ADAM17
A Molecular Switch to Control TNFR2 During Atherogenesis In Vivo
Yiting Jia, Wei Kong

ADAM17 was first identified to process membrane-bound TNF-α precursor to a soluble form. In addition, TNF receptors, TNFR1 and TNFR2, are both ADAM17 substrates. The potent cytokine TNF-α and TNF receptor signaling pathways control cell apoptosis, proliferation, adhesion, and inflammation and thus play an important role in pathogenesis and progression of several cardiovascular processes, including atherosclerosis.1,2 TNF receptor 1 is proved to be associated with aging-related coronary artery disease in humans, whereas TNFR2-deficient mice exhibit decreased plaque formation.3,4 Interestingly, ADAM17 has been described to be upregulated in human and mouse atherosclerotic plaques,3,4 and increased level of ADAM17 may contribute to atherosclerosis resistance,5,6 which indicated a correlation between ADAM17, TNF signaling, and atherosclerosis. Unfortunately, ADAM17 knockout mice are not viable because of its essential role in normal fetal development.7 Mice with targeted deletion of exon 11 that encodes the catalytic active site of the metalloprotease domain (ADAM17Δzinc) also showed perinatal lethality within 2 weeks.8 Then the conditional ADAM17 knockout animals have been generated to study the role of ADAM17 in physiological bone remodeling and neurological diseases.9 However, the function of ADAM17 deficiency in atherosclerosis is still in the mist. Recently, Chalaris et al generated partial deletion Adam 17ex/ex mice that showed only a weak ADAM17 expression in tissues, which may point the way to study the role of ADAM17 deficiency in atherosclerosis.10

In this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, Nicolaou et al11 crossed Adam 17ex/ex mice on Ldlr−/− background, then expanded on the previous studies of Holdt et al9 and Canault et al10 in Adam 17ex/exLdlr−/− mice. The authors revealed that atherosclerotic plaque size at the aortic root was markedly increased in Adam 17ex/exLdlr−/− mice compared with that of Adam 17wt/wtLdlr−/− mice (1.5-folds), which indicated that ADAM17 deficiency would promote atherosclerosis. They found no alteration of total, LDL, and HDL cholesterol levels in Adam 17-deficient mice, which suggested that ADAM17 may affect atherosclerosis progression independent of plasma lipid level. Considering the known function of ADAM17 as a metalloprotease, they systematically screened currently known ADAM17 substrates and consistently observed reduced release of TNFR1 and TNFR2, both in the plasma of Adam 17ex/exLdlr−/− mice and in the supernatant of Adam 17ex/exLdlr−/− bone marrow–derived macrophages. Subsequently, they detected increased level of TNF-α and TNFFR2, but not TNFR1 on the cell membrane of Adam 17ex/exLdlr−/− macrophages compared with control macrophages, as well as elevated phosphorylation of bone marrow tyrosine kinase in chromosome X, a marker for constitutive activation of TNFR2 signaling. The proatherogenic effect of ADAM17 deficiency could be rescued by knockdown of TNFR2 in almost all of the vascular cells and macrophages detected. Finally, the authors detected less apoptotic cells and more proliferating macrophages in atherosclerotic lesions of Adam 17ex/exLdlr−/− mice, which confirmed the in vitro results. Taken together, these data provide convincing evidence that ADAM17 deficiency and TNFR2 signaling activation promote atherogenesis in mice (Figure).

This is the first definitive study of global ADAM17 knockout in atherosclerosis by loss of function mouse model in LDL−/− background. Although the authors examined ADAM17-TNFR2 signaling in almost all of the cell types involving plaque formation, we must realize that ADAM17 expression and activity varies in different cell types on proatherosclerotic stimuli. Previous studies by generating myeloid cell lineage–specific knockout ADAM17 mice revealed reduced proinflammatory cytokines secretion.12 Endothelial-specific knockout ADAM17 mice exhibited reduced pathological neovascularization which may affect plaque vulnerability.13 Considering ADAM17 has >70 different substrates, shedding by ADAM17 in different cell types needs to be individually

DOI: 10.1161/ATVBBA.116.3078840

© 2017 American Heart Association, Inc.
Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org
DOI: 10.1161/ATVBBA.116.3078840
analyzed. Notably, recent development of novel proteomic methods may shed light on context-dependent bone fide substrates recognition.17

Overexpression of ADAM17 in atherosclerosis prone region raised the question how it is activated. Previous studies suggest that angiotensin II, reactive oxygen species, and polymethacrylate increase ADAM17 activity in multiple ways.18–20 Inactive rhomboid types 1 and 2 have been reported to regulate forward trafficking of ADAM17 from endoplasmic reticulum to Golgi compartment where the prodomain of ADAM17 can be cleaved.21 On the other hand, depletion of membrane cholesterol can induce ADAM17-dependent shedding.22 More attention needs to be focused on the come and go of this ADAM17-TNF2 axis. Additional studies are warranted to definitively demonstrate the role of ADAM17 in different cells and underlying regulatory mechanisms.

Sources of Funding
This work was supported by funding from the National Natural Science Foundation of the P.R. China (NSFC; 91539203); International Cooperation and Exchanges NSFC (81220108004); the 111 Project of Chinese Ministry of Education (No. B07001); and the National Science Fund for Distinguished Young Scholars (81225002).

Disclosures
None.

References


ADAM17: A Molecular Switch to Control TNFR2 During Atherogenesis In Vivo
Yiting Jia and Wei Kong

doi: 10.1161/ATVBAHA.116.308840
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/37/2/176

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/