Cardiovascular disease remains the leading cause of death around the world. A major cause is atherogenic dyslipidemia, which is characterized by increased concentrations of triglyceride-rich lipoproteins and is seen in subjects with obesity and type 2 diabetes mellitus. Increased hepatic secretion of triglyceride-rich very-low-density lipoproteins (VLDL) is a major determinant of the hypertriglyceridemia. The production of VLDL from the liver is a complex process. It starts with the formation of nascent lipoprotein particles that are further lipidated in the secretory pathway, resulting in the generation of triglyceride-rich VLDL particles that are secreted from the liver. It is therefore not surprising that VLDL secretion—and thus the concentration of plasma triglycerides—is highly dependent on the availability of hepatic lipids.

The expression of AUP1, therefore, affects the amount and size of LDs. Thus, AUP1 has dual roles in protein quality control and LD regulation.

In this issue of *Arteriosclerosis, Thrombosis, and Vascular Biology*, Zhang et al significantly extend these studies and for the first time demonstrated that AUP1 is a key determinant of hepatic VLDL assembly and secretion. AUP1 was found to interact with apolipoprotein B (apo B), and suppression of AUP1 increased triglyceride biosynthesis and the average size of cytosolic LDs. This suggested that AUP1 regulates triglyceride assembly and secretion.

How does suppression of AUP1 correct the defective VLDL assembly in HepG2 cells? The conversion of triglyceride-poor to triglyceride-rich VLDL has been proposed to require a bulk addition of triglycerides derived from cytosolic LDs. Thus, it could be hypothesized that to retain lipids intracellularly instead of secreting triglyceride-rich VLDL, HepG2 hepatoma cells overexpress AUP1, which accumulates on LDs in the later part of the secretory pathway. Accumulation of AUP1 in LDs would hamper VLDL assembly.

Does AUP1 play a physiological role in VLDL secretion in nonhepatoma cells? This was not analyzed in this study. However, the expression of AUP1 has been measured in human liver samples obtained from a separate cohort of 12 obese subjects with increased liver fat content who underwent bariatric surgery, and compared with AUP1 gene expression in liver samples obtained from 7 healthy individuals. This comparison showed that the mRNA expression of AUP1 was significantly lower in liver from obese subjects than from healthy subjects (adjusted P value <0.05). These results may indicate that the regulation of AUP1 is impaired in subjects with nonalcoholic fatty liver disease and type 2 diabetes mellitus. Future studies are needed to address this in detail and to clarify whether AUP1 is linked to the altered hepatic lipid metabolism and increased VLDL secretion seen in subjects with nonalcoholic fatty liver disease and type 2 diabetes mellitus. If this turns out to be the case, AUP1 might become a drug target for preventing the diabetic dyslipidemia.

Disclosures

None.
A small portion of the liver is shown in the figure, which illustrates the process of lipoprotein assembly. The figure explains the roles of different proteins and structures, such as the endoplasmic reticulum (ER), lipid droplets (LDs), and very low density lipoprotein (VLDL). The diagram depicts the degradation pathways and the effects of different proteins on the assembly of lipoproteins.

Figure. Impact of AUP1 (ancient ubiquitous protein 1) on lipid biogenesis and very low-density lipoproteins (VLDL) assembly. A, ApoB is synthesized and cotranslationally lipidated to form a pre-VLDL particle. Alternatively, apoB fails to be lipidated and is incorrectly folded and sorted to degradation. The formation of mature triglyceride-rich VLDL is dependent on the bulk addition of triglycerides derived from cytosolic lipid droplets (LDs). B, If AUP1 is overexpressed, more pre-VLDL particles are sorted to post-translational degradation. Likewise, accumulation of AUP1 on LDs may hamper apoB lipidation and VLDL assembly. Thus, fewer VLDL particles are formed. C, When AUP1 is decreased, fewer apoB-containing lipoproteins are sorted to post-translational degradation and more LDs are formed. Thus, more mature VLDL particles are secreted from the liver. Stars indicate AUP1. ER indicates endoplasmic reticulum.

References

Key Words: Editorials • autophagy • cause of death • endoplasmic reticulum • lipid droplets • obesity
AUP1 (Ancient Ubiquitous Protein 1): A Molecular Link Between Hepatic Lipid Mobilization and VLDL Secretion
Adil Mardinoglu and Jan Borén

Arterioscler Thromb Vasc Biol. 2017;37:609-610
doi: 10.1161/ATVBAHA.117.309152
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/37/4/609

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/