Biological sex and gender exert profound effects on all aspects of cardiovascular disease, from susceptibility to disease to therapeutic outcomes to access to care. Women typically develop coronary heart disease when they are older than men but experience disproportionate harm from risk factors, such as smoking and diabetes mellitus, and have a higher mortality after myocardial infarction.1,2 Similar sex differences are observed for both thoracic and abdominal aortic aneurysms (AAAs). Male sex is the most potent nonmodifiable risk factor for AAAs, with estimates ranging from a 4- to 10-fold higher incidence in men than in women.3,4

The authors identified a set of potential target genes that are differentially expressed in XX and XY male aortic tissues and thus are candidates to mediate divergent AAA pathologies. The essential downstream components of this pathway are both necessary to explain regional differences in aortic pathology in response to Ang II infusion. XY male mice primarily developed diffuse adventitial thickening throughout the thorax and abdomen, whereas XX male mice tended to develop thinner-walled aneurysms that were concentrated in the suprarenal abdominal aorta. These striking differences in regional aortic pathology were abolished by castration. Their findings suggest that genes on the Y chromosome, or X chromosome genes that escape X inactivation, in part, determine these significant sex differences in regional aortic remodeling in response to Ang II infusion.

The total number of cases of aortic aneurysms and acute aortic dissections is also higher than in men.5 Similarly, individuals with a single autosomal gene mutation predisposing them to thoracic aortic aneurysms are predominantly men. Recent data on the largest cohort to date of patients with Marfan syndrome in the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions demonstrate that male sex is associated with more severe and earlier symptoms.7,8 The age of onset of aortic events was even more dramatically different based on sex in patients with TGFBR1 (TGFB-β [transforming growth factor-β] receptor type 1) mutations, with 90% of men having an event by age of 60 years compared with only half the women.9 The proportion of men presenting with aortic dissections is also higher than women. In contrast, there is no dramatic difference based on sex in patients with either TGFBR2 (TGFB-β receptor type II) or smooth muscle ACTA2 (α-actin) mutations.10,11 Finally, an alteration in a sex chromosome can increase the risk for thoracic aortic disease. Turner syndrome is a disorder that affects only women and results from partial or complete loss of 1 X chromosome. The prevalence of bicuspid aortic valves and aortic coarctation are both increased in women with Turner syndrome and are associated with premature deaths from thoracic aortic aneurysms and acute aortic dissections.12

Therefore, aortic aneurysm disease, in particular AAA, is a vascular disease for which human clinical data indicate a strong male predominance. A mouse model of AAA that recapitulates the male predominance observed in humans, angiotensin II (Ang II) infusion in a hyperlipidemic (Ldlr−/−) strain, has been used extensively to investigate the molecular basis of sex differences in vascular diseases. These studies have demonstrated a clear role of testosterone in increasing AAA in male mice. In fact, exposing female fetuses to testosterone increased aortic aneurysms in the adult Ldlr−/− mice after Ang II infusion. In addition, an XY sex chromosome complement also promotes AAA susceptibility in female Ldlr−/− mice after Ang II infusion. Thus, both gonadal sex hormones and sex chromosomes contribute to the increased risk for AAA with Ang II in this hyperlipidemic mouse.

Alsiraj et al13 continue the focus of the Cassis group on sex differences in their investigation of AAA.14 These investigators cleverly created a unique mouse model to dissect the role of sex chromosomes and hormones in AAA biology. To evaluate the separate effects of gonadal sex hormones and sex chromosomes, they utilized an inbred mouse strain with a natural mutation in the sex-determining Sry gene, which was substituted with an autosomal wild-type Sry transgene. Sry is a gene on the Y chromosome that initiates male development starting in the embryo and leads to a male phenotype, including testes development. Matings, therefore, generated phenotypic males with either XX or XY sex chromosomes (Figure). After they crossed these mice with LDLR (low-density lipoprotein receptor)-deficient hyperlipidemic mice, they found that an XY chromosome complement and intact testes are both necessary to explain regional differences in aortic pathology in response to Ang II infusion. XY male mice primarily developed diffuse adventitial thickening throughout the thorax and abdomen, whereas XX male mice tended to develop thinner-walled aneurysms that were concentrated in the suprarenal abdominal aorta. These striking differences in regional aortic pathology were abolished by castration. Their findings suggest that genes on the Y chromosome, or X chromosome genes that escape X inactivation, in part, determine these significant sex differences in regional aortic remodeling in response to Ang II infusion.

