CORRECTION

Measurement of 125-LDL Entry into Ballooned Rabbit Aorta Using Average Plasma Value

We found some errors in the expression of data in our article (Alavi M, Moore S. Kinetics of low density lipoprotein interactions with rabbit aortic wall following balloon catheter deendothelialization. Arteriosclerosis 1984;4:395–402), which we would like to correct.

First, the expression "specific activity" in the text should be "radioactivity." Second, the dimensions of Equation (1) on page 397 should be "mean radioactivity/ml" and not "mean radioactivity/ml/hr." Finally, the sentence on page 398, column 2, line 3 "... clearance of LDL from intima-media ..." should be "... clearance of LDL by intima-media...." To avoid any ambiguity, Equation (1) is given in the footnote to Table 5 below and the terms "entry" and "clearance" are explained in the footnote to Table 6.

Furthermore, the average plasma radioactivity given in Table 3 was calculated over a 48-hour exposure period, and entry and clearance were determined by using this average plasma radioactivity (Table 4). For better comprehension, we now include two detailed tables showing the average plasma radioactivity (Table 5), entry, and clearance (Table 6) calculated with the individual time intervals. The content of the other tables and the conclusions are not altered by these changes and remain valid. We apologize for these mistakes and any inconvenience we may have caused to the readers of the journal.

Table 5. Average Plasma Values

<table>
<thead>
<tr>
<th>Rabbit</th>
<th>No.</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (cpm/ml)</td>
<td>5</td>
<td>58065±644</td>
<td>46627±610</td>
<td>41686±424</td>
<td>29355±450</td>
<td>19510±389</td>
</tr>
<tr>
<td>Ballooned (cpm/ml)</td>
<td>10</td>
<td>58335±531</td>
<td>46930±459</td>
<td>41965±465</td>
<td>29325±488</td>
<td>19510±383</td>
</tr>
</tbody>
</table>

The average plasma values are obtained from the equation:

$$
\text{average radioactivity/ml} = \frac{1}{2} x + \frac{1}{2} (t_1 + t_2) y + \frac{1}{2} (t_1 + t_2) z / \Sigma t
$$

where x, y, z are the radioactivity at t_1, t_2, etc.; and t_1, t_2, ... t_n are the progressive time intervals. The radioactivity in 1 ml plasma measured 10 minutes after injection was considered radioactivity at t_0.

Table 6. Influx of 125-LDL into Aortic Tissues of Balloon-Injured Rabbits Injected with 125-LDL

<table>
<thead>
<tr>
<th>Tissue</th>
<th>No.</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry (μg)*</td>
<td>Control</td>
<td>5</td>
<td>2.8±0.12</td>
<td>5.4±0.11</td>
<td>10.0±0.10</td>
<td>14.0±0.54</td>
</tr>
<tr>
<td>DEA</td>
<td>10</td>
<td>44.9±0.90</td>
<td>141.3±4.64</td>
<td>232.0±6.03</td>
<td>189.5±12.75</td>
<td>133.9±5.38</td>
</tr>
<tr>
<td>REA</td>
<td>10</td>
<td>3.7±0.06</td>
<td>13.8±0.27</td>
<td>27.8±1.10</td>
<td>83.9±3.07</td>
<td>112.0±3.09</td>
</tr>
<tr>
<td>Clearance (μl/cm2)†</td>
<td>Control</td>
<td>5</td>
<td>0.2±0.01</td>
<td>0.3±0.01</td>
<td>0.7±0.01</td>
<td>0.9±0.01</td>
</tr>
<tr>
<td>DEA</td>
<td>10</td>
<td>2.6±0.04</td>
<td>8.0±0.27</td>
<td>13.4±0.32</td>
<td>10.9±0.32</td>
<td>7.7±0.31</td>
</tr>
<tr>
<td>REA</td>
<td>10</td>
<td>0.2±0.003</td>
<td>0.7±0.01</td>
<td>1.4±0.06</td>
<td>4.0±0.06</td>
<td>5.5±0.02</td>
</tr>
</tbody>
</table>

*Entry represents accumulation in the aortic tissue during the experimental period, obtained by dividing the terminal radioactivity (cpm/wet tissue) by average plasma value (cpm/ml) and expressed as μg.

†Clearance represents influx into the aortic tissue during the experimental period, obtained by dividing the terminal radioactivity per surface area (cpm/square centimeter) by the average plasma value and expressed as μl/cm2.

Control = uninjured intimal-medial tissue; DEA = deendothelialized tissue; REA = reendothelialized tissue; no. = number of rabbits sacrificed at each interval during a series of five experiments, for a total of 75 animals (25 control and 50 ballooned rabbits); g = gram wet tissue.

Values are means \pm SEM.

Mlsbahuddin Alavi
McMaster University
Hamilton, Ontario, Canada

Sean Moore
McGill University
Montreal, Quebec, Canada

(Arteriosclerosis 5:413, July/August 1985)
Measurement of 125I-LDL entry into ballooned rabbit aorta using average plasma value.
M Alavi and S Moore

Arterioscler Thromb Vasc Biol. 1985;5:413
doi: 10.1161/01.ATV.5.4.413
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/5/4/413.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/