabilized by urea</td>
</tr>
</tbody>
</table>

*Conditions of storage for half-life determination of HepG2 lipid transfer activity are as follows: conditioned medium (serum-free isotonic minimal essential medium), 0.05% NaN3, 0.5 IU/ml Aprotinin, and 0.001 M EDTA (pH 7.4) at 4°C. CE = cholesteryl ester, TG = triglyceride, PC = phosphatidylcholine.
HEPG2 SECRETION OF LIPID TRANSFER PROTEIN, LTP-I Faust and Albers 273

Figure 4. Antihuman LTP-I immunoinhibition of cholesteryl ester transfer activity secreted by the two human hepatocarcinoma cell lines, HepG2 (A) and Hep3B (B). Equal aliquots of culture media were incubated with increasing amounts of goat antihuman LTP-I antisera, maintaining equal final incubation volumes by adding isotonic buffer. CE transfer activity with increasing antiserum (•) is expressed as the percent of control activity in the absence of added antiserum. Negative controls consisted of adding comparable amounts of pre-immune goat serum, or isotonic buffer, at three selected concentrations (○). Data points for A and B are expressed as the means ± SD for five and three determinations, respectively. Goat antihuman LTP-I and goat pre-immune sera, and LTP-I activity, were prepared and assayed as described in Methods.

EDTA at 4°C was approximately 6 days. With the addition of 1 M urea to HepG2 CM, 100% of the original activity remained at 60 days. 4°C. In test assays using fresh HepG2-secreted cholesteryl ester transfer activity and partially purified LTP-I from human plasma as positive controls, this concentration of urea caused a decrease in observed LTP activity of less than 10% below comparable controls containing no urea.

Thermal Stability

We compared the relative stability of CE-, TG-, and PC-transfer activities of HepG2-conditioned media and of LTP-I partially purified from human plasma. All three transfer activities (CE, TG, PC) from the cells were temperature-stable (at 56°C, less than 5% of the activity was lost in 1 hour). In contrast, PC transfer activity in plasma PS-pool decreased by approximately 50% upon heating for 1 hour, 56°C, supporting the report that approximately 50% of PC transfer activity in plasma is not due to the heat-stable LTP-I.2
Discussion

The principal rationale for investigating a human liver cell type for potential synthesis of LTP-I was based on the reported detection of lipid transfer activity in rabbit liver-perfusate which suggested an hepatocyte-origin.11,12

HepG2 LTP-I was observed to be secreted into serum-free culture medium in a time-dependent manner which was linear for at least 24 hours. It is possible that the apparent deviation of CE transfer activity secretion beyond 24 hours was due to the instability of the HepG2 transfer protein to the longer incubations at 37°C in culture medium. It is also possible that LTP-I synthesis or secretion was down-regulated by a feedback mechanism. However, neither of these appears to be the case, as an identical pattern of secreted activity was observed when media were collected from the same dishes in a serial fashion. That is, if activity was expressed as the cumulative from samples collected at successive timepoints, the same pattern of secreted activity with time was obtained. Thus, the apparent fall-off in secreted activity beyond 24 hours may instead reflect a lack of serum factor(s) required for synthesis or secretion of transfer activity.

Although HepG2 LTP-I activity was relatively stable for 1 hour at 56°C, it was necessary to perform most experiments soon after harvesting the HepG2-conditioned medium, because competency to transfer all three substrates (CE, TG, PC) deteriorated with time, with t½ = 6 days at 4°C in serum-free minimal essential medium containing 0.5 IU/ml Aprotinin, 0.05% NaN3, and 1 mM EDTA (pH 7.4). As the specific activity of LTP-I (CE transfer activity per concentration of total protein) in HepG2 CM is more than 100 times greater than that of pooled human plasma, the relative instability of HepG2 LTP-I activity may reflect the relative purity of the HepG2 lipid transfer protein in medium vs LTP-I in plasma. Indeed, the observed in vitro half-life of LTP-I activity secreted by HepG2 was remarkably similar to that reported for highly purified preparations of LTP-I from human plasma.27 Furthermore, as with LTP-I purified from human plasma,27 HepG2 LTP-I was markedly stabilized by the presence of urea during storage at 4°C. We also observed no apparent decrease in HepG2-secreted LTP-I activity over a 60-day period when it was stored in the presence of urea at a concentration of 1 M.

