HDL particles can be further fractionated based on their density, size, and electrophoretic mobility. For instance, sequential ultracentrifugation separates HDL into 2 main subpopulations, namely, lipid-rich large particles named HDL₂ and protein-rich small HDL₃, populations. These 2 subpopulations present variations in their molecular compositions, which are associated with heterogenous antioxidative, anti-inflammatory, and cytoprotective activities. In addition to the structural and functional heterogeneities, HDL particles are dynamically regulated under various physiological and pathological conditions. For example, oxidation of apolipoprotein A1 has been associated with impairment of protective HDL functions.

Recently, sphingosine 1-phosphate (S1P), a lipid mediator that acts via G-protein–coupled receptors, has featured prominently in HDL biology. The ability of HDL to protect the endothelium, myocardial ischemic injury, and vasodilation depends on the S1P cargo. HDL-bound apolipoprotein M binds, carries, and promotes receptor activation in a physiologically relevant manner. In addition, HDL-bound S1P seems to be distinct from albumin-bound S1P in the inhibition of endothelial inflammatory processes, barrier function, and lymphopoiesis, suggesting that chaperone-bound S1P acts as a biased agonist to evoke specific biological processes. These observations suggest a major function of S1P in the cardiovascular protection mediated by HDL. Even though HDL-bound S1P was shown to be decreased in acute coronary syndrome and in sepsis, the relevance of this signaling pathway in chronic diseases that promote cardiovascular risk is not well understood.

Type 1 diabetic patients exhibit increased risk of cardiovascular disease, presumably because of hyperglycemia-induced endothelial injury, oxidative stress, vascular dysfunction, and angiopathy of small and large vessels. In this issue of ATVB, Frej et al report the role of HDL-bound S1P in type 1 diabetes mellitus. In their study, HDL isolated from healthy controls and patients with type 1 diabetes mellitus did not show apolipoprotein M and S1P alterations. However, a shift of apolipoprotein M and S1P to lipid-rich, light HDL₂ particles was seen in type 1 diabetes mellitus. In functional assays, the light HDL₂ particles show defective anti-inflammatory functions, which could be because of the reduced ability to signal through the endothelial S1P receptor. The authors suggest that increased dysfunctional HDL seen in type 1 diabetes mellitus may contribute to the cardiovascular disease risk (Figure).

Interestingly, Frej et al study further supports the body of work documenting the attenuated HDL-bound S1P level and function in chronic diseases. In type 2 diabetes mellitus, glycation of HDL significantly reduces the S1P content of HDL, leading to impairment of cellular protection from oxidative stress. In that study, HDL function recovered by restoring S1P. In another study focused on patients with metabolic syndrome, reduced HDL-bound S1P resulted in attenuated endothelial nitric oxide synthase activation, which would contribute to vascular dysfunction. In addition, HDL dysfunction observed during coronary arterial disease has been linked to a 5-fold decrease in S1P content, likely because of oxidative modifications. Such HDL can be replenished in vitro using S1P donors like red blood cells to regain their protective functions. Therapeutic administration of reconstituted HDL loaded with S1P reduced ischemia–reperfusion injuries in mouse model of myocardial infarction.

These recent findings warrant that S1P-centric function of HDL in health and disease needs detailed and comprehensive interrogation in both basic and translational levels. Molecular basis of decreased HDL-S1P, modifications of apolipoprotein M, and altered S1P-centric signaling properties of HDL₂ versus HDL₃ need to be explored. How such alterations lead to perturbations in S1P receptor signaling is not understood at the mechanistic level. However, based on recent developments in HDL biology and therapeutics, these results further echo the concept that HDL quality rather than quantity is a critical factor to reduce cardiovascular risk.

Disclosures

None.
Med
9618. doi: 10.1073/pnas.1103187108.

Sevvana M, Egerer-Sieber C, Muller Y A, Hla T, Nielsen LB, Dahlbäck B. Sphingosine 1-phosphate (S1P) interacts with endothelial cell S1P receptor-1 to protect the endothelium. During type 1 diabetes mellitus, lipid-rich/protein-poor HDLs are more abundant than HDL particles. These particles are inefficient to inhibit proinflammatory marker expression in endothelial cells. This defect may underlie the increase in cardiovascular risk seen in type 1 diabetes mellitus. ApoM indicates apolipoprotein M.

References


Key Words: Editorials ■ apolipoprotein A1 ■ apolipoprotein M ■ cholesterol ■ lipoproteins, HDL ■ proteome ■ sphingosine 1-phosphate ■ ultracentrifugation
Quality Versus Quantity: Making HDL Great Again
Sylvain Galvani and Timothy Hla

doi: 10.1161/ATVBAHA.117.309441
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/37/6/1018

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/