Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study

Objective—Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined.

Approach and Results—We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid–femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid–radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm²; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal.

Conclusions—In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. (Arterioscler Thromb Vasc Biol. 2016;36:2452-2459. DOI: 10.1161/ATVBAHA.116.307948.)

Key Words: arterial stiffness ■ endothelium ■ epidemiology ■ hyperemia ■ vascular function

Arterial blood flow is pulsatile in nature. Experimental studies demonstrate that endothelial cell phenotype and vascular function are strongly influenced by local shear stress, the frictional force exerted by flowing blood.1,2 Blood flow can be either laminar or turbulent. Atherosclerosis preferentially develops at regions of disturbed flow, and this observation has been attributed to the effects of flow reversal on the vascular endothelium.3–6 Unidirectional laminar flow with pulsatility maintains endothelial health and suppresses inflammatory and thrombotic processes.7–9 Conversely, episodic flow reversal impairs nitric oxide production and generates a proatherogenic gene expression profile.10–12 In peripheral arteries, diastolic flow reversal may be present and is more prevalent with aging and sedentary behaviors.13–16 Arterial stiffness may influence flow patterns, and increased stiffness of the central aorta has been proposed to be a determinant of flow reversal in peripheral arteries.15–20 Prior human studies suggest that induction of flow reversal acutely reduces endothelial vasomotor function.21–24 Therefore, we sought to investigate whether flow reversal in the brachial artery relates to measures of endothelial function, including flow-mediated dilation and hyperemic flow. Further, we examined the association of brachial flow reversal and aortic and peripheral arterial stiffness and forearm vascular resistance (FVR).

Materials and Methods
Materials and Methods are available in the online-only Data Supplement.

Results
Participant Characteristics
The study sample included 5708 participants, mean age 47±13 years, 53% women. Clinical characteristics and vascular measures are shown in Table 1. Diastolic flow reversal was

Received on: June 6, 2016; final version accepted on: October 16, 2016.
From the Boston University’s and the National Heart, Lung, and Blood Institute’s Framingham Heart Study (M.G.L., R.S.V., E.J.B.), MA; Cardiology (R.S.V., E.J.B., J.A.V., N.M.H.) and Preventive Medicine Sections (R.S.V., E.J.B.), and Whitaker Cardiovascular Institute, School of Medicine (R.B.-R., R.S.V., E.J.B., J.A.V., N.M.H.), School of Public Health (N.W., J.P., M.G.L., R.S.V., E.J.B.), and Departments of Mathematics and Statistics (M.G.L.), Boston University, MA; and Cardiovascular Engineering Inc, Norwood, MA (G.F.M.).
†Deceased November 2, 2014.
The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBAHA.116.307948/-/DC1. Correspondence to Naomi M. Hamburg, MD, MS, Boston University, 88 E Newton St C818, Boston, MA 02118. E-mail nhamburg@bu.edu
© 2016 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.116.307948

2452
present in 35% of the participants. Representative examples of flow velocity waveforms are illustrated in Figure 1, showing an individual with unidirectional flow (Figure 1A) and flow reversal (Figure 1B).

Clinical Correlates of Flow Reversal

Clinical correlates of diastolic flow reversal in age-, sex-, and cohort- adjusted and multivariable-adjusted models are presented in Table 2. Increasing age and female sex were associated with higher prevalence of flow reversal. Among women, there was a modest association of menopause with a lower prevalence of flow reversal in age-adjusted models, which becomes nonsignificant in multivariable adjusted models. Several cardiovascular disease risk factors, including higher heart rate, higher body mass index, higher total/high-density lipoprotein cholesterol ratio, and smoking were associated with a lower prevalence of flow reversal. Participating in the walk test prior to vascular testing was associated with a lower prevalence of flow reversal.

