Cardiac and Carotid Markers Link With Accelerated Brain Atrophy

The AGES–Reykjavik Study (Age, Gene/Environment Susceptibility–Reykjavik)

Behnam Sabayan, Mark A. van Buchem, Sigurdur Sigurdsson, Qian Zhang, Osorio Meirelles, Tamara B. Harris, Vilmundur Gudnason, Andrew E. Arai, Lenore J. Launer

Objective—Pathologies in the heart–brain axis might, independently or in combination, accelerate the process of brain parenchymal loss. We aimed to investigate the association of serum N-terminal brain natriuretic peptide (NT-proBNP), as a marker of cardiac dysfunction, and carotid intima media thickness (CIMT), as a marker of carotid atherosclerosis burden, with structural brain changes.

Approach and Results—In the longitudinal population-based AGES–Reykjavik study (Age, Gene/Environment Susceptibility–Reykjavik), we included 2430 subjects (mean age, 74.6 years; 41.4% men) with baseline data on NT-proBNP and CIMT (assessed by ultrasound imaging). Participants underwent a high-resolution brain magnetic resonance imaging at baseline and 5 years later to assess total brain (TBV), gray matter, and white matter volumes. Each unit higher log-transformed NT-proBNP was associated with 3.6 mL (95% confidence interval [CI], −6.0 to −1.1) decline in TBV and 3.5 mL (95% CI, −5.7 to −1.3) decline in gray matter volume. Likewise, each millimeter higher CIMT was associated with 10.8 mL (95% CI, −17.3 to −4.2) decline in TBV and 8.6 mL (95% CI, −14.4 to −2.8) decline in gray matter volume. There was no association between NT-proBNP and CIMT and changes in white matter volume. Compared with participants with low NT-proBNP and CIMT, participants with both high NT-proBNP and CIMT had 3.8 mL (95% CI, −6.0 to −1.6) greater decline in their TBV and 4 mL (95% CI, −6.0 to −2.0) greater decline in GMW. These associations were independent of sociodemographic and cardiovascular factors.

Conclusions—Older subjects with both cardiac dysfunction and carotid atherosclerosis are at an increased risk for brain parenchymal loss. Accumulated pathologies in the heart–brain axis might accelerate brain atrophy.

Key Words: brain ■ brain natriuretic peptide ■ carotid stenosis ■ gray matter ■ white matter

Current evidence indicates that individuals with high burden of cardiovascular comorbidities, even independent of cerebrovascular diseases, run a greater risk of brain atrophy.1 The brain is a highly vascular organ and requires a constant and well-regulated levels of blood flow to maintain its structural integrity.2 It is well-established that the intact function of the heart and extracranial vessel is crucial for regulation of the cerebral circulation.3 Hence, accumulation of pathologies in the heart–brain axis can potentially increase the risk of brain parenchymal loss.

See accompanying editorial on page 2141

Previous patient-based studies have consistently reported that advanced cardiac and carotid pathologies are associated with accelerated brain structural changes.4 Patients with congestive heart failure5 and carotid stenosis6 more frequently develop brain parenchymal loss, and it has been shown that patients who develop cardiac arrest, after resuscitation, have an extensive reduction of their brain parenchymal volume in particular gray matter.7 Although it is widely accepted that cardiovascular pathologies in the heart–brain axis are relevant for brain health, up to now limited robust longitudinal data from general populations exists to substantiate this common preconception. Despite the evidence from patients’ populations, it remains to be known whether community-dwelling older subjects with less severe or subclinical cardiac impairment or carotid atherosclerosis are also at a greater risk for accelerated brain structural changes. Furthermore, it is unclear whether cumulative pathologies in the heart and carotid arteries result in higher degrees of brain parenchymal loss.

In this population-based study of older subjects, we aim to investigate whether higher levels of serum N-terminal brain natriuretic peptide (NT-proBNP), as a marker of left
ventricular dysfunction,8,9 and common carotid intima media thickness (CIMT), reflecting atherosclerosis burden in the carotid artery,10 independently or in combination are linked with accelerated structural brain changes.

Materials and Methods
Materials and Methods are available in the online-only Data Supplement.

