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Magnesium in the Intestines
Reducing Pi load is an important therapeutic strategy to mini-
malize the risk of cardiovascular complications, including vas-
cular calcifications.137 Mg2+-based Pi binders have been shown to 
reduce serum Pi concentrations efficiently and were introduced in 
the early 1980s.138,139 The introduction of Mg2+-based binders was 
mainly to replace Ca2+- or aluminum-based drugs, which can lead 
to vascular calcification, osteomalacia, dementia, and anemia.138,140

Despite the promising first clinical trials testing the use 
of Mg2+-hydroxide and Mg2+-carbonate in dialysis patients, 
concerns rose about hypermagnesemia and gastrointestinal 
complications.139,141 Instead, a combination of Ca2+-acetate 
and Mg2+-carbonate has been used since and showed simi-
lar efficacy in reducing serum Pi concentrations, which was 
demonstrated in 255 hemodialysis patients.142 Pi concen-
trations below the KDIGO (Kidney Disease: Improving 
Global Outcomes) target of 1.78 mmol/L or lower were 
achieved in the Ca2+-acetate and Mg2+-carbonate group 
after 16 days compared with 30 days in the conventional 
sevelamer group.142 Mild hypermagnesemia remained an 
issue as the serum Mg2+ concentration increased by 0.3 
mmol/L. Close monitoring of serum Mg2+ concentrations in 
CKD patients and reduced dialysate Mg2+ in ESRD patients 
from 0.75 to 0.5, to 0.25 mmol/L is therefore proposed by 
the authors as an effective solution to decrease the prob-
ability of hypermagnesemia and its potential toxicity.143 
However, the clinical benefit of preventing hypermagne-
semia by adjusting dialysate Mg2+ concentration in CKD 
patients is arguable as a negative Mg2+ balance increases 
cardiovascular risk potentially through calcification in this 
population, as discussed elsewhere in this review.

The promising effects of a Ca2+-acetate and Mg2+-
carbonate binder compared with sevelamer on aortic medial 
calcification were demonstrated in uremic rats: Ca2+-acetate 
and Mg2+-carbonate prevented an increasing serum PTH 
and aortic calcium content more effectively.144 Prevention of 
hyperphosphatemia and medial expression of osteogenic pro-
teins such as BMP-2 and SRY-box 9 (sex-determining region 
Y box 9) in the media were achieved equally by both Ca2+-
acetate and Mg2+-carbonate and sevelamer.144 In hemodialysis 
patients, the use of a Ca2+-carbonate/Mg2+-carbonate combi-
nation correlated with reduced coronary artery calcification 
in a small clinical pilot study in 2009.145 Although the size 
and design of the study are insufficient to admit clinical use, 
this study served as an indication that Mg2+ is an interesting 
novel and cost-effective treatment option. In addition to the 
Pi-binding effects of Mg2+ in the intestine, the concomitant 
increase in serum Mg2+ concentration may be protective for 
vascular calcification.142 Interestingly, the use of sevelamer 
itself has recently been found to be associated with increased 
serum Mg2+ concentrations.146 The authors suggest that the 
beneficial effects of sevelamer on reduced inflammation, inhi-
bition of vascular calcification, and decreased mortality might 
be partially explained by the higher serum Mg2+ concentra-
tions. Follow-up studies should determine whether direct use 
of Mg2+-based Pi binders would be a more efficient treatment 
option in CKD patients.

Magnesium in the Circulation
In calcified vessels, hydroxyapatite (Ca
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the most abundant type of crystal.147 Reduction or delay of 
hydroxyapatite formation by magnesium has been proposed 

Figure 1. Mineral metabolism in chronic kidney disease (CKD). Circulating levels of inorganic phosphate (Pi) and Ca2+ are determined by 
integrated action of the parathyroid, intestine, bone, and kidney. CKD-induced mineral disturbances and diminished klotho result in CKD-
mineral bone disorder, which promotes vascular calcification. 1,25(OH)2D3 indicates 1,25-dihydroxyvitamin D3; FGF23, fibroblast growth 
factor 23; and PTH, parathyroid hormone.