From the Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston. Correspondence to Siddharth K. Prakash, MD, PhD, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St, MSB 6.100, Houston, TX 77030. E-mail siddharth.k.prakash@uth.tmc.edu

See accompanying article on page 143

Arterioscler Thromb Vasc Biol. 2018;38:9-11. DOI: 10.1161/ATVBAHA.117.310433

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBAHA.117.310433
AAA cohorts. Finally, these experiments should be repeated with small testes, may be caused by reduced concentrations of AMH (anti-Müllerian hormone), which was inversely associated with aortic diameter in XY males, with normal testes, and XX males, respectively. Such as estrogen and AMH (anti-Müllerian hormone), which may interact with sex chromosome genes to regulate this gene expression. Some differences between XY males, with normal testes, and XX males, with small testes, may be caused by reduced concentrations of AMH, which was inversely associated with aortic diameter in AAA cohorts. Finally, these experiments should be repeated in older animals to determine whether sex-related differences persist because the general decline of male sex hormones with age may itself be associated with increased cardiovascular morbidity and AAA.

Interestingly, sex differences in the location of aortic atherosclerotic plaques in hyperlipidemic mice have also been reported; female Ldlr−/− mice have larger aortic root lesions than male mice. Furthermore, the beneficial effect of a PPARγ (peroxisome proliferator-activated receptor gamma) agonist on atherosclerosis in C57BL/6 Ldlr−/− mice was only observed in male mice. Thus, both atherosclerotic plaques and aortic aneurysm formation demonstrated regional differences based on sex, and potential explanations are becoming clear. Epidemiological and animal studies showed that serum estrogen protects against AAA formation and rupture. Infusion of 17-β estradiol or hormone replacement therapy is associated with reduced AAA growth rates, but oophorectomy or menopause is associated with increased AAA growth and rupture.

In the abdominal aorta, estrogens suppress the expression of matrix metalloproteinases, which are increased after estrogen depletion; in contrast, the relationship between estrogen levels and thoracic aortic disease is less clear. Regional differences in the embryological origins of aortic smooth muscle cells (SMCs) may also predispose to aneurysm formation. SMCs in the ascending aorta and arch arise primarily from the neural crest (ectoderm), whereas the thoracoabdominal aorta is derived from the somites (mesoderm). SMCs of different origins secrete different levels of extracellular matrix proteins, and cultured SMCs from women were found to express significantly higher levels of extracellular matrix components than SMCs from men. In addition, explanted aortic SMCs from male and female rats show significant sex-specific differences in survival after oxidative stress, which are implicated in AAA and thoracic aortic disease pathogenesis. Taken together, these structural and functional differences could account for profound differences in regional susceptibility to dilation or dissection, and could it be that these factors also predict differences in response to therapeutics for aortic aneurysms based on sex?

To address disparities in basic and preclinical research, the National Institutes of Health recently mandated that sex must be factored into the design and methods of grant applications. Inclusion of sex and gender is not only integral to ethical research but is also required for rigorous science because sex is a preeminent biological variable for vascular diseases. Additionally, response to therapeutics for aortic disease may also have sex differences, information that is important in the design of clinical trials and ultimately in precision medicine for the treatment of disease. The study by Alsiraj et al shows how sex and sex differences can be exploited to develop new insights into an old disease.

Sources of Funding
This study was funded by the grants R01HL137028 (S.K. Prakash), 17IRG33410104 (S.K. Prakash), R01HL62594 (D.M. Milewicz), R01HL109942 (D.M. Milewicz), and P50HL083794 (D.M. Milewicz).

Disclosures
None.

References

X Marks the Spot: The Profound Impact of Sex on Aortic Disease
Siddharth K. Prakash and Dianna M. Milewicz

Arterioscler Thromb Vasc Biol. 2018;38:9-11
doi: 10.1161/ATVBAHA.117.310433

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/38/1/9

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Arteriosclerosis, Thrombosis, and Vascular Biology* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Arteriosclerosis, Thrombosis, and Vascular Biology* is online at:
http://atvb.ahajournals.org/subscriptions/