Results
Baseline mean age of the participants was 74.6 years and 41.4% were men. Median NT-proBNP level was 124.9 ng/L and mean value of CIMT was 1.0 mm. Average total brain tissue, gray matter, and white matter volumes were 1077.8, 686.7, and 391.1 mL, respectively (Table 1). Cross-sectional analyses showed that higher NT-proBNP was associated with lower total brain volume and grey matter volume (Table II in the online-only Data Supplement). There was no cross-sectional association between CIMT and brain volumes at baseline (Table III in the online-only Data Supplement).

In the longitudinal analyses, each unit higher log-transformed serum NT-proBNP was associated with 3.9 mL (95% confidence interval [CI], −6.0 to −1.8) decrease in total brain parenchymal volume (Table 2, model 1). Similarly, each unit higher log-transformed serum NT-proBNP was associated with 3.7 mL (95% CI, −5.6 to −1.8) decrease in gray matter volume. Although a trend was observed in the association between higher serum NT-proBNP and higher white matter volume loss, the associations did not reach statistical significance (P=0.09). Further adjustment of the analyses for sociodemographic and cardiovascular risk factors did not essentially change these associations (Table 2, model 2).

In the longitudinal analyses, each millimeter higher CIMT was associated with 13.3 mL (95% CI, −19.3 to −7.2) decrease in total brain parenchymal volume. Similarly, each millimeter higher CIMT was associated with 12.6 mL (95% CI, −18.1 to −7.0) decrease in gray matter volume (Table 3, model 1). There was no association between higher CIMT and decrease in white matter volume (P=0.84). Further adjustments for sociodemographic and cardiovascular risk factors only slightly changed the magnitude of the associations (Table 3, model 2).

Subjects with high NT-proBNP and high CIMT had the greatest total brain parenchymal and grey matter volume loss compared with the other groups (all P<0.05). For both total and gray matter volumes, the largest difference was observed between subjects with low NT-proBNP and CIMT and subjects with high NT-proBNP and CIMT (both P<0.001). In contrast, there was not such an association in relation to decline in white matter volume (Figure). Further adjustments of the analyses for sociodemographic and cardiovascular risk factors revealed similar associations (Table IV in the online-only Data Supplement). Compared with participants with low NT-proBNP and CIMT, participants with both high NT-proBNP and CIMT had 3.8 mL (95% CI, −6.0 to −1.6) higher decline in their TBV and 4 mL (95% CI, −6.0 to −2.0) higher decline in GMW. The interaction between NT-proBNP and CIMT in relation to brain volume loss was significant for total brain parenchymal volume (P=0.04) and suggestive for grey matter volume (P=0.15), indicating that subjects with both high NT-proBNP and CIMT had greatest decline in brain parenchymal volumes. In a sensitivity analysis, we excluded participants who had stroke and/or dementia (n=128). We observed similar findings after this exclusion (data not shown). In a series of extra analyses, we tested the associations using inverse probability weighting method. Repeating the analyses with this method revealed similar findings with larger effect estimates (Tables V through VII in the online-only Data Supplement).

Discussion
In this prospective cohort study of community-dwelling older subjects, we showed that elevated NT-proBNP, as a marker of left ventricular dysfunction,8 and CIMT, as a measure of atherosclerosis burden at the carotid artery,10 are associated with steeper decline in the structural brain volumes. We found that combination of high NT-proBNP and CIMT is linked with greatest risk for accelerated structural brain changes.

Different lines of evidence from epidemiological and neuroimaging studies indicate that long-lasting exposure...
two thirds of total cerebral blood flow is directed toward gray
15% of cardiac output, and it is well-known that more than
rather than to white matter volume decline. The brain receives
sclerosis are mainly linked to gray matter volume decline
observed that impaired cardiac function and carotid athero-
arteries might reinforce each other and put older subjects
shows that accumulated pathologies in the heart and carotid
perfusion as they deliver the blood to the brain.17 Given the
sure and intra- and extracranial vessels modify the cerebral
brain depends on adequate supply of oxygen and energy
and 25% of total body glucose. Therefore, integrity of the
mechanism behind this association is not fully known, an
increasing body of evidence suggests that cerebral hypo-
perfusion is a key factor linking cardiovascular morbidities
with accelerated brain structural changes.14 The brain is a
demanding organ consuming ≈20% of total body oxygen and
25% of total body glucose. Therefore, integrity of the brain
depends on adequate supply of oxygen and energy through blood flow.15 It is known that multiple systemic and
cerebrovascular mechanisms act in concert to maintain
cerebral blood flow in a stable range despite fluctuations in
the systemic perfusion.16 However, in the presence of pro-
longed low systemic perfusion, because of pathologies in the
heart and large vessels, these regulatory mechanisms
might fail to safeguard the brain and eventually cerebral
hypoperfusion occurs.