 by guest on A
ugust 22, 2017

http://atvb.ahajournals.org/
D

ow
nloaded from

 



ter Braake et al    Mechanisms of Magnesium in Vascular Calcification    1437

as a mechanism to halt the calcification process. Mg2+ reduces 
ACP formation and maturation toward hydroxyapatite.148–150 
In aqueous solutions, Mg2+ delayed hydroxyapatite maturation 
with 20 hours, which was determined by the degree of crystal-
linity.151 Crystallization of ACP was prevented when the Mg2+/
Ca2+ molar ratio exceeded 0.2 resulting simultaneously in 
reduced solubility of the crystal.152 Mechanistically, the stabi-
lizing effect of Mg2+ on ACP has been attributed to the capac-
ity of Mg2+ to form stronger complexes with Pi than Ca2+.152

An alternative mechanism is that Mg2+ stabilizes extracel-
lular ATP, which is otherwise hydrolyzed at the ACP surface 
enabling hydroxyapatite formation.153 Mg2+ shields the ACP sur-
face from ATP, thereby preventing its breakdown. Although the 
effect of Mg2+ on ATP has often been neglected, the role of extra-
cellular ATP in vascular calcification has been studied because 
its hydrolysis is necessary for pyrophosphate synthesis, which 
is a direct inhibitor of hydroxyapatite formation.154,155 As noted 
elsewhere in this review, Mg2+ protected against vascular calci-
fication in Abcc6−/− mice.94 In this model of pseudoxanthoma 
elasticum, hepatic ABCC6 (ATP-binding cassette subfamily 
C member 6)–dependent–mediated cellular ATP secretion has 
been identified as the principal source of circulating pyrophos-
phate.156 Pyrophosphate levels are 2.5-fold reduced in pseudo-
xanthoma patients where ABCC6 is dysfunctional, explaining 
the underlying mechanism in related mineralization disorders.156

The stabilizing effects of Mg2+ on ACP nucleation and 
hydroxyapatite maturation in clinical setting have often been 
proposed in literature. However, this hypothesis has been 
poorly addressed in models of vascular calcification. Pasch 
et al133 linked Mg2+ status to calcification propensity of hemo-
dialysis patients, which is based on the intrinsic capacity of the 
serum to inhibit the maturation of primary CPP to secondary 
CPP and found that Mg2+ effectively delayed CPP maturation. 

Of note, secondary CPPs have been shown to induce calcifica-
tion in vitro.131

It is often proposed that Mg2+ favors the formation of Mg2+-
containing whitlockite (Ca

9
Mg(HPO

4
)(PO

4
)

6
) crystals rather 

than hydroxyapatite.157 Whitlockite is smaller, more soluble, 
and less inflammatory compared with apatite and is only formed 
when Mg2+/Ca2+ ratios increase.157–159 Formation of whitlockite 
after an increased serum Mg2+ concentration may therefore 
be a mechanism by which Mg2+ retards vascular calcification 
progression. However, Mg2+ supplementation to calcifying 
human VSMCs neither altered cellular apatite architecture nor 
resulted in the presence of whitlockite.160 In addition, analysis 
of iliac arteries of dialysis patients showed the presence of both 
hydroxyapatite and whitlockite in calcified areas, colocalizing 
with calcification inhibitors.161 These findings combined sug-
gest that preventive mechanisms of Mg2+ likely involve path-
ways alternative to the formation of whitlockite.

Active Modulation: Cell-Mediated Actions of 
Magnesium in Vascular Calcification

The transdifferentiation of VSMCs toward an osteogenic 
phenotype is considered a major driving force of vascular 
calcification.121 Several groups have shown that this effect is 
modulated by the intracellular Mg2+ concentration, suggest-
ing active modulation of VSMC transdifferentiation by Mg2+ 
(Figure 3).

Magnesium and Osteogenic Conversion
Multiple studies report that Mg2+ supplementation prevents the 
transcriptional changes in VSMC transdifferentiation and apop-
tosis, thereby halting the calcification process in both in vitro and 
ex vivo models of vascular calcification.162–164 Mg2+ supplementa-
tion effectively counteracts expression of osteogenic transcription 

