Lipoprotein(a) Levels Are Associated With Subclinical Calcific Aortic Valve Disease in White and Black Individuals

The Multi-Ethnic Study of Atherosclerosis

Jing Cao,* Brian T. Steffen,* Matthew Budoff, Wendy S. Post, George Thanassoulis, Bryan Kestenbaum, Joseph P. McConnell, Russell Warnick, Weihua Guan, Michael Y. Tsai

Objective—Lipoprotein(a) [Lp(a)] is a risk factor for calcific aortic valve disease (CAVD) but has not been evaluated across multiple races/ethnicities. This study aimed to determine whether Lp(a) cutoff values used in clinical laboratories to assess risk of cardiovascular disease identify subclinical CAVD and its severity and whether significant relations are observed across race/ethnicity.

Approach and Results—Lp(a) concentrations were measured using a turbidimetric immunoassay, and subclinical CAVD was measured by quantifying aortic valve calcification (AVC) through computed tomographic scanning in 4678 participants of the Multi-Ethnic Study of Atherosclerosis. Relative risk and ordered logistic regression analysis determined cross-sectional associations of Lp(a) with AVC and its severity, respectively. The conventional 30 mg/dL Lp(a) clinical cutoff was associated with AVC in white (relative risk: 1.56; confidence interval: 1.24–1.96) and was borderline significant (P=0.059) in black study participants (relative risk: 1.55; confidence interval: 0.98–2.44). Whites with levels ≥50 mg/dL also showed higher prevalence of AVC (relative risk: 1.72; confidence interval: 1.36–2.17) than those below this level. Significant associations were observed between Lp(a) and degree of AVC in both white and black individuals. The presence of existing coronary artery calcification did not affect these associations of Lp(a) and CAVD. There were no significant findings in Hispanics or Chinese.

Conclusions—Lp(a) cutoff values that are currently used to assess cardiovascular risk seem to be applicable to CAVD, but our results suggest race/ethnicity may be important in cutoff selection. Further studies are warranted to determine whether race/ethnicity influences Lp(a) and risk of CAVD incidence and its progression. (Arterioscler Thromb Vasc Biol. 2016;36:1003-1009. DOI: 10.1161/ATVBAHA.115.306683.)

Key Words: aortic valve, calcification of ▪ atherosclerosis ▪ immunoassay ▪ prevalence ▪ risk factor

Calcific aortic valve disease (CAVD) is a progressive disorder that encompasses a spectrum of valve pathologies ranging from calcification of valve leaflets to obstruction of blood outflow. Early subclinical stages of CAVD are characterized by aortic valve calcification (AVC), which has historically been considered a benign degenerative condition that occurs with advancing age but is now recognized as a risk factor for cardiovascular disease. Indeed, AVC has been shown to independently predict cardiovascular events,1 increase risk of fatal coronary heart disease (CHD),2 and may progress to valve stenosis—a stiffening or narrowing of the aortic valve and most common cause of valve replacement.9 Several factors have been identified that promote CAVD development that are largely shared with CHD including, but not limited to, age, sex, hypertension, smoking, type II diabetes, hypercholesterolemia,4,7 and, more recently, elevated concentrations of lipoprotein (a) [Lp(a)].7,8

Lp(a) particles are a subclass of low-density lipoproteins (LDL) primarily distinguished by their apolipoprotein(a) component. Similar to conventional LDL, elevated Lp(a) levels are an established independent risk factor for CHD as reported by case–control and prospective studies.9–11 By comparison, evidence relating Lp(a) to CAVD and other valve disorders is less abundant, albeit consistent. Prospective and cross-sectional studies have reported positive associations of Lp(a) with both early and later stages of CAVD,12–16 and Mendelian randomization studies indicate that Lp(a) directly contributes to disease12,15; however, there are critical aspects yet to be examined. First, race-based differences in median Lp(a) levels have been well documented with black individuals typically showing 2- to 3-fold higher levels compared with whites or Hispanics.17–19

Received on: October 6, 2015; final version accepted on: January 27, 2016.
From the Department of Laboratory Medicine and Pathology (J.C., B.T.S., M.Y.T.), Division of Biostatistics, School of Public Health (W.G.), University of Minnesota, Minneapolis; Department of Medicine, University of California, Los Angeles (M.B.); Department of Medicine, John Hopkins University, Baltimore, MD (W.S.P.); Department of Medicine, McGill University, Montreal, Québec, Canada (G.T.); Division of Nephrology, Kidney Research Institute, University of Washington, Seattle (B.K.); and Health Diagnostics Laboratory, Richmond, VA (J.P.M., R.W.).
*These authors contributed equally to this work.