Association of Flow Reversal With Vasodilator Function

To gain insight into the association of flow reversal with endothelial function, we compared mean values of vascular measures between participants with and without diastolic flow reversal. We used linear regression models adjusted for age, sex, and cohort initially and additionally adjusted for clinical covariates, including mean arterial pressure, heart rate, body mass index, total/high-density lipoprotein cholesterol ratio, triglycerides, glucose, diabetes mellitus, current smoking, hypertension treatment, lowering lipid treatment, walk test, and prevalent cardiovascular disease (Table 3). Both flow-mediated dilation and reactive hyperemia were lower in individuals with flow reversal compared with individuals without

<table>
<thead>
<tr>
<th>Table 1. Participant Characteristics and Vascular Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Clinical measures</td>
</tr>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>Female, %</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
</tr>
<tr>
<td>Total/HDL cholesterol</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
</tr>
<tr>
<td>Smoking, %</td>
</tr>
<tr>
<td>Hypertension, %</td>
</tr>
<tr>
<td>Hormone replacement therapy, % women</td>
</tr>
<tr>
<td>Menopause, % women</td>
</tr>
<tr>
<td>Treatment of hypertensive, %</td>
</tr>
<tr>
<td>Treatment of lowering cholesterol, %</td>
</tr>
<tr>
<td>Walk test before, %</td>
</tr>
<tr>
<td>Prevalent CVD, %</td>
</tr>
<tr>
<td>Vascular measures</td>
</tr>
<tr>
<td>Baseline brachial diameter, mm</td>
</tr>
<tr>
<td>Flow-mediated dilation, %</td>
</tr>
<tr>
<td>Baseline flow velocity, cm/s</td>
</tr>
<tr>
<td>Hyperemic flow velocity, cm/s</td>
</tr>
<tr>
<td>Carotid–femoral PW, m/s</td>
</tr>
<tr>
<td>Carotid–radial PW, m/s</td>
</tr>
<tr>
<td>Flow reversal, %</td>
</tr>
<tr>
<td>Baseline FVR, log dyne/cm²</td>
</tr>
</tbody>
</table>

Continuous variables expressed as mean±SD. CVD indicates cardiovascular disease; HDL, high-density lipoprotein; FVR, forearm vascular resistance; and PWV, pulse wave velocity.
Greater degrees of flow reversal were associated with a steep decline in flow-mediated dilation. In contrast, the difference in flow-mediated dilation was more gradual with increasingly positive diastolic flow velocity (Figure 2A). A similar pattern was observed for reactive hyperemia (Figure 2B). Further, the association of diastolic flow velocity with flow-mediated dilation adjusted for hyperemic flow showed the same pattern (Figure I in the online-only Data Supplement).

As shown in Table 4, the associations of diastolic flow velocity with flow-mediated dilation and with hyperemic flow velocity were stronger in the presence of flow reversal compared with no flow reversal.

Further, there was evidence of effect modification by diastolic flow reversal of the association between hyperemic flow velocity and flow-mediated dilation (P value for interaction =0.03). As shown in Figure 3, the presence of diastolic flow reversal is associated with lower flow-mediated dilation function for both individuals with high and low hyperemic flow. These findings suggest that the association of flow reversal and flow-mediated dilation is not simply reflective of lower stimulus for dilation.

Association of Flow Reversal With Arterial Stiffness

In multivariable models adjusting for clinical covariates, central aortic stiffness measured by carotid–femoral pulse wave velocity was higher in individuals with flow reversal compared with individuals without flow reversal (Table 3). In spline analysis, the relation of diastolic flow velocity with carotid–femoral pulse wave velocity was also nonlinear (Figure 4).