The heart is the generator of the cerebral perfusion pres-
sure and intra- and extracranial vessels modify the cerebral
perfusion as they deliver the blood to the brain.17 Given the
increasing prevalence of pathologies affecting the heart and
cerebroepial arteries in the elderly, these pathologies can be
expected to contribute to changes in the brain as people age.
Although previous studies showed that individual patholo-
gies at the levels of heart or carotid arteries are independently
associated with adverse brain outcomes,18 the current study
shows that accumulated pathologies in the heart and carotid
arteries might reinforce each other and put older subjects
at an extra risk for accelerated brain parenchymal loss. We
observed that impaired cardiac function and carotid athero-
sclerosis are mainly linked to gray matter volume decline
rather than to white matter volume decline. The brain receives
≈15% of cardiac output, and it is well-known that more than
two thirds of total cerebral blood flow is directed toward gray
matter because of its high metabolic demand.19 Therefore, it
is expected that gray matter, more than white matter, becomes
vulnerable to pathologies in the heart–brain axis that jeopar-
dize blood flow to the brain.

Adequate and constant cerebral perfusion is safeguarded
by the so-called cerebral autoregulation. Cerebral autoregu-
lation encompasses a series of complex physiological func-
tions to match the fluctuating systemic supply of blood flow
with the high energy demands of the brain.20 Although such
a regulatory mechanism acts quickly in the face of immedi-
ate changes in the systemic perfusion pressure, it is yet to be
determined whether cerebral autoregulation can also handle
the long-lasting hypoperfusion state because of established
pathologies in the heart–brain axis.21 Previous studies have
shown that cardiovascular risk factors are associated with
lower cerebral blood flow.22 Hence, chronic cerebral hypo-
perfusion might be a key mechanism behind the link between
cardiac and carotids pathologies and accelerated brain paren-
chymal loss. In addition to the plausible roles of hypoperfu-
sion in this link, it needs to be acknowledged that impaired
cardiac function and advanced atherosclerosis might also
reflect a global systemic vascular condition that affects not
only the large vessels but also small vessels.23 In addition,
other pathways such proinflammatory state and activation of
the renin–angiotensin system might play contribute in this
link. Both high systemic inflammation and activation of
renin–angiotensin system have been explained in association
with higher cardiovascular burden and atherosclerosis, which
can independently affect the brain and speed up the pace of
brain parenchymal loss.24,25

The growing numbers of older people and increasing prev-
ance of age-related disorders of the brain such as dementia
warrant further studies to identify novel strategies to decel-
erate pace of brain ageing.26,27 Although the pivotal roles of
the heart and extracranial arteries in providing adequate oxy-
gen, glucose, and nutrient for the brain are well-established,
limited evidence exists on the contribution of the heart–brain
axis in the development and progression of abnormal brain
aging in older adults. Findings of this study might highlight
that older adults with higher loads of multiple pathologies in
the heart–brain axis should be considered as high-risk groups
for accelerated brain aging. Although previous reports indi-
cate that in normal aging subjects experience 0.32% annual

| Table 2. Changes in Brain Parenchymal Volumes in Relation to Serum N-Terminal Brain Natriuretic Peptide (ng/L) |