The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBAHA.115.306683/-/DC1. Correspondence to Michael Y. Tsai, PhD, Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St. SE, Mayo Mail Code 609, Minneapolis, MN 55455. E-mail: tsai001@umn.edu.

© 2016 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.115.306683
Remarkably, these higher Lp(a) levels in black individuals do not translate to a corresponding 2- to 3-fold higher risk of Lp(a)-associated disease—as shown in studies of CHD. Whether this phenomenon is evident in Lp(a)-associated CAVD or degree of calcification is unknown, but race/ethnicity may modify whether Lp(a) confers risk of CAVD.

In addition to a possible race/ethnicity-related modification of Lp(a) and valve disease, it remains unknown whether Lp(a) cutoff values used in clinical laboratories to assess cardiovascular risk (30 and 50 mg/dL) may be used in the context of CAVD. Notably, both the 30 and 50 mg/dL Lp(a) cutoffs have been shown to confer higher risk of CHD in black individuals, whereas only the 50 mg/dL cutoff was shown to associate with higher disease risk in whites and Hispanics—whether this phenomenon is also found in prevalent CAVD is unknown and is critical information for clinical laboratories. In this analysis, we examined whether elevated levels of Lp(a) are related to the presence of subclinical CAVD and degree of AVC among 1347 black, 1708 white, 1064 Hispanic, and 559 Chinese American participants of the Multi-Ethnic Study of Atherosclerosis (MESA). In addition to conventional risk factors, the presence of existing subclinical atherosclerosis as determined by coronary artery calcium (CAC), and serum phosphate levels were included as covariates.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

Sample Characteristics

Characteristics of MESA participants at baseline are shown in Table 1. Age and sex distributions were comparable. Chinese Americans had the lowest percentage of smokers and hypertensive participants, whereas whites had the fewest diabetic participants. Blacks had higher prevalence of hypertension, lower levels of triglycerides, and significantly higher levels of Lp(a) compared with other groups. Whites had the highest prevalence (14.5%) of subclinical CAVD as assessed by AVC, whereas Chinese Americans had the lowest (6.6%). Whites showed the most severe AVC cases with 93 (5.4%) individuals having an AVC score of >100, whereas the Chinese Americans had the fewest cases with 9 individuals (1.6%).

Continuous Lp(a) and Prevalence of Subclinical CAVD

Associations between log-transformed Lp(a) levels and the presence of AVC are shown in Table 2. A significant association

Table 1. Characteristics of MESA Participants in 4 Race/Ethnic Groups at Visit 1

<table>
<thead>
<tr>
<th></th>
<th>Blacks</th>
<th>White</th>
<th>Hispanics</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1347</td>
<td>1708</td>
<td>1064</td>
<td>559</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>61 (52–70)</td>
<td>62 (54–71)</td>
<td>61 (52–69)</td>
<td>62 (53–71)</td>
</tr>
<tr>
<td>Sex (male)</td>
<td>621 (46.1%)</td>
<td>813 (47.6%)</td>
<td>517 (46.6%)</td>
<td>217 (38.8%)</td>
</tr>
<tr>
<td>Smoker (former or current)</td>
<td>726 (53.9%)</td>
<td>929 (54.4%)</td>
<td>504 (47.4%)</td>
<td>137 (24.5%)</td>
</tr>
<tr>
<td>Diabetic or on diabetes mellitus meds</td>
<td>196 (14.6%)</td>
<td>86 (5.0%)</td>
<td>171 (16.1%)</td>
<td>55 (9.8%)</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>428 (31.8%)</td>
<td>325 (19.0%)</td>
<td>257 (24.2%)</td>
<td>126 (22.5%)</td>
</tr>
<tr>
<td>On hypertension meds</td>
<td>613 (45.5%)</td>
<td>493 (28.8%)</td>
<td>305 (28.7%)</td>
<td>138 (24.7%)</td>
</tr>
<tr>
<td>Non-Lp(a) LDL-C (mg/dL)</td>
<td>113 (92–133)</td>
<td>115 (97–136)</td>
<td>116 (97–137)</td>
<td>114 (96–132)</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.29 (1.06–1.57)</td>
<td>1.29 (1.06–1.60)</td>
<td>1.16 (0.98–1.40)</td>
<td>1.24 (1.03–1.50)</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.00 (0.75–1.38)</td>
<td>1.24 (0.85–1.81)</td>
<td>1.50 (1.06–2.13)</td>
<td>1.37 (0.96–1.91)</td>
</tr>
<tr>
<td>Lp(a) (mg/dL)</td>
<td>35.1 (20.4–61.6)</td>
<td>13.0 (5.8–29.6)</td>
<td>13.1 (6.3–28.9)</td>
<td>12.9 (7.7–23.4)</td>
</tr>
<tr>
<td>AVC presence</td>
<td>157 (11.7%)</td>
<td>248 (14.5%)</td>
<td>140 (13.2%)</td>
<td>37 (6.6%)</td>
</tr>
</tbody>
</table>