Table 2. Relations of Flow Reversal With Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Flow Reversal</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Age–Sex Cohort</td>
<td>P Value</td>
</tr>
<tr>
<td>Age, y</td>
<td>2.60 (2.36, 2.87)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex, female vs male</td>
<td>3.44 (3.03, 3.92)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean arterial blood pressure</td>
<td>0.85 (0.79, 0.90)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Heart rate</td>
<td>0.83 (0.77, 0.88)</td>
<td><0.0001</td>
</tr>
<tr>
<td>BMI</td>
<td>0.83 (0.77, 0.88)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Total/HDL cholesterol</td>
<td>0.75 (0.69, 0.81)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>0.80 (0.74, 0.86)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>0.88 (0.82, 0.94)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.94 (0.73, 1.20)</td>
<td>0.61</td>
</tr>
<tr>
<td>Smoking</td>
<td>0.41 (0.34, 0.49)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hormone replacement therapy</td>
<td>0.86 (0.69, 1.07)</td>
<td>0.17</td>
</tr>
<tr>
<td>Menopause, yes vs no*</td>
<td>0.74 (0.58, 0.96)</td>
<td>0.021</td>
</tr>
<tr>
<td>Hypertension treatment</td>
<td>0.79 (0.67, 0.94)</td>
<td>0.009</td>
</tr>
<tr>
<td>Walk test</td>
<td>0.71 (0.59, 0.87)</td>
<td>0.0007</td>
</tr>
<tr>
<td>Lipid lowering treatment</td>
<td>0.95 (0.78, 1.16)</td>
<td>0.61</td>
</tr>
<tr>
<td>Prevalent CVD</td>
<td>1.35 (1.03, 1.78)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Continuous variables are expressed per 1 SD change; see Table 1 for SD values. BMI indicates body mass index; CI, confidence interval; CVD, cardiovascular disease; HDL, high-density lipoprotein; and OR, odds ratio.

*In women only.
Increasingly negative diastolic flow velocity was associated with marked increase in carotid–femoral pulse wave velocity, consistent with greater aortic stiffness. The difference in carotid–femoral pulse wave velocity was minimal with increasingly positive diastolic flow velocity above the median. As shown in Table 4, the association of diastolic flow velocity with carotid–femoral pulse wave velocity was stronger in the presence of flow reversal compared with no flow reversal.

In contrast, muscular artery stiffness measured by carotid–radial pulse wave velocity was lower in the presence of flow reversal (Table 3). In spline analysis, the relation of diastolic flow velocity with carotid–radial pulse wave velocity was also nonlinear (Figure 4B). More negative diastolic flow velocity was associated with lower carotid–radial pulse wave velocity, consistent with lower muscular artery stiffness. The difference in carotid–radial pulse wave velocity was minimal with increasingly positive diastolic flow velocity above the median. As shown in Table 4, the association of diastolic flow velocity with carotid–radial pulse wave velocity was stronger in the presence of flow reversal compared with no flow reversal.

Association of Flow Reversal With Vascular Resistance

Peripheral artery resistance may contribute to flow reversal. In both minimally and multivariable-adjusted models, baseline FVR was higher in individuals with flow reversal when comparing with individuals with non-reversal flow (Table 3). In spline analysis, the relation of diastolic flow velocity with FVR was nonlinear (Figure 4). Greater degrees of flow reversal were associated with markedly higher FVR. As shown in Table 4, the association of diastolic flow velocity with FVR was stronger in the presence of flow reversal compared with no flow reversal. In age-, sex-, and cohort-adjusted analyses, there was no significant correlation of carotid–radial pulse wave velocity (partial r = –0.013, P = 0.31).

Discussion

In the present study, we investigated the relations of flow patterns in the brachial artery with vasodilator function and arterial stiffness. In a community-based study, we observed that flow reversal during diastole was present in more than a third of participants. In models adjusting for conventional risk factors, we noted that the presence of diastolic flow reversal was related to lower vasodilation in both the conduit brachial artery and forearm microcirculation. Diastolic flow reversal was associated with impaired flow-mediated dilation in individuals with low or high reactive hyperemic responses, suggesting an independent association with conduit vasodilator function. Further, we demonstrated that an increasing magnitude of flow reversal was associated with a greater decrease in vasodilator function. Flow reversal related to higher carotid–femoral pulse wave velocity and higher FVR, consistent with the possibility that reduced central arterial compliance, alters flow patterns in the peripheral arteries. Conversely, muscular arterial stiffness was lower in the presence of flow reversal. Thus, our findings indicate that flow reversal in peripheral arteries is accompanied by vascular dysfunction and aortic stiffening.