<table>
<thead>
<tr>
<th></th>
<th>Low (n=812) 5–87.7</th>
<th>Middle (n=796) 87.8–179.4</th>
<th>High (n=822) 179.5–4795</th>
<th>Δ (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total brain volume, mL, mean (SE) Model 1</td>
<td>−38.1 (0.7)</td>
<td>−40.3 (0.7)</td>
<td>−41.0 (0.7)</td>
<td>−3.9 (−6.0 to −1.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td>−41.3 (1.7)</td>
<td>−43.8 (1.7)</td>
<td>−44.0 (1.7)</td>
<td>−3.6 (−6.0 to −1)</td>
<td>0.004</td>
</tr>
<tr>
<td>Gray matter volume, mL, mean (SE) Model 1</td>
<td>−14.7 (0.6)</td>
<td>−16.4 (0.6)</td>
<td>−16.7 (0.7)</td>
<td>−3.7 (−5.6 to −1.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td>−17.5 (1.6)</td>
<td>−19.6 (1.6)</td>
<td>−19.6 (1.6)</td>
<td>−3.5 (−5.7 to −1.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>White matter volume, mL, mean (SE) Model 1</td>
<td>−23.1 (0.4)</td>
<td>−23.9 (0.4)</td>
<td>−24.7 (0.4)</td>
<td>−1.1 (−2.3 to 0.18)</td>
<td>0.093</td>
</tr>
<tr>
<td>Model 2</td>
<td>−27.2 (1.1)</td>
<td>−23.7 (1.1)</td>
<td>−27.8 (1.0)</td>
<td>−0.3 (−1.7 to 1.1)</td>
<td>0.659</td>
</tr>
</tbody>
</table>

Model 1, adjusted for age, sex, and baseline brain volumes; model 2, adjusted for age, sex, baseline brain volumes, education, current smoker, hypertension (medical records or antihypertensive medication), diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation, and glomerular filtration rate. All the analyses are adjusted for intracranial volumes and coil type. Δ indicates second measure−first measure; and CI, confidence interval.

Values are calculated using the continuous value of log-transformed N-terminal brain natriuretic peptide levels.
decline in their total brain volumes, in our study, subjects with both high NT-proBNP and CIMT had about 1% annual brain parenchymal loss. The magnitude of this change becomes even clearer when it is compared with annual brain parenchymal loss of patients with Alzheimer disease, which is 2%. Collectively, our results warrant closer collaboration between cardiologists and neurologists in identification of older patients at highest risk for accelerated brain ageing. Once clinicians detect pathologies at the cardiac level should search for concomitant abnormalities in the other parts of the heart–brain axis and vice versa.

This study has many strengths and limitations. Availability of repeated neuroimaging data and information on the cardiovascula status of >2000 community-dwelling older men and women are among the major strengths of this study. As a limitation, we could only include subjects who survived up to the follow-up session, which might limit generalizability of our results. Nonetheless, as the inverse probability weighting

<table>
<thead>
<tr>
<th>Group</th>
<th>Changes in total brain tissue volume, mL</th>
<th>Changes in gray matter volume, mL</th>
<th>Changes in white matter volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: Low NT-proBNP (<124.9 ng/L) / Low CIMT (<0.96 mm)</td>
<td>0.13 (0.9)</td>
<td>0.14 (0.9)</td>
<td>0.13 (0.9)</td>
</tr>
<tr>
<td>Group 2: Low NT-proBNP (<124.9 ng/L) / High CIMT (>0.96 mm)</td>
<td>0.14 (0.9)</td>
<td>0.15 (0.9)</td>
<td>0.14 (0.9)</td>
</tr>
<tr>
<td>Group 3: High NT-proBNP (>124.9 ng/L) / Low CIMT (<0.96 mm)</td>
<td>0.15 (0.9)</td>
<td>0.16 (0.9)</td>
<td>0.15 (0.9)</td>
</tr>
<tr>
<td>Group 4: High NT-proBNP (>124.9 ng/L) / High CIMT (>0.96 mm)</td>
<td>0.16 (0.9)</td>
<td>0.17 (0.9)</td>
<td>0.16 (0.9)</td>
</tr>
</tbody>
</table>

Model 1, adjusted for age, sex, and baseline brain volumes; model 2, adjusted for age, sex, baseline brain volumes, education, current smoker, hypertension, diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation, and glomerular filtration rate.

All the analyses are adjusted for intracranial volumes and coil type.

Δ indicates second measure−first measure; and CI, confidence interval.

*β (95% CI) and P values are calculated using the continuous value of carotid intima media thickness.