Data are shown in median (interquartile range) for continuous variable and as count (%) for categorical variable. Definition: smoker (former and current), diabetic (treated and untreated), and hypertensive (systolic blood pressure ≥ 140 mm Hg). AVC indicates aortic valve calcification; HDL, high-density lipoproteins; LDL, low-density lipoproteins; and Lp(a), lipoprotein(a).

*P<0.05 indicating significant difference compared with other race/ethnicity groups.
Calcific Aortic Valve Disease and Lp(a)

Cao et al

1005

[relative risk (RR)=1.11; 95% confidence interval (CI): 1.02–1.21; P=0.02] was observed in the entire sample after adjusting for covariates including age, sex, systolic blood pressure, taking hypertension medication, smoking, education status, diabetes mellitus, non-Lp(a)-LDL-C, high-density lipoprotein-C, triglycerides (log-transformed), serum phosphate levels, and the presence of CAC. When stratified by race/ethnicity, the association between Lp(a) and AVC remained significant in white participants (RR=1.19; 95% CI: 1.06–1.33; P=0.0023). No significant associations were observed in Hispanics or Chinese Americans but approached significance in black participants (RR=1.26; 95% CI: 0.97–1.65; P=0.088). A formal interaction test suggested that the association of Lp(a) (per log unit) and the presence of AVC varies dependent on race/ethnicity (P_{interaction}=0.03).

Lp(a) Cutoffs and Prevalence of Subclinical CVD

Lp(a) cutoff values were next evaluated to determine whether they differentially associated with the presence of AVC across races. The 30 mg/dL cutoff identified higher prevalence of AVC in white individuals (RR=1.56; 95% CI: 1.24–1.96; P<0.001) compared with those below 30 mg/dL. This relationship was borderline significant in black study participants (RR=1.26; CI: 0.97–1.65; P=0.088). A formal interaction test suggested that the association of Lp(a) (per log unit) and the presence of AVC varies dependent on race/ethnicity (P_{interaction}=0.03).

Lp(a) and AVC Severity

Associations of Lp(a) and the degree of calcification on the aortic valve were examined as above, testing Lp(a) as a continuous or categorical variable (Table 3) with identical covariate adjustments; however, odds ratios (OR) were generated from ordered logistic regression in place of using a RR regression approach. Lp(a) (per 1 log unit) was associated with the severity of AVC in black (OR = 1.48; 95% CI: 1.18–1.87) and white participants (OR = 1.33; 95% CI: 1.17–1.51). When examined using either 30 or 50 mg/dL dichotomizations, results were similar to the above. White individuals showed a greater likelihood of more severe AVC when Lp(a) exceeded 30 mg/dL (OR = 2.22; 95% CI: 1.59–3.10) or 50 mg/dL (OR = 2.95; 95% CI: 2.03–4.29). Likewise, black individuals showed a greater likelihood of more severe AVC when Lp(a) exceeded 30 mg/dL (OR = 1.93; CI: 1.29–2.91) or 50 mg/dL (OR = 1.71; CI: 1.17–2.50). No significant associations were observed in Chinese or Hispanic subpopulations examining Lp(a) as a continuous variable or using either cutoff value; however, associations approached significance using the 50 mg/dL cutoff in both Chinese (P=0.087) and Hispanic study participants (P=0.062).