Extensive experimental evidence links local flow disturbance to altered endothelial cell properties. Multiple studies in cell culture and animal models have shown that oscillatory flow induces a pathological endothelial state, and flow reversal suppresses endothelial nitric oxide synthase expression and activation, as well as increases oxidative stress. Prior human studies suggest an impact of flow patterns on endothelial vasodilator function. In coronary arteries, endothelial dysfunction is more pronounced at branch points, regions characterized by flow turbulence. External counterpulsation therapy in patients with coronary artery disease improved flow-mediated dilation potentially through reduction of brachial flow reversal in diastole. Importantly, intervention studies by Thijssen et al. provide compelling evidence that flow reversal impacts endothelial function acutely and over a 2-week period. In healthy volunteers, manipulation of brachial artery blood flow and shear to generate acute flow reversal lead reduced flow-mediated dilation. Further, augmentation of retrograde flow with a compression sleeve worn for 2 weeks reduced flow-mediated dilation in young but not old men. Reduction of retrograde flow is related to the endothelial benefit of exercise interventions. The association of...
by guest on August 30, 2017 http://atvb.ahajournals.org/ Downloaded from

flow reversal with vascular function and arterial stiffness in a community-based sample remains uncertain.

The current study evaluates flow reversal and vascular function in a large, unselected sample with comprehensive risk factor assessment. Flow-mediated dilation is a key physiological regulator of blood flow that occurs in response to acute changes in shear stress through endothelial release of nitric oxide and other vasodilators. Reactive hyperemia reflects microvessel dilation produced by ischemia-mediated vasodilator generation, including nitric oxide. By evaluating average diastolic flow, we identified that more than a third of the participants had evidence of flow reversal, with mean diastolic flow ≤0. Consistent with prior reports, advancing age was associated with higher prevalence of flow reversal. Interestingly, several cardiovascular risk factors were associated with a lower prevalence of flow reversal, higher total/high-density lipoprotein cholesterol ratio, smoking, and higher body mass index. We have previously demonstrated that a similar set of cardiovascular risk factors was associated with higher baseline forearm flow and reduced FVR, potentially reflecting resting vasodilation or microvascular remodeling. Similarly, female sex was previously associated with lower resting flow, and we now report a higher prevalence of flow reversal. Higher resting flow with lower FVR may limit flow reversal.

We observed that brachial flow reversal was associated with impaired flow-mediated dilation and reactive hyperemia even after adjusting for risk factors, suggesting that local flow dynamics alters vascular function. In addition, flow reversal was associated with impaired flow-mediated dilation both in individuals with low and high hyperemic responses, consistent with an association of flow reversal with endothelial dysfunction. Our findings support the possibility that flow reversal influences vascular function. Alternatively, abnormal endothelial function may contribute to the generation of diastolic flow reversal.

Arterial stiffness may influence flow patterns in peripheral arteries. In the present study, we observed elevated aortic stiffness in association with brachial flow reversal, supporting an intersection of central arterial structure and peripheral arterial dynamics. Under physiological conditions, elastic recoil of the aorta helps maintain forward flow in peripheral arteries during diastole. Stiffening of the central aorta tends to increase systolic flow amplitude and induce diastolic flow reversal in the periphery. Furthermore, several studies have suggested that elevated aortic stiffness may lead to increased peripheral resistance and have detrimental effects on microvessel function. Stiffness of the brachial artery may alter the effects of flow on the endothelium. We observed divergent patterns in the association of flow reversal with endothelial function. Alternatively, endothelial dysfunction may promote arterial stiffness, which, in turn, influences peripheral flow patterns. Central flow patterns in the aorta were not measured in the current study; thus, the contribution of aortic flow reversal to aortic stiffness cannot be assessed. However, prior studies indicate a contribution of endothelial nitric oxide to functional arterial stiffness that may account for the association of carotid–femoral pulse wave velocity with peripheral flow reversal. The cross-sectional nature of the present study precludes a precise determination of the temporal sequence of central arterial stiffening, endothelial dysfunction, and peripheral flow reversal. However, the observed association of carotid–femoral pulse wave velocity and flow reversal is consistent with an intersection of central aortic properties and peripheral flow patterns.