Figure 2. Passive interference: phosphate binding and crystal inhibition by Mg2+. Elevated blood Mg2+ interferes with both amorphous 
calcium phosphate (ACP) and primary calciprotein particle (CPP) maturation into hydroxyapatite (HA) crystals and secondary CPP (sCPP). 
Mg2+ promotes the formation of the more soluble and smaller whitlockite crystal. In the intestine, Mg2+-based inorganic phosphate (Pi) 
binders promote fecal Pi excretion, reducing Pi uptake via sodium phosphate cotransporter IIb (NaPi-2b) in enterocytes. CKD indicates 
chronic kidney disease; pCPP, primary CPP.
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factors (BMP-2, RUNX2, Msh homeobox 2, SRY-box 9), bone 
proteins, and genes associated with matrix mineralization (osteo-
calcin and alkaline phosphatase).162,165,166 Simultaneously, it was 
observed that Mg2+ prevents the loss of calcification inhibitors 
(BMP-7, MGP, and osteopontin) that protect against osteo-
genic conversion. These examples illustrate that Mg2+ is actively 
involved in the prevention of VSMC transdifferentiation to an 
osteogenic phenotype. However, whether Mg2+ directly modu-
lates osteogenic gene expression remains under debate.

Because osteogenic gene expression is a convenient read-
out for vascular calcification in VSMCs, it has been widely 
exploited in in vitro studies. Given that inhibition of vascular 
calcification on any level may delay or even abrogate VSMC 
transdifferentiation, using osteogenic gene expression as read-
out is prone to misinterpretation of the mechanisms involved. 
VSMC calcification is often initiated by Pi- and Ca2+-enriched 
media and adding Mg2+ to calcifying VSMCs may have both 
extracellular and intracellular effects. However, when effective 
all will result in reduced VSMC transdifferentiation, calcifica-
tion, and thus in lower osteogenic gene expression. Although 
this is poorly supported by direct evidence, the experimental 
bias of measuring osteogenic gene expression has resulted in 
the predominant hypothesis that intracellular Mg2+ reduces vas-
cular calcification, overlooking potential extracellular effects.

The only studies convincingly supporting an intracellular 
role of Mg2+ are the ones that target Mg2+ channels. In VSMCs, 
Mg2+ homeostasis is mainly maintained by TRPM7 cation 
channels, which have been shown to be downregulated in 
calcification conditions.165,167 Reduced TRPM7 activity using 
nonselective inhibitor 2-APB (aminoethoxydiphenyl borate) 

or a specific siRNA resulted in progressive VSMC transdif-
ferentiation, illustrating a crucial role for intracellular Mg2+ 
in this context.165,166 Furthermore, angiotensin-2 supplementa-
tion prevented osteoinductive expression and calcification in 
VSMCs by increasing Mg2+ influx. This effect was abrogated 
by blocking Mg2+ channel TRMP7 using 2-APB.168

Several mechanisms have been proposed by which 
increased intracellular Mg2+ concentrations facilitated by 
TRPM7 activity could prevent osteoinductive gene expres-
sion. First, Mg2+ effectively abolished Pi-induced Wnt/β-
catenin signaling, which is involved in osteoblast maturation 
and exercises its osteoinductive effects through increasing 
RUNX2 expression.169,170 Second, Mg2+ has been implicated 
in the regulation of miRNAs involved in vascular homeo-
stasis, a variety of which were recently found to be compro-
mised in CKD.171,172 Mg2+ successfully abrogated and even 
improved deteriorated expression profiles of microRNA-30b, 
microRNA-133a, and microRNA-223 that regulate RUNX2, 
Smad1, and osterix expression in calcifying VSMCs.173 Third, 
Mg2+ is implicated in the modulation of VSMC calcium han-
dling and the activation of the Ca2+-sensing receptor (CaSR) 
important for MGP function, which will be discussed below.

To identify additional mechanisms by which Mg2+ prevents 
calcification, it is relevant to learn from other calcification 
models. For instance, Mg2+ prevented SaOS-2 differentiation 
into mature osteoblasts in high concentrations (5 mmol/L), as 
reflected by matrix mineralization and alkaline phosphatase 
activity.174 Importantly, however, these results were not repro-
ducible in normal human osteoblasts. Furthermore, in tendon-
derived stem cells, Mg2+ prevented matrix mineralization, a 