Existing Atherosclerosis and Serum Phosphate

Additional covariates were included in the above models that have been suggested to influence CAVD—specifically, levels of serum phosphate as well as the presence of atherosclerosis as estimated by CAC. Serum phosphate levels were weakly correlated with Lp(a) in BLACK (corr=0.099; P<0.001) and

Table 2. Association of Lp(a) Levels With the Presence of Subclinical Calcific Aortic Valve Disease

<table>
<thead>
<tr>
<th></th>
<th>Blacks</th>
<th>Whites</th>
<th>Hispanics</th>
<th>Chinese Americans</th>
<th>All Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1324</td>
<td>1677</td>
<td>1044</td>
<td>548</td>
<td>4593*</td>
</tr>
<tr>
<td>Per log unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated RR</td>
<td>1.26</td>
<td>1.19†</td>
<td>0.94</td>
<td>0.91</td>
<td>1.11†</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.97–1.65</td>
<td>1.06–1.33†</td>
<td>0.85–1.03</td>
<td>0.23–3.64</td>
<td>1.02–1.21†</td>
</tr>
<tr>
<td>P value</td>
<td>0.088</td>
<td>0.0023†</td>
<td>0.18</td>
<td>0.90</td>
<td>0.021†</td>
</tr>
<tr>
<td>≥30 mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (%)‡</td>
<td>774 (57.5)</td>
<td>423 (24.8)</td>
<td>258 (24.2)</td>
<td>108 (19.3)</td>
<td>1563 (33.4)</td>
</tr>
<tr>
<td>Estimated RR</td>
<td>1.55</td>
<td>1.56†</td>
<td>1.09</td>
<td>2.18</td>
<td>1.38†</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.98–2.44</td>
<td>1.24–1.96†</td>
<td>0.79–1.51</td>
<td>0.52–9.21</td>
<td>1.18–1.62†</td>
</tr>
<tr>
<td>P value</td>
<td>0.059</td>
<td><0.001†</td>
<td>0.61</td>
<td>0.29</td>
<td><0.001†</td>
</tr>
<tr>
<td>≥50 mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (%)§</td>
<td>445 (33.0)</td>
<td>255 (14.9)</td>
<td>140 (13.2)</td>
<td>54 (9.7)</td>
<td>894 (19.1)</td>
</tr>
<tr>
<td>Estimated RR</td>
<td>1.24</td>
<td>1.72†</td>
<td>1.24</td>
<td>2.25</td>
<td>1.44†</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.85–1.80</td>
<td>1.36–2.17†</td>
<td>0.82–1.87</td>
<td>0.54–9.44</td>
<td>1.21–1.72†</td>
</tr>
<tr>
<td>P value</td>
<td>0.26</td>
<td><0.001†</td>
<td>0.31</td>
<td>0.27</td>
<td><0.001†</td>
</tr>
</tbody>
</table>

RR (95% CI, P value) is presented per unit increment in log Lp(a) or categorically (30 or 50 mg/dL). Models were adjusted for age, sex, hypertension (systolic blood pressure and medication), smoking, education status, diabetes mellitus, non-Lp(a)-LDL-C, HDL-C, log(triglycerides), presence of coronary artery calcium, and serum phosphate levels. P<0.05 indicates significant associations. CI indicates confidence interval; HDL, high-density lipoproteins; LDL, low-density lipoproteins; Lp(a), lipoprotein(a); and RR, Relative risk.

*Excluding individuals with missing covariate data.
†P<0.05.
‡Number of individuals with Lp(a) ≥ 30 mg/dL.
§Number of individuals with Lp(a) ≥ 50 mg/dL.
white participants (corr=0.059; \(P =0.02 \)). Serum phosphate directly correlated with AVC in black individuals (corr=0.010; \(P <0.001 \)) but was inversely correlated in whites (corr=−0.04; \(P <0.001 \)). Direct correlations of serum phosphate with the exposure \([Lp(a)]\) and outcome variables (AVC) in black participants (but not in whites) attenuated the associations of \(Lp(a)\) and AVC in this subgroup up including it as a covariate.

In contrast, CAC was only associated with AVC in the subcohort using a regression model and adjusting for age, sex, hypertension (systolic blood pressure and medication), smoking, education status, diabetes mellitus, non-\(Lp(a)\)-LDL-C, HDL-C, log(triglycerides), presence of coronary artery calcium, and serum phosphate levels. \(P <0.05\) indicates significant associations. AVC indicates aortic valve calcification; CI, confidence interval; HDL, high-density lipoproteins; LDL, low-density lipoproteins; \(Lp(a)\), lipoprotein(a); and OR, odds ratio.