Stiffness of the brachial artery may alter the effects of flow on the endothelium. We observed divergent patterns in the association of central and muscular artery stiffness with arterial flow patterns. In the presence of flow reversal, lower peripheral stiffness was associated with a greater degree of flow reversal; however, in the absence of flow reversal, there was no association between diastolic flow velocity and carotid–radial pulse wave velocity. Our finding of lower peripheral artery stiffness in the presence of flow reversal suggests complex interrelations of regional stiffness, flow patterns, and vascular function. In experimental models,
local compliance modulates the effects of oscillatory flow on endothelial phenotype. Circumferential stretch of the arterial wall, which occurs during systole and relates to higher arterial distensibility, is associated with increased oxidative stress. Further, a stiffened central aorta accompanied by compliant muscular arteries permits increased forward wave penetration that may damage the microcirculation, thereby, augmenting resting flow reversal. Importantly, peripheral conductance measure as FVR does not associate with peripheral stiffness, confirming that FVR is largely determined at the arterial level. Thus, it seems that flow reversal is associated with higher small-vessel resistance potentially related to microvascular vasodilator dysfunction (indicated by lower reactive hyperemia) but not with higher muscular artery stiffness. Lower muscular artery stiffness may promote small-vessel damage by transmission of pulsatile forces into the microcirculation.

Several limitations of the current study must be considered. The study design is cross-sectional. Thus, the directionality of the associations between flow patterns, endothelial function, and arterial stiffness cannot be determined. It is likely that flow patterns both alter and are altered by vasomotor function. However, the present study cannot evaluate the temporal sequence of these changes. We based our evaluation of diastolic flow patterns on mean diastolic flow velocity and did not measure minimum diastolic flow. Therefore, participants with transient, lesser degrees of diastolic flow reversal may have been assigned to the no flow reversal group. We would expect that misclassification of flow reversal would tend to make associations with vascular function measures more difficult to detect. Further, the spline analysis using diastolic flow velocity as a continuous measure confirmed the findings of the categorical analysis. The cohort consists of predominantly white participants, potentially limiting generalizability to other racial and ethnic groups. Prior studies have suggested variability in flow-mediated dilation across the menstrual cycle, and the scheduling of participant visits was not timed to menstrual cycle that may have introduced variability into the vascular measurements. Based on scheduling, some of the participants had a walk test performed prior to vascular testing that may influence flow patterns. We included an adjustment for this parameter in multivariable modeling. Given the community-based study design, we did not withhold medications or administer nitroglycerin to assess endothelium-independent vasodilation.

In summary, we provide evidence supporting a link between peripheral artery flow reversal and vascular function. Our observations are consistent with the hypothesis that flow reversal may influence endothelial function and impair vasodilator
capacity. Taken together, our findings highlight flow reversal as an emerging vascular measure that relates to both central arterial stiffness and vasodilator function. Future longitudinal studies are required to evaluate the potential contribution of flow patterns to the risk for hypertension and cardiovascular events.

Sources of Funding

The Framingham Heart Study is funded by National Institutes of Health (NIH)/National Heart, Lung, and Blood Institute (NHLBI) contract N01-HC25195 and HHSN268201500001I. The project was supported by NIH grants R01HL107385, R01HL126136-01, R01HL60040, HL70100, HL076784, AG0025321, HL080124, 2K24-HL4334, and the Donald W. Reynolds Foundation. Dr. Hamburg is supported by NIH grants HL083781 and HL102299. Dr. Breton-Romero is supported by an American Heart Association Postdoctoral Fellowship 16POST27260178. Dr. Vasan is partly supported by the Evans Scholar award from the Department of Medicine at Boston University School of Medicine.

