LMO2 (LIM Domain Only 2) and Endothelial Cell Migration in Developmental and Postnatal Angiogenesis

Vijay Chaitanya Ganta, Brian H. Annex

As quoted by the famous astronomer Carl Sagan, “the absence of evidence is not the evidence of absence” (http://wiki.c2.com/?AbsenceOfEvidenceIsNotEvidenceOfAbsence) is the logical corollary that conclusions should not be drawn when a direct test for the presence of evidence cannot be made. This applies to the article by Matrone et al in this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, where the authors delineated a novel signaling pathway within the domain of endothelial migration. LMO2 (LIM domain only 2) was first discovered as a recurrent translocation partner of T-cell receptor loci in a subset of patients with T-cell acute lymphoblastic leukemia in 1981. Studies on LMO2 only 2) was first discovered as a recurrent translocation part-

Homozygote LMO2-deficient mice are severely anemic and die at E9–10 (embryonic day 9–10) because of failure in yolk sac erythropoiesis. In a study by Yamada et al, transfer of LMO2-deficient embryonic stem cells resulted in normal capillary development until E9; however, post-E9, the vascular system was highly disorganized (in mice that have LMO2-deficient embryonic stem cells integrated into the vasculature) indicating a role of LMO2 in angiogenic remodeling and vascular maturation. Taken together, these studies indicate that LMO2 dysregulation can result in a highly disorganized vascular network. By extension, in diseased tissue with insufficient angiogenesis, we can predict that LMO2 deficiency can not only aggravate tissue injury but also decrease vascular stability and increase vascular thickening (as observed in diabetic retinopathy, hypertension, and coronary atherosclerosis). Clearly, while not simple to detect, the biological process of migration involves complex signaling interactions among multiple cell types for specific cell migration to specific locations. Because the authors performed a global inhibition of LMO2 in the embryos, it is possible that the lack of migratory signals originating from ISVs post-LMO2 inhibition decreased GFP+ endothelial-like cell migration from large conduits into ISVs. Role of LMO2 in regulating paracrine signals between cells from ISVs and large conduits that regulate endothelial migration warrants further study.

The approach taken that linked LMO2 to SPHK1 (sphingosine kinase 1) was interesting. Using a mouse LMO2 CHIP-Seq analysis, the authors show that LMO2 has binding regions in VEGF-A (vascular endothelial growth factor), VEGFR1 (vascular endothelial growth factor receptor 1), VEGFR2, and SPHK1 in zebrafish embryos. SPHK1 and SPHK2 are 2 major isozymes of SPHK; alternate splicing in SPHK1 and SPHK2 produces multiple isoforms. Interestingly, whereas LMO2 deficiency decreased VEGFR expression in zebrafish embryos, LMO2 deficiency decreased VEGFR2 expression in HUVECs. These results suggest that LMO2 binds to different angiogenic genes during development and in adult tissues. However, whether a species-specific CHIP-Seq (chromatin immunoprecipitation-sequencing) would yield different or additional binding sites for LMO2 is not evident.

To some extent, SPHK1 and SPHK2 seem to have redundant and compensatory functions. Although mice deficient in either isozyme show no obvious phenotypic abnormalities, deficiency in both isozymes results in embryonic lethality. SPHK converts sphingosine a ceramide metabolite to S1P (sphingosine-1-phosphate) to decrease ceramide-induced apoptosis. Developmentally, SPHK activation of S1P plays critical roles in embryonic cell migration, cardiac development, neurogenesis, vascular development, and maturation in development, and in disease, SPHK/S1P plays important roles.
in protecting from myocardial ischemia and stroke, mitochondrial dysfunction, insulin resistance, and inflammation. An interesting and novel finding was the discovery that LMO2 has binding sites in SPHK1 but not SPHK2 promoter region. In vivo LMO2 inhibition decreased, and LMO2 overexpression increased SPHK1 levels in zebrafish embryos. LMO2-deficient HUVECs have lower, and LMO2-overexpressing HUVECs have higher SPHK1 expression. On the basis of the bioinformatics analysis, the authors next determined whether LMO2 binds to SPHK1 promoter to regulate SPHK1 expression. In the experimental strategy, the authors used a stable LMO2-deficient HUVEC line to determine the binding interactions between LMO2 and SPHK1 promoter by LMO2 CHIP-PCR (chromatin immunoprecipitation-polymerase chain reaction). Interestingly, despite LMO2 deficiency, PCR analysis of LMO2 CHIP-PCR for SPHK1 promoter showed only a 60% reduction SPHK1. Whether the remaining 20% to 40% LMO2 bound to SPHK1 promoter represents any other isoform is not clear. Furthermore, whether LMO2 regulates SPHK1 by direct binding interactions in zebrafish embryos is not clear. The authors next show that whereas SPHK1 inhibition decreased ISV generation similar to LMO2 inhibition, SPHK1 overexpression rescued decreased ISV phenotype induced by LMO2 inhibition in zebrafish embryos. The authors also show that SPHK1 deficiency decreased endothelial migration in HUVECs in a scratch assay. Finally, the authors show that S1P (downstream of LMO2/SPHK1) can rescue impaired angiogenesis induced by LMO2 inhibition in aortic ring angiogenic assays.

Assays seeking to show direct evidence for endothelial migration in vivo simply do not exist. The authors used in vitro (injury) models (scratch/wound healing assays) and aortic ring assays to show evidence of LMO2/SPHK1/S1P in endothelial migration as an in vivo developmental correlate to the findings in zebrafish. Whether LMO2/SPHK1/S1P axis functionally regulates GFP endothelial-like cell migration to ISVs in zebrafish embryos needs to be determined. Even though, LMO2/VEGF-A/VEGFR2 axis was not the focus of this study, VEGF-A, VEGFR1, and VEGFR2 deficiencies result in embryonic lethality because of vascular complications, whereas SPHK1-deficient mice were fertile and do not result in embryonic lethality because of vascular complications. The authors next show that whereas SPHK1 inhibition decreased ISV generation similar to LMO2 inhibition, SPHK1 overexpression rescued decreased ISV phenotype induced by LMO2 inhibition in zebrafish embryos. The authors also show that SPHK1 deficiency decreased endothelial migration in HUVECs in a scratch assay. Finally, the authors show that S1P (downstream of LMO2/SPHK1) can rescue impaired angiogenesis induced by LMO2 inhibition in aortic ring angiogenic assays.

Disclosures

None.

References

27. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. *Nature*. 1995;376:66–70. doi: 10.1038/376066a0.

Keywords: Editorials ◼ angiogenesis ◼ development ◼ endothelial migration ◼ post-natal ◼ signaling ◼ vasculature ◼ wound healing
LMO2 (LIM Domain Only 2) and Endothelial Cell Migration in Developmental and Postnatal Angiogenesis
Vijay Chaitanya Ganta and Brian H. Annex

doi: 10.1161/ATVBAHA.117.309953
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/37/10/1806

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/