Discussion

In a subcohort of 4678 MESA participants, higher \(Lp(a)\) levels were associated with the presence of subclinical CAVD and degree of valve calcification independent of age, sex, hypertension, smoking, education, diabetes mellitus, non-\(Lp(a)\)-LDL-C, high-density lipoprotein-C, triglycerides, serum phosphate, and existing CAC with a significant race interaction. Applying \(Lp(a)\) cutoffs that are currently used in clinical laboratories to evaluate cardiovascular risk showed that white participants with levels exceeding 30 mg/dL had a higher prevalence of AVC and higher likelihood of more severe AVC than those below this level. Similarly, this cutoff value revealed a borderline significant relation with AVC \((P =0.059\)) and more severe AVC in black individuals. The 50 mg/dL cutoff identified higher prevalence of AVC in white participants alone but was associated with more severe valve calcification in both black and white individuals.

\(Lp(a)\) and Aortic Valve Disease

Circulating concentrations of \(Lp(a)\) are largely determined by the apolipoprotein(a)-encoding \(LPA\) gene,\(^{20,21}\) and initial studies of \(Lp(a)\) and aortic valve-related outcomes focused on \(LPA\) genotypes. The first study to suggest a role of \(Lp(a)\) in CAVD development was a genome wide-assocication analysis conducted in 3 cohorts, including MESA. Investigators showed that the \(LPA\) gene variant (rs10455872) was associated with AVC in both whites and black individuals. This relation-ship was further shown to be mediated by circulating \(Lp(a)\) concentrations—although only the European/white population was tested.\(^{12}\) Two subsequent studies in the European Prospective Investigation into Cancer-Norfolk\(^{15}\) and 2 Danish cohorts\(^{14}\) also showed that elevated \(Lp(a)\) levels were associated with higher risk of CAVD incidence. Finally, and most recently, a cross-sectional analysis of 129 Dutch individuals with familial hypercholesterolemia showed that +10 mg/dL increments in \(Lp(a)\) were associated with 11% greater likelihood of CAVD \((OR=1.11; 95\% \text{ CI} =1.01–1.20, \ P =0.03)\).\(^{16}\) Collectively, these results indicate that higher \(Lp(a)\) levels are associated with CAVD.

Table 3. Association of \(Lp(a)\) Levels and Severity of Aortic Valve Calcification

<table>
<thead>
<tr>
<th></th>
<th>Blacks</th>
<th>Whites</th>
<th>Hispanics</th>
<th>Chinese Americans</th>
<th>All Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>1324</td>
<td>1677</td>
<td>1044</td>
<td>548</td>
<td>4593*</td>
</tr>
<tr>
<td>per log unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated OR</td>
<td>1.48†</td>
<td>1.33†</td>
<td>1.01</td>
<td>0.97</td>
<td>1.21†</td>
</tr>
<tr>
<td>95% CI</td>
<td>1.18–1.87†</td>
<td>1.17–1.51†</td>
<td>0.87–1.17</td>
<td>0.66–1.43</td>
<td>1.11–1.31†</td>
</tr>
<tr>
<td>(P) value</td>
<td><0.001†</td>
<td><0.001†</td>
<td>0.91</td>
<td>0.87</td>
<td><0.001†</td>
</tr>
<tr>
<td>≥30 mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N) (%)‡</td>
<td>774 (57.5)</td>
<td>423 (24.8)</td>
<td>258 (24.2)</td>
<td>108 (19.3)</td>
<td>1563 (33.4)</td>
</tr>
<tr>
<td>Estimated OR</td>
<td>1.93†</td>
<td>2.22†</td>
<td>1.37</td>
<td>1.14</td>
<td>1.80†</td>
</tr>
<tr>
<td>95% CI</td>
<td>1.29–2.91†</td>
<td>1.59–3.10†</td>
<td>0.86–2.17</td>
<td>0.44–2.91</td>
<td>1.46–2.23†</td>
</tr>
<tr>
<td>(P) value</td>
<td>0.001†</td>
<td><0.001†</td>
<td>0.19</td>
<td>0.79</td>
<td><0.001†</td>
</tr>
<tr>
<td>≥50 mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N) (%)§</td>
<td>445 (33.0)</td>
<td>255 (14.9)</td>
<td>140 (13.2)</td>
<td>54 (9.7)</td>
<td>894 (19.1)</td>
</tr>
<tr>
<td>Estimated OR</td>
<td>1.71†</td>
<td>2.95†</td>
<td>3.01</td>
<td>1.65</td>
<td>2.14†</td>
</tr>
<tr>
<td>95% CI</td>
<td>1.17–2.50†</td>
<td>2.03–4.29†</td>
<td>0.94–9.58</td>
<td>0.93–2.92</td>
<td>1.69–2.71†</td>
</tr>
<tr>
<td>(P) value</td>
<td>0.005†</td>
<td><0.001†</td>
<td>0.062</td>
<td>0.087</td>
<td><0.001†</td>
</tr>
</tbody>
</table>