Disclosures

Dr. Mitchell is owner of Cardiovascular Engineering, Inc, a company that designs and manufactures vascular stiffness measurement devices. The other authors report no conflicts.

References

Our findings support a link between flow reversal in the peripheral arteries with impaired vascular function and higher central arterial stiffness.

Brachial artery flow reversal was associated with higher central aortic stiffness, lower muscular artery stiffness, and higher forearm vascular resistance.

Greater degrees of flow reversal were associated with reduced flow-mediated dilation and reactive hyperemia flow velocity, consistent with conduit and small vessel endothelial dysfunction.

Brachial artery flow reversal was associated with higher central aortic stiffness, lower muscular artery stiffness, and higher forearm vascular resistance.

Our findings support a link between flow reversal in the peripheral arteries with impaired vascular function and higher central arterial stiffness and are consistent with the hypothesis that flow reversal may contribute to endothelial dysfunction and impair vasodilator capacity.

Highlights

- Retrograde flow impairs endothelial cell function and phenotype. Arterial stiffness may contribute to peripheral flow reversal.
- We measured brachial diastolic flow patterns in a large community-based cohort. Flow reversal was present in more than a third of the participants and associated with advancing age.
- Greater degrees of flow reversal were associated with reduced flow-mediated dilation and reactive hyperemia flow velocity, consistent with conduit and small vessel endothelial dysfunction.
- Brachial artery flow reversal was associated with higher central aortic stiffness, lower muscular artery stiffness, and higher forearm vascular resistance.
- Our findings support a link between flow reversal in the peripheral arteries with impaired vascular function and higher central arterial stiffness and are consistent with the hypothesis that flow reversal may contribute to endothelial dysfunction and impair vasodilator capacity.
Cross-Sectional Associations of Flow Reversal, Vascular Function, and Arterial Stiffness in the Framingham Heart Study

Arterioscler Thromb Vasc Biol. 2016;36:2452-2459; originally published online October 27, 2016;
doi: 10.1161/ATVBAHA.116.307948

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/36/12/2452

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2016/10/27/ATVBAHA.116.307948.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

SUPPLEMENTAL FIGURES

Figure S1.
Figure SI. Multivariable-adjusted association of diastolic flow velocity and flow-mediated dilation when adjusting for hyperemic flow velocity, using restricted cubic splines with 3 knots at diastolic flow velocity at the 20th, 50th, and 80th percentile. Analyses were based on the entire cohort; for visual display the range of mean diastolic flow shown on the x-axis was limited to the 5th to 95th percentile. The y-axis represents the difference in flow-mediated dilation. The solid line shows the association of mean diastolic flow velocity and flow-mediated dilation. The dashed lines represent the 95% confidence interval.
METHODS AND MATERIALS

Participants
We studied participants from the Framingham Offspring and Third Generation Cohorts. We performed vascular testing in the Offspring cohort at the 7th examination cycle (1998-2001) and in the Third Generation at the 1st examination cycle (2002-2005). In the Offspring cohort, 796 participants underwent a 6-minute walk prior to vascular testing. Of the 7634 participants at these examinations, we excluded in a hierarchical manner a total of 1926 for the following reasons: 205 for offsite visit (205), 1146 for vascular examination not performed or incomplete as the Doppler studies were initiated partway through the Offspring 7th examination, 540 for technically inadequate vascular studies, and 35 for missing clinical covariates; yielding a final sample of 5708 individuals for the present analyses. Each examination included risk factor ascertainment through routine medical history, physical examination, and laboratory assessment. The Boston University Medical Center Institutional Review Board approved the research and all participants provided written informed consent.

Measurement of Brachial Flow Patterns
Brachial artery flow was assessed using pulsed Doppler at rest and for 15 seconds following cuff release. Doppler recordings were analyzed using a semi-automated signal-averaging method with correction for insonation angle. Sonographers measured flows separately from arterial diameters blinded to corresponding flow-mediated dilation. Resulting flow waveforms were integrated to assess mean resting and mean hyperemic flow velocities. We have previously reported the clinical correlates of brachial flow velocity in the Offspring cohort.