Figure 3. Active modulation: Mg2+ inhibits vascular smooth muscle cell transdifferentiation. Diminished levels of circulating inhibitors of 
vascular calcification, elevated levels of inorganic phosphate (Pi), and formation of amorphous Ca2+-Pi particle (ACP) in the circulation ini-
tiate the transdifferentiation of vascular smooth muscle cell (VSMC). VSMC transdifferentiation is accelerated by the expression of osteo-
genic genes and amplified by the VSMCs through the release of exosomes and apoptotic bodies. Mg2+ potentially prevents this process 
via different pathways both on the level of initiation and acceleration of VSMC calcification. AB indicates apoptotic body; AT2, angiotensin 
type 2; ATR-1, angiotensin 2 type 1 receptor; BMP-2, bone morphogenetic protein 2; Cav1 channel, L-Type calcium channel; CaSR, cal-
cium-sensing receptor; Fet. A, fetuin-A; FGF23, fibroblast growth factor 23; MGP, matrix gla protein; OCN, osteocalcin; OPG, osteoprote-
gerin; PiT, sodium-dependent inorganic phosphate transporter; PTH, parathyroid hormone; SM22α, transgelin; α-SMA, α–smooth muscle 
actin; RUNX2, runt-related transcription factor 2; and TRPM7, transient receptor potential melastatin 7.
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process that highly resembles that of VSMCs.175 The authors 
proposed a role for Mg2+ in mitochondrial export of Ca2+ and 
Pi by the inhibition of mitochondrial transition pores, prevent-
ing transmembrane depolarization and matrix mineralization. 
However, application of these findings to VSMC calcification 
has not been evaluated to date.

The studies targeting TRPM7 support an intracellular 
effect of Mg2+ and reject the hypothesis that Mg2+-dependent 
regulation of calcification genes is only secondary to extracel-
lular Pi binding and ACP stabilization. However, there is a 
lack of data on intracellular Mg2+ concentrations limiting con-
clusive confirmation on an active role for Mg2+ in this context. 
Additional studies measuring intracellular Mg2+ concentra-
tions are necessary, but are hampered by the poor availability 
of selective fluorescent Mg2+ probes.

Magnesium and Cellular Calcium Entry
Excessive intracellular Ca2+ causes VSMC death and subse-
quent release of apoptotic bodies, which contribute to matrix 
calcification by providing ACP nucleation sites.135,176,177 As 
a natural Ca2+ channel antagonist, Mg2+ has the capacity to 
block Ca2+ channels in VSMCs and prevent Ca2+ overload.97,178 
As a consequence of Ca2+ channel blocking, Mg2+ has excel-
lent vasodilatory properties, which in arterioles and venules 
is already effective at 0.01 to 0.1 mmol/L concentrations and 
reduces myogenic tone.97,179 Therefore, a role for Mg2+ in pre-
venting intracellular Ca2+ bursts, and subsequent apoptosis has 
been identified as a potential mechanism of action in prevent-
ing VSMC calcification.10

In VSMCs, Ca2+ influx could be regulated by a sensing 
mechanism. The CaSR is expressed in the parathyroid and 
the kidney, and there are indications that VSMCs also express 
functional CaSR.180 This receptor plays an important role in 
mineral-bone homeostasis by regulating PTH secretion. In 
addition to Ca2+ channel blocking, Mg2+ has been implicated 
in CaSR activation, possibly functioning as calcimimetic and 
indirect gatekeeper of Ca2+ influx.181 In contrast to Ca2+, Mg2+ 
acts as a partial agonist and activates the CaSR 2 to 3× less 
potently.181–183

Systemically, lower PTH after CaSR activation in the 
parathyroid results in decreased bone turnover and intestinal 
Ca2+ uptake, but promotes renal Pi reabsorption. In dialysis 
patients, higher Mg2+ concentrations indeed correlate with 
decreased PTH levels.184 Although the presence and function 
of CaSR in VSMCs remain uncertain, vascular calcification 
has been associated with loss of functional CaSR and MGP 
in VSMCs.185–187 In VSMCs, treatment with calcimimetics 
resulted in the activation of the CaSR, which led to reduced 
mineralization.180 In aortas of uremic rats and in bovine 
VSMCs, the calcimimetic AMG641 decreased medial calcifi-
cation and increased expression of MGP.188 Recently, the first 
in vitro and in vivo evidence suggested that Mg2+ supplemen-
tation in VSMCs resulted in reduced Pi- and hydroxyapatite-
induced calcification through restoring CaSR mRNA and 
protein levels.189 However, this study did not examine param-
eters related to mineral-bone metabolism in response to Mg2+ 
treatment in the in vivo part of their study. Therefore, the role 
of Mg2+ in the regulation of hormones and receptors involved 

in CKD-mineral bone disorder in its protection against vascu-
lar calcification remain to be determined.