\(Lp(a)\) and severity of AVC (categorized by Agatston scores of 0, 1-100, and >100) are shown below (estimated OR, 95% CI, \(P \) value). Models were adjusted for age, sex, hypertension (systolic blood pressure and medication), smoking, education status, diabetes mellitus, non-\(Lp(a)\)-LDL-C, HDL-C, log(triglycerides), presence of coronary artery calcium, and serum phosphate levels. \(P <0.05\) indicates significant associations. AVC indicates aortic valve calcification; CI, confidence interval; HDL, high-density lipoproteins; LDL, low-density lipoproteins; \(Lp(a)\), lipoprotein(a); and OR, odds ratio.

*Excluding individuals with missing covariate data.
†\(P<0.05\).
‡Number of individuals with \(Lp(a)\) ≥30 mg/dL.
§Number of individuals with \(Lp(a)\) ≥50 mg/dL.
The present analysis expands on previous studies by evaluating whether Lp(a) cutoff values detect the presence and severity of AVC among the 4 different races/ethnicities. In whites, our results indicate that 30 or 50 mg/dL cutoff values reveal respective 56% and 72% significantly higher prevalence of AVC ($P<0.001$) as well as respective 122% and 195% higher likelihood of greater valve calcification than those below these cutoffs. Given these data and overlapping CIs, either cutoff seems suitable to assess the presence or degree of AVC in whites. Based on analysis of Lp(a) as a continuous variable, higher Lp(a) levels promote higher prevalence and severity of valve disease.

Black individuals showed a more complex relation of AVC with Lp(a) than whites. The 30 mg/dL cutoff revealed a borderline significant 55% higher prevalence of AVC ($P=0.059$) and a 93% significantly higher likelihood of more severe valve calcification compared with black participants below this cutoff. Unexpectedly, the 50 mg/dL cutoff value revealed a non-significant 24% higher prevalence of AVC, but a significant 71% higher likelihood of more severe AVC ($P=0.005$). In terms of overall disease prevalence, black study participants had a lower prevalence of subclinical CAVD (11.7%) compared with whites (14.5%) despite having 2- to 3-fold higher median Lp(a) levels (35.1 mg/dL) versus whites (13.0 mg/dL). Based strictly on the significance values of the findings, the lower 30 mg/dL cutoff may be appropriate for black individuals for identifying CAVD risk, but further research is needed to better characterize the relation of Lp(a) with CAVD in this population—with particular focus on determining whether Black individuals are protected from their relatively high levels of Lp(a) compared with whites.

Lp(a) and AVC in Hispanics and Chinese
Null findings in Hispanic participants were not anticipated. Indeed, an association of the LPA gene variant (rs10455872) with subclinical CAVD was previously reported in Hispanics within the MESA population (OR=2.75; $P=0.004$), and it has further been shown that the LPA gene accounts for 40% to 90% of the variation in Lp(a) levels depending on ethnicity.20–22 The lack of an association in Hispanic participants suggests that the genetic link between Lp(a) and valve calcification may not be mediated by plasma Lp(a) levels or there are additional modifying variables that must be considered.

In contrast to findings in Hispanics, null findings in Chinese American participants were expected based on previous findings showing inconsistent relations of Lp(a) levels with cardiovascular-related disease.18,23,24 Indeed, it has been previously reported that Lp(a) does not associate with CHD incidence in the MESA Chinese subpopulation.18 Despite the null finding in the present analysis, the wide CIs in this group are remarkable. Ultimately, the above null findings should be replicated in other cohorts, but these initial observations coupled with the significant race interaction ($P=0.03$) when Lp(a) is treated as a continuous variable, suggesting that it does not influence subclinical CAVD in Hispanics and Chinese individuals.