Figure. Brain parenchymal loss in relation to cardiac and carotid measures. Changes in brain volumes in relation to levels of N-terminal pro brain natriuretic peptide (NT-proBNP) and carotid intima media thickness (CIMT). Bars represent mean changes (SE) in 4 y of follow-up (second magnetic resonance imaging measures minus first) adjusted for age, sex, baseline brain volumes, intracranial volume, and coil type. Probability values are calculated for the difference between high NT-proBNP/high CIMT and other groups.
analyses suggested, it is expected that our findings might even underestimate the magnitude of the associations because survivors are generally healthier. It needs to be pointed out that despite all the adjustments for the conventional cardiovascular risk factors, we cannot exclude possible roles of unmeasured confounders on the associations. In this study, we used the mean of far- and near-wall CIMT to assess the degree of carotid atherosclerosis. Although this method has been validated before, it is generally recognized that the far-wall CIMT might better reflect the true thickness of the carotid wall. We assessed the left ventricular function using serum NT-proBNP. Although it has been shown that NT-proBNP is a reliable marker for left ventricular dysfunction, additional studies are needed to confirm the link between impaired cardiac function and brain parenchymal loss using imaging techniques such as echocardiography and cardiac magnetic resonance imaging.

This study shows that high serum NT-proBNP, as a marker for impaired cardiac function, and intima media thickness reflecting atherosclerosis burden in carotid arteries are linked with accelerated structural brain changes. Combination of high NT-proBNP and high CIMT was associated with greatest brain parenchymal loss. This study suggests that pathologies at the levels of the heart and carotid arteries act in concert and, instead of discipline-specific evaluations by cardiologists and neurologists, older subjects might further benefit from a comprehensive evaluation of the heart–brain axis in relation to adverse brain outcomes. Findings of this study call for further research on the cumulative effects of cardiac and carotid abnormalities on the brain parenchymal loss. Our data in a general population of older subjects need to be replicated in middle-aged and younger adults when interventions might have a bigger impact on brain health in the subsequent years. Furthermore, the exact mechanisms behind the observed associations need to be further explored by experiments on animal models and interventional approaches targeting multiple components of the heart–brain axis to better understand the interplays of various cardiovascular mechanisms that affect brain structural integrity.

Sources of Funding
This study was funded by the National Heart, Lung, and Blood Institute Intramural Research Program (Z01 HL04607-08 CE), the National Institute on Aging Intramural Research Program (N01-AG-12100), Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study was approved by the Icelandic National Bioethics Committee (VSN: 00-063) and the Medstar Research Institute (project 2003–145). Behnam Sabayan is partly supported by a grant from Internationale Stichting Alzheimer Onderzoek.

Disclosures
None.

References

Highlights

- Markers of cardiac impairment and carotid atherosclerosis are associated with accelerated brain parenchymal loss.
- The combination of pathologies at the levels of the heart and carotid arteries poses an accentuated risk for brain atrophy.
- Older subjects can further benefit from a comprehensive evaluation of the heart–brain axis, instead of a discipline-specific approach, in relation to adverse brain outcomes.
Cardiac and Carotid Markers Link With Accelerated Brain Atrophy: The AGES–Reykjavik Study (Age, Gene/Environment Susceptibility–Reykjavik)
Behnam Sabayan, Mark A. van Buchem, Sigurdur Sigurdsson, Qian Zhang, Osorio Meirelles, Tamara B. Harris, Vilmundur Gudnason, Andrew E. Arai and Lenore J. Launer

Arterioscler Thromb Vasc Biol. 2016;36:2246-2251; originally published online September 8, 2016;
doi: 10.1161/ATVBAHA.116.308018
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/36/11/2246

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2016/09/08/ATVBAHA.116.308018.DC1
http://atvb.ahajournals.org/content/suppl/2016/09/08/ATVBAHA.116.308018.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Methods