Conclusions
In CKD patients, serum Mg2+ concentrations are correlated 
with cardiovascular morbidity and mortality. Multiple obser-
vational studies and several intervention studies identify a 
direct link between Mg2+ and cardiovascular mortality, poten-
tially related to vascular calcification in CKD patients. An 
increasing number of in vitro, preclinical, and clinical studies 
demonstrate a protective role for Mg2+ in the development of 
vascular calcification. The current literature supports both a 
passive Pi-buffering role reducing hydroxyapatite formation 
and an active cell-mediated role, directly altering osteogenic 
expression in VSMC. Despite these promising and consistent 
results among models, absence of large-scale clinical stud-
ies impedes clinical implementation of Mg2+ supplements in 
CKD. Well-designed randomized controlled trials in CKD 
patients are necessary for any definitive conclusions on the 
preventive effects of Mg2+ in vascular calcification.

Remaining Challenges
Final conclusions about the molecular effects of Mg2+ are 
seriously hampered by the basic experimental setup of many 
in vitro studies that suffice with simple Mg2+ supplementa-
tion to calcification medium. This setup does not distin-
guish between passive chemical and active cell-mediated 
mechanisms. However, because cellular entrance of Mg2+ via 
TRPM7 has been shown to be necessary for at least some of 
its protective effects, an active mechanism preventing VSMC 
transdifferentiation is likely. This review identified a substan-
tial knowledge gap of the role of intracellular Mg2+, as the 
molecular targets linking Mg2+ with osteogenic gene expres-
sion are unknown. In addition, the effect of Mg2+ supplemen-
tation on intracellular VSMC Mg2+ concentration has never 
been studied and urgently requires attention. Basic studies 
toward intracellular Mg2+ homeostasis and the molecular 
players that regulate Mg2+ concentrations in VSMCs are 
lacking and are essential to drive further advances in this 
field. Several of the mechanisms that have been repeatedly 
suggested have never been thoroughly studied in the context 
of vascular calcification, including the relevance of Mg2+ on 
cellular Ca2+ fluxes, the role of the CaSR in VSMCs and in 
particular the chemical impact of Mg2+ on ACP maturation. 
Furthermore, this review highlights the potential experimen-
tal bias of measuring osteogenic gene expression as effective 
inhibition of mineralization by Mg2+ through both extracel-
lular and intracellular pathways will all result in reduced 
VSMC transdifferentiation. Therefore, an additional chal-
lenge that the field now faces lies in determining the rela-
tive contribution of each effect to the prevention of vascular 
calcification.

Clinical Relevance and Implications
In the general population, Mg2+ is inversely associated with 
cardiovascular outcome. Results of these studies strongly rein-
force the hypothesis that the current clinical reference ranges 
(0.7–1.1 mmol/L) for serum Mg2+ should be reconsidered, as 
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concentrations of <0.8 mmol/L are associated with increased 
risk for cardiovascular disease and mortality (Table 1).

In CKD population, the pronounced effects of Mg2+ in 
experimental models of vascular calcifications drive the 
hypothesis that Mg2+ protects against mortality in CKD through 
the prevention of vascular calcification. However, the clinical 
role of Mg2+ in CKD patients has only been studied in obser-
vational cohorts, which focus mostly on total cardiovascular 
risk (Table  2). The effects of Mg2+ supplementation on car-
diovascular outcome aside from arrhythmia and preeclampsia 
have been poorly assessed. Currently, randomized controlled 
clinical trials using Mg2+ supplementation as treatment for vas-
cular calcification are in progress, and their results are eagerly 
awaited. These large-scale clinical trials will determine the 

translational value of the many experimental model systems 
that show a preventive effect of Mg2+ on vascular calcification. 
Nevertheless, further elucidation of the molecular mechanisms 
may contribute to additional targeted therapeutic options 
improving Mg2+ homeostasis in CKD patients.

Acknowledgments
We thank Dr Joost G.J. Hoenderop for careful reading of the 
manuscript.

Sources of Funding
J.H.F. de Baaij is supported by grants from the Netherlands 
Organization for Scientific Research (NWO [Nederlandse Organisatie 
voor Wetenschappelijl Onderzoek/Netherlands Organisation for 
Scientific Research] Rubicon 825.14.021) and the Dutch Kidney 
Foundation (Kolff 14OKG17).