Approximately 40% more HepG2 LTP-I activity was recovered in the heparin-Sepharose nonbinding fraction for all three transfer activities (CE, TG, PC) than was originally applied to the column. We interpret this phenomenon to reflect the removal of an LTP-I-inhibitory fraction from the HepG2-conditioned medium by heparin-affinity chromatography. We were able subsequently to elute an inhibitory fraction from heparin-Sepharose which inhibited LTP-I activity derived both from cells and from human plasma. While there have been several reports of an LTP-I inhibitor isolated from plasma,26,31 there have been no reports of a cellular or tissue source for this activity. This investigation constitutes the first suggestion of the cellular source for an inhibitor of LTP-I. However, whether this inhibitor is the same protein(s) as have been isolated from plasma is unknown. We are currently pursuing further purification and characterization of cell-derived inhibitor(s) of transfer activity.

LTP-I activity in human plasma is complexed with HDL,32 and may exhibit a similar half-life (t½ for apoprotein A-I = 4.5 days). Under our culture conditions, HepG2 secretes detectable LTP-I activity at approximately 4 U/hr/mg cell protein. If human hepatocytes in vivo secrete LTP-I at the rate observed for this liver cell line in vitro, hepatocytes alone can account for all LTP-I activity present in human plasma.*

In the context of the regulation of the proteins secreted by HepG2 which are important in lipoprotein metabolism, cholesteryl ester transfer activity has been shown to modulate LCAT activity under conditions where buildup of cholesteryl esters on LCAT-substrate HDL is potentially rate-limiting.18 The level of LTP-I activity may in turn be regulated by an inhibitory protein that has been purified from human plasma.26,31 In the present report, we describe the partial purification of a material secreted by HepG2 in vitro which exhibits similar inhibitory activity against cholesteryl ester transfer activities derived from both human plasma and HepG2 cells.

These observations have interesting implications in the context of the postulated reverse cholesterol transport pathway.7 The principal components of this pathway are the HDL, LCAT, and the CE transfer protein, LTP-I, and B-containing lipoproteins.7 Furthermore, it has been suggested that the hepatic lipase plays a role by increasing hepatic cholesterol uptake from HDL.32,36 Thus, HepG2 synthesizes all of the proteins postulated to play a role in reverse cholesterol transport: apo A-I and A-II, LCAT,22 and LTP-I.

With the addition of LTP-I to the list of HepG2 secretory proteins that function in lipoprotein metabolism, the HepG2 cell line should serve as a valuable model of the regulation and function of LTP-I. Finally, this cell model should provide important information on the functional relationship between these key proteins of lipoprotein metabolism.

Acknowledgments

The authors gratefully thank Janet Adolphson for performing the radioimmunoassays, and John H. Tollefson for valuable technical counsel.

References

4. Abbey M, Calvert GC, Barter PJ. Changes in lipid and apol-

*Transfer activity expressed as 100 kt,26 or 100 kt/V = U/ml, where t = time and V = volume of sample assayed. With t = 12 hr, and maintaining assay conditions so that activity is measured in the linear range, human plasma exhibits approximately 2000 U/ml. HepG2 24-hour culture medium exhibits 80 U/ml, or 800 U/10 ml CM2 × 104 cells. Assuming that adult plasma volume = 3 liters, an adult human liver contains 3 × 1011 hepatocytes, and the t½ for LTP-I in human plasma = 4.5 days, hepatocytes can account for all the measurable CE transfer activity in human plasma.
10. Morton RE. Lipid transfer protein facilitates cholesteryl ester and triglyceride transfer from macrophages to the medium [abstr]. Sixth International Washington Spring Symposium: Cardiovascular disease. 86: Molecular and cellular mechanisms, prevention, treatment. May, 1986

Index Terms: cholesteryl ester transfer protein • human plasma neutral lipid transfer protein • human hepatocarcinoma cell line HepG2 • LTP-I • CETP
Synthesis and secretion of plasma cholesteryl ester transfer protein by human hepatocarcinoma cell line, HepG2.

R A Faust and J J Albers

doi: 10.1161/01.ATV.7.3.267

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/7/3/267

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/