Measurement of Brachial Vasodilator Function
Participants were asked to not eat or drink (except for water or decaffeinated coffee or tea) after 8 pm the night prior to the vascular test. We have described in prior reports the methodology and reproducibility for measuring flow-mediated dilation of the brachial artery. Briefly, the subject was positioned supine with the arm in a comfortable position for imaging the brachial artery. A segment with clear anterior and posterior intimal interfaces between the lumen and vessel wall in the longitudinal plane was selected for continuous 2D gray-scale imaging. We imaged brachial artery diameter using high resolution ultrasound (Toshiba #SSH-140A, 7.5 MHz linear array transducer in Offspring and Philips Sonos 5500, 11-3L linear array transducer in the Third Generation) at rest and 1 minute after a 5-minute cuff occlusion (200 mm Hg or 50 mm Hg + SBP) on the forearm used to induce reactive hyperemia. Arterial diameters were measured off-line using commercially available software (Brachial Analyzer, Medical Imaging Applications, Iowa City, Iowa, version3.2.3.sp2). Flow-mediated dilation was calculated as the percent change in brachial diameter from the resting state (100*[hyperemic diameter at 60 seconds-resting diameter]/resting diameter). Reactive hyperemic, a measure of forearm microvessel dilation, was assessed from post-cuff occlusion hyperemic flow velocity measured by Doppler as described above.

Measurement of Arterial Stiffness
As previously described, we performed noninvasive hemodynamic assessment after 5 minutes of rest. Radial, femoral and carotid arterial tonometry were performed along with
simultaneous electrocardiographic recording. Transit distances were evaluated by measuring from the suprasternal notch to each recording site. Digital signals were used to calculate carotid-femoral (aortic) and carotid-radial (muscular artery) pulse wave velocities as previously described.\(^8,9\)

Statistical Analyses

We tabulated clinical characteristics by cohort. First, we evaluated the association of diastolic flow reversal, defined as mean diastolic flow velocity ≤0, with clinical variables in logistic regression models: 1. Adjusted for age, sex, and cohort and 2. Adjusted for age, sex, cohort and step-wise selection from the following eligible covariates: mean arterial pressure, heart rate, body mass index, total/HDL cholesterol ratio, triglycerides, glucose, diabetes, current smoking, hypertension treatment, walk test before vascular testing, and prevalent CVD.

Next, we compared vascular function measures in participants with diastolic flow reversal and without flow reversal in multivariable linear regression models: 1. Adjusted for age, sex and cohort, and 2. Addition adjustment for all the clinical covariates described above. We hypothesized that the relation of vascular function measures with diastolic flow velocity would be non-linear with a greater decrement in endothelial function in the presence of flow reversal. We tested for a non-linear association with restricted cubic spline models with 3 knots to evaluate the association of the continuous exposure (independent variable; mean diastolic flow velocity) and continuous outcomes (dependent variables: flow-mediated dilation, hyperemic flow velocity, and stiffness measures) in models adjusting for the clinical covariates described above.\(^10\) We placed knots based at 20\(^{th}\), 50\(^{th}\) (median), and 80\(^{th}\) percentile values of mean diastolic flow velocity. Additionally we compared the association (beta coefficients) of diastolic flow velocity with the vascular function measures in subsets of participants with or without flow reversal. Finally, we evaluated whether there was effect modification by the presence of flow reversal on the association of hyperemic flow velocity with flow-mediated dilation.

All analyses were performed using SAS 9.3.\(^10\) Two-sided \(P<0.05\) were considered statistically significant. The authors had full access to the data and take responsibility for its integrity. All authors have read and agree to the manuscript as written.

References

5. Mitchell GF, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E, Vasan RS, Levy D, Benjamin EJ. Cross-sectional relations of peripheral microvascular function,