Lp(a) and CAC
Calcification of coronary arteries has previously been shown to associate with subclinical CAVD,25,26 but relations among Lp(a), CAC, and CAVD have not been examined. This study confirms previous findings that individuals with CAC have a higher prevalence of CAVD (RR=1.71; $P<0.001$). This association likely indicates that these pathophysiological processes share risk factors or the presence of one increases the risk for developing the other. In contrast, Lp(a) was not associated with CAC in this MESA subcohort in agreement with several previous studies27–32 although not all. Upon including CAC as a covariate in our model, the relationship between Lp(a) and CAVD was not appreciably affected, suggesting that Lp(a) and CAC are independent risk factors of CAVD. Ultimately, further prospective and longitudinal studies will be better suited for identifying relations and temporality of CAC and CAVD than is possible using the present cross-sectional design, but Lp(a) levels seem to be a risk factor for CAVD alone.

Clinical Implications in Disease Development
Subclinical CAVD may be present in 15% to 40% of adults depending on age and race/ethnicity33 and is projected to increase with the aging population.34 Early CAVD may advance to valve stenosis and blockage,35 and therefore, assessing subclinical CAVD and its risk factors may identify advancement in valve disease. Although not regularly ordered by preventative cardiologists, AVC is readily available with routine chest computed tomography used for CAC detection. With respect to Lp(a), whether it is a viable clinical target or may otherwise inform clinical decisions regarding risk management of valve disease remains unclear. Lp(a) is still considered an unmodifiable lipoprotein risk factor at present, but development of Lp(a)-lowering therapies are currently underway.36,37

Strengths and Limitations
This study provides the first large-scale cross-sectional evaluation of Lp(a) concentrations and subclinical CAVD across 4 different races/ethnic groups. To avoid the inherent issues in accurately measuring Lp(a), mass concentrations were quantified using a latex-enhanced turbidimetric immunoassay that controls for the heterogeneous sizes of the apolipoprotein(a) component of Lp(a).38 In terms of study limitations, the relatively few cases of subclinical CAVD in Chinese participants compared with other subpopulations limited statistical power, and null findings in Hispanic and Chinese subpopulations need to be interpreted with caution and confirmed by additional cohort studies. The cross-sectional study design prohibits the determination of temporality, but findings support a role for Lp(a) in aortic disease when coupled with other prospective analyses. Additional research using longitudinal approaches will better characterize whether high Lp(a) levels increase risk of CAVD in these different subpopulations.

Conclusions
In summary, significant associations of Lp(a) and subclinical CAVD were observed in black and white individuals in a subcohort of 4678 MESA participants. Together with the presence of a significant race interaction, race/ethnicity may influence
whether elevated levels of Lp(a) increase risk of subclinical CAVD, but further studies are warranted to determine whether Lp(a) levels increase risk of incident CAVD and its progression and whether certain races/ethnicities may be protected from the pathogenic influence of Lp(a).

Acknowledgments
We thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Sources of Funding
This research was supported by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, and N01-HC-95169 from the National Heart, Lung, and Blood Institute and by grants UL1-TR-000040 and UL1-TR-001079 from the National Center for Research Resources.

Disclosures
None.

References
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein (LDL) particle subclass recently found to increase risk of subclinical calcific aortic valve disease (CAVD), which may contribute to aortic valve stenosis or heart disease. Notably, there are significant race-based differences in Lp(a), and it remains unknown whether this may influence valvular disease development. In this study of 4679 study participants, higher Lp(a) was found to associate with higher prevalence of subclinical CAVD in white participants. Applying Lp(a) clinical laboratory cutoffs likewise showed that white participants with levels ≥30 or ≥50 mg/dL had a higher prevalence of CAVD and more severe aortic valve calcification, whereas both cutoffs were only associated with more severe aortic valve calcification in black study participants. No relationship between Lp(a) and subclinical CAVD was observed in Hispanics or Chinese. Taken together, race/ethnicity may be an important variable in determining whether elevated Lp(a) identifies subclinical CAVD or severity of aortic valve calcification. The present observations may help identify at-risk individuals and inform clinical decisions for disease risk management.
Lipoprotein(a) Levels Are Associated With Subclinical Calcific Aortic Valve Disease in White and Black Individuals: The Multi-Ethnic Study of Atherosclerosis
Jing Cao, Brian T. Steffen, Matthew Budoff, Wendy S. Post, George Thanassoulis, Bryan Kestenbaum, Joseph P. McConnell, Russell Warnick, Weihua Guan and Michael Y. Tsai

