Syk Inhibition in Ischemic Stroke

Steven E. McKenzie

Syk inhibition in ischemic stroke

Syk inhibition in ischemic stroke is a major global public health concern. Antiplatelet therapies are a mainstay of treatment. There remains a clinical need to prevent stroke when possible and to minimize neurological damage with minimal bleeding when stroke has occurred. That is why it is particularly exciting to see the work by van Eeuwijk et al from the group of Bernhard Nieswandt in this issue. Based on a compelling rationale of the role of nonreceptor protein tyrosine kinase Syk in platelet activation, van Eeuwijk et al report the use of a novel oral Syk inhibitor BI1002494 for prevention and treatment of ischemic stroke in a well-established mouse model.

See accompanying article on page 1247

Platelet activation at the sites of ruptured atherosclerotic plaques results from adhesion that triggers generation or secretion of vasoactive and inflammatory mediators, aggregation, and formation of a procoagulant surface. If activation exceeds natural or pharmacological inhibition, then an occlusive thrombus results. Syk is a major signaling node for collagen receptor GPVI (glycoprotein VI), which couples to the FcγRIIA chain and its immunoreceptor tyrosine activation motif to initiate platelet activation. Syk is also essential in platelets for signaling via FcγRIIa and CLEC-2 and for outside-in signaling through activated integrin αIIbβ3. In contrast, Syk has no, or perhaps a limited, role in response to G-protein coupled receptors, such as those for thrombin, thromboxane A2, and ADP (adenosine diphosphate). These are the targets of conventional antiplatelet therapies, which have limitations in efficacy and safety. So the promise of Syk inhibitors is that thrombosis will be curtailed while hemostasis is preserved.

Proof of concept of the benefits of Syk inhibition in mouse models of thrombosis has been reported using other small molecules or a microRNA approach. However, ischemic stroke has not been reported previously. First-generation Syk inhibitors, such as R406/R788 (Rigel), PRT062607 (Portola), and GS-9973 (Gilead), have been used in humans safely; however, small-molecule inhibitors with greater potency and selectivity over other kinases have emerged more recently, including those from Merck, Almirall, and in the current report, Boehringer-Ingelheim.

Van Eeuwijk, Nieswandt and colleagues report a comprehensive approach to their proof of concept for the actions of BI1002494 in ischemic stroke (Figure). They combined a genetic approach: mice selectively lacking Syk in platelets (Syk−/−/Pf4-cre+/−), with a pharmacological approach (BI1002494), in platelet function studies ex vivo and in the transient middle cerebral artery occlusion stroke model in vivo. In this model, a filament is threaded into one middle cerebral artery for 60 minutes, then removed, leaving an occlusive thrombus. Not only did pretreatment with BI1002494 reduce infract size without bleeding, but also administration of the inhibitor after the stroke was generated had similar benefits.

Wild-type mice lack several receptors relevant to human platelet function in thrombosis, such as PAR1 and FcγRIIa. Syk has important functions in immune cells, a role that is being exploited when Syk inhibitors are used in allergic disorders, asthma, and autoimmune diseases. Syk inhibitors are in clinical trials for B cell malignancies. However, in contrast to the oncogenic role of Syk in B cells, Syk is a tumor suppressor in several important epithelial malignancies; therefore, long-term use must be approached with caution. Despite these potential reservations, the results of this group provide a compelling case for continued investigation and translation to human patients.

Sources of Funding
Dr McKenzie has received support from National Institutes of Health (NIH) grant P01HL110860.

Disclosures
Dr McKenzie is inventor on a patent application (PCT/US15/64498) for use of anti-miRs that result in Syk inhibition in thrombosis.

References

From the Cardeza Foundation for Hematologic Research, Departments of Medicine and Pediatrics, Thomas Jefferson University and Hospitals, Philadelphia, PA.

Correspondence to Steven E. McKenzie, MD, PhD, Cardeza Foundation for Hematologic Research, Departments of Medicine and Pediatrics, Thomas Jefferson University and Hospitals, Philadelphia, PA 19107. E-mail: steven.mckenzie@jefferson.edu


© 2016 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.116.307709
Syk Inhibition in Ischemic Stroke
Steven E. McKenzie

doi: 10.1161/ATVBAHA.116.307709
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/36/6/1054

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/