Table 2.  The Effects of Serum Mg2+ Concentration on Cardiovascular Disease Occurrence in the End-Stage Renal Disease 
Population

Author* Study Type
Cardiovascular 

Outcome†

No. of 
Patients (% 

Women) Follow-Up

Association 
Inhibiting 
Outcome 
(P<0.05)

Associations With Serum 
Mg2+ (mmol/L)

Associations With 
Increased Serum Mg2+ 

(mmol/L)
Reference 

Concentration

Meema et al59 
1987

Prospective AC 44 (0) 27 mo Yes
1.1±0.21 in AC compared 
with 3.02±0.51 in non-AC

N/A N/A

Tzanakis 
et al60 2004 Cross-sectional MAC 56 (39.2) None Yes

1.14±0.12 in MAC vs 
1.27±0.095 in non-MAC

>1.23 twice as likely to 
develop MAC as <1.23 

(χ2=6.98)
N/A

Ishimura et al61 
2007

Prospective CV mortality 515 (40.6) 51 mo No
HR, 0.98; 95% CI, 3.13 to 

3.086
N/A N/A

Ishimura et al62 
2007 Cross-sectional VC 390 (42.1) None Yes

1.10±0.12 in VC vs 
1.14±0.14 in non-VC

Presence reduction per 
0.4 increase (OR, 0.28; 
95% CI, 0.09 to 0.92)

N/A

Kanbay et al63 
2012

Prospective
Fatal and 

nonfatal CVE
283 (50.9) 38 mo Yes

HR, 0.21; 95% CI, 0.10 to 
0.46

N/A N/A

Matias et al64 
2014

Prospective
VC (SVCS) and 
CV mortality

206 (45) 48 mo Yes

CV mortality: HR, 0.82; 
95% CI, 0.72 to 0.95. SVCS 
multivariate: β-coefficient, 
0.17; 95% CI, 0.08 to 0.30 
(cutoff concentration, 1.15)

N/A N/A

Sakaguchi 
et al34 2014

Prospective CV mortality
142 069 
(38.1)

12 mo Yes
<0.95 (OR, 1.24; 95% CI, 

1.08 to 1.42)

≥1.1–<1.15 (OR, 1.03; 
95% CI, 0.85 to 1.23); 
and ≥1.27 (OR, 1.25; 
95% CI, 1.07 to 1.47)

≥1.15–<1.27

De Roij van 
Zuijdewijn 
et al25 2015

Prospective CV mortality 365 (38.1) 3.1 y Yes N/A
Risk reduction per 0.1 

increase (HR, 0.73; 95% 
CI, 0.62 to 0.85)

N/A

Yu et al65 2016
Prospective CV mortality 135 (41.5) 36 mo Yes

17.2% mortality at 
0.99±0.10 vs 5.6% at 
1.21±0.11, χ2=4.912

N/A N/A

Cai et al35 
2016

Prospective CV mortality 253 (44.7) 29 mo Yes
HR, 0.003; 95% CI, 0.000 

to 0.055
N/A N/A

Molnar et al66 
2017 Cross-sectional AAC 80 (30) None Yes

Adjusted R2=0.18, β-
coefficient=−12/27; 95% 

CI, −19.54 to −5.00

0.1 increase results in 
1.1-point decrease in 

AAC score
N/A

AAC indicates abdominal aortic calcification; AC, arterial calcification; CI, confidence interval; CV, cardiovascular; CVE, cardiovascular events; HR, hazard ratio; MAC, 
mitral annular calcifications; N/A, not applicable; OR, odds ratio; SVCS, simple vascular calcification score; and VC, vascular calcification.

*Articles were obtained after PubMed search using the following search terms: ((“Renal Dialysis”[Mesh] OR “Kidney Failure, Chronic”[Mesh]) AND Magnesium”[Mesh]) 
AND (“Cardiovascular Diseases”[Mesh] OR “calcinosis”[mesh] OR “Survival Analysis”[Mesh]).

†Studies assessing the effects of dietary Mg2+, indirect outcome measures for cardiovascular disease (eg, hypertension, arterial intima-media thickness), and 
predialysis cohorts were excluded.
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Highlights
•	 Serum Mg2+ concentration is inversely associated with cardiovascular risk in chronic kidney disease.
•	 Mg2+ is protective against vascular calcification.
•	 Mg2+ passively interferes with intestinal inorganic phosphate absorption and crystal formation in the circulation.
•	 Mg2+ actively modulates gene expression in vascular smooth muscle cell and thereby prevents transdifferentiation toward an osteoblastic 

phenotype.
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