Arterioscler Thromb Vasc Biol. 2016;36:1003-1009; originally published online March 3, 2016; doi: 10.1161/ATVBAHA.115.306683
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/36/5/1003

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2016/03/03/ATVBAHA.115.306683.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
MATERIALS AND METHODS

Study Population

The design of the MESA study has been previously described,¹ and information about the MESA protocol is available at www.mesa-nhlbi.org. Briefly, 6814 men and women between the ages of 45 and 84 years without clinical evidence of cardiovascular disease were recruited from six communities in the US. Institutional Review Board approval was obtained at all MESA sites, and all participants gave informed consent.

The current study excluded participants who were taking lipid-lowering medication at baseline (n=1090)² as well as a subcohort of 1000 MESA participants where specimen volume was limited. The remaining study population of 4,678 individuals was composed of the following race/ethnicities: Black (n=1,347), Caucasians (n=1,708), Hispanic (n=1,064), and Chinese-American (n=559). Age, race/ethnicity, sex, baseline measurements including the use of medications, systolic blood pressure, diabetes (treated or untreated diabetes mellitus as determined by 2003 American Diabetes Association fasting criteria algorithm), smoking status (former and current), and education status were recorded.

Laboratory measurements

Lp(a) mass concentration was measured in baseline specimens by Health Diagnostics Laboratory (Richmond, Virginia) using a latex-enhanced turbidimetric immunoassay (Denka Seiken, Tokyo, Japan) which controls for the heterogeneous sizes of apo(a).³ Fasting triglyceride, total cholesterol, high density lipoprotein cholesterol (HDL-C) concentrations were measured as described previously.⁴ Low density lipoprotein-cholesterol (LDL-C) was calculated based on the Friedewald formula in participants with triglycerides <4.52 nmol/L. Notably, the
calculated LDL-C value includes the cholesterol component in Lp(a) particles; to account for this overlap, Lp(a)-cholesterol was also assayed by Health Diagnostics Laboratory, and values were subtracted from LDL-C to control for non-Lp(a) LDL-C. Serum phosphate levels were determined on a Beckman-Coulter UniCel DxC instrument using a timed-rate colorimetry method (interassay coefficients of variation of 2.5%).

Imaging

Coronary artery calcium (CAC) and AVC were obtained at baseline using computed tomography imaging with either electron beam or multi-detector scanners. The image acquisition protocol has been described previously. Each participant was scanned twice, and the scans were interpreted at the core laboratory at the Los Angeles Biomedical Research Institute at Harbor-UCLA (University of California Los Angeles) Medical Center by experienced readers who were blinded to the clinical information. For AVC, any calcified focus that extended to the aortic root was deemed aortic valve calcium as described previously.

Statistical Model

Statistical analysis was conducted using Stata (version 12.1, Stata Corp, College Station, TX). Baseline characteristics were presented as medians (interquartile range) for continuous variables and frequencies (%) for categorical variables. Missing data were excluded when calculating frequencies. The Lp(a) measures were log transformed in our analyses. Tukey-Kramer HSD was used to test differences between groups. Generalized linear model (GLM) with log link function was used to estimate the relative risk (RR) of log-Lp(a) on presence of AVC (>0 vs ≤0) with a 95% confidence interval (CI). AVC severity was defined as a 3-category variable: =0, 0-100, and ≥100. Ordered logistic regression was used to estimate the odds ratio of log-Lp(a) on AVC severity. The proportional odds assumption was examined using the Brant
test.7 Statistical adjustments were made for age, sex, hypertension medication, systolic blood pressure (≥140 mm Hg), smoking status (never; former; current), existing CAC (0 or 1), serum phosphate levels, diabetes (American Diabetes Association criteria: normal glucose; impaired fasting glucose; untreated diabetes, treated diabetes), HDL-C, non-Lp(a) LDL-C and (log-transformed) triglycerides, education status (no schooling, grades 1-8; grades 9-11; completed high school; some college/no degree; technical school certificate; associate degree, bachelor’s degree; graduate or professional school) and racial/ethnic group. We carried out subgroup analyses for each race/ethnicity using the same statistical model without adjustment for race. Lp(a)-race interaction was examined by including the interaction term in the regression models described above.
References

7. JS L, J F. *Regression models for categorical dependent variables using stata.* College Station, TX: Stata Press; 2014.