Letter to the Editor

Letter by Wu et al Regarding Article, “Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites”

To the Editor:

We read with interest the recent article “Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites” in which Feng et al elegantly show that exposure of endothelial cells to mechanical low shear stress activates hypoxia-inducible factor 1α (HIF-1α). Because atherosclerosis develops near branches or bends of arteries where endothelial cells are exposed to low shear stress, these results suggest that HIF-1α activation in endothelial cells may play a causal role in the pathogenesis of atherosclerosis.

Feng et al showed that upregulation of HIF-1α occurs via a dual mechanism involving transcriptional activation by nuclear factor-κB (NF-κB) and stabilization via the deubiquitinating enzyme Cezanne.

We were pleased to see that the study by Feng et al largely recapitulated our recently published findings. In our study, we took an unbiased approach and performed RNAseq in human arterial endothelial cells (ECs) exposed to either unidirectional flow (atheroprotective hemodynamics of high shear stress measured in human distal internal carotid artery) or disturbed flow (DF; atherosusceptible hemodynamics of low shear stress measured in human carotid sinus) to investigate the effects of shear stress on ECs. Analysis of our transcriptomic data showed that the dominant transcriptional events collected from vascular endothelium under static conditions. In summary, targeting DF-induced HIF-1α stabilization or EC metabolic changes may potentially lead to new therapies for atherosclerosis.

Sources of Funding

NIH R01ES015024 (G.M. Mutlu), R01 HL136765 (Y. Fang), and F32HL134288 (D. Wu).

Disclosures

None.

David Wu
Robert B. Hamanaka
Yun Fang*
Gökhan M. Mutlu*
Department of Medicine
Section of Pulmonary and Critical Care Medicine
University of Chicago
IL

*These authors contributed equally to this article.

(Arterioscler Thromb Vase Biol. 2017;37:e197-e198. DOI: 10.1161/ATVBAHA.117.310335.)

© 2017 American Heart Association, Inc.

Arterioscler Thromb Vase Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.117.310335
References


Letter by Wu et al Regarding Article, "Mechanical Activation of Hypoxia-Inducible Factor 1 α Drives Endothelial Dysfunction at Atheroprone Sites"
David Wu, Robert B. Hamanaka, Yun Fang and Gökhan M. Mutlu

doi: 10.1161/ATVBAHA.117.310335
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/37/12/e197

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/