Study population

This study was performed in the framework of the Age, Gene/Environment Susceptibility (AGES)–Reykjavik Study. The AGES–Reykjavik study consists of a population-based cohort of community dwelling older adults born between 1907 and 1935 and living in Reykjavik in 1967 when the Icelandic Heart Association initiated the Reykjavik Study. In the first (baseline) phase of AGES–Reykjavik Study (2002-2006), 5,764 (42% male) participants were examined. For each subject the baseline examination was completed in three clinic visits, with a participant's full examination finished within a 4- to 6-week time window. Participants were followed for five years and data acquisition in the follow-up exam was done between 2007 and 2012. Details of the AGES–Reykjavik study have been reported previously1. The AGES–Reykjavik Study was approved by the National Bioethics Committee in Iceland that acts as the institutional review board for the Icelandic Heart Association and by the National Institute on Aging intramural institutional review board. At the baseline examination 4397 subjects had data on NT-proBNP, CIMT and brain MRI. In this longitudinal study, we included 2430 participants for whom data on serum NT-proBNP, CIMT and brain MRI (both baseline and follow-up sessions) were available. Compared to the baseline population, included participants were relatively younger and had less cardiovascular co-morbidities (Suppl. Table-I).

Serum NT-proBNP

Blood samples were drawn in the first clinical visit. The laboratory of the Icelandic Heart Association measured serum NT-proBNP using the Elecsys proBNPII sandwich immunoassay using two monoclonal antibodies on a Cobas e411 instruments (Roche Diagnostics, Basel, Switzerland). The analyses were performed using a single lot of reagents. The manufacturer's controls were used to monitor quality control with limits of acceptability defined by the manufacturer. The low control coefficient of variation (CV) was 2.7% and high control CV was 3.2 %. The limit of sensitivity was 5 ng/L.

Carotid intima-media thickness (CIMT)

CIMT was assessed using Ultrasound images which were acquired with a Sequoia C256 (Siemen Medical Systems, Erlangen, Germany). Standard B-mode images of the CIMT were obtained for the predefined segment of each common carotid artery (CCA; right and left) at defined interrogation angles using Meijers arc. Standard images were recorded from four angles at each site. The mean CIMT of the near and far walls were determined from a single image at each interrogation angle for both the right and left CCA. The average of all these CIMT values comprised the CIMT outcome parameter. The details of intima-media thickness analysis protocol were described previously 2.

Brain Imaging

At baseline and follow up sessions, all the participants underwent a high-resolution brain MRI scanning acquired on a study-dedicated 1.5-T Signa Twinspeed system (GE Healthcare). The imaging protocol has been described previously 1, 3 and included 3D spoiled-gradient recalled T1-weighted, fast spin echo proton density/T2-weighted, fluid-attenuated inversion recovery (FLAIR) and echo-planar imaging gradient echo T2*-weighted sequences. All images were acquired to give full brain coverage with slices angled parallel to the anterior commissure–posterior commissure line in order to give reproducible image
views in the oblique-axial plane. Total brain, white and grey matter volumes were computed automatically with an algorithm based on the Montreal Neurological Institute pipeline. The AGES-Reykjavik/Montreal Neurological Institute pipeline has been modified to accommodate full brain coverage including cerebellum and brainstem, multispectral images (T1-weighted 3D spoiled-gradient recalled sequence, FLAIR and proton density/T2-weighted fast spin echo sequences), high throughput and minimal editing. The segmentation pipeline, its components and accuracy have been described in detail elsewhere. There was a coil upgrade soon after the study began. In a quality control study we scanned 33 subjects with the old and new coil. Although there were no detectable differences in the parameters we calculated, we enter coil type into models to reflect the change of protocol. Changes in brain structural volumes were calculated as the difference between follow up measures and baseline measures.

Other covariates
Level of education and smoking status were assessed by questionnaires. Diabetes was defined as a history of diabetes, use of glucose-modifying medication, or fasting blood glucose of ≥ 7 mmol/L. Hypertension was defined as measured systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg, or self-reported doctor’s diagnosis of hypertension, or using antihypertensive medications. History of stroke was recorded using questionnaires and medical reports. Prevalent coronary heart disease was defined as self-reported history of coronary artery disease or coronary artery bypass surgery or angioplasty or angina pectoris on the Rose Angina Questionnaire, hospital records or evidence on ECG of possible or probable myocardial infarction. The diagnosis of atrial fibrillation was made by a twelve lead electrocardiogram (ECG) performed during the AGES-Reykjavik study comprehensive examination based on the Minnesota codes. Additionally, hospital discharge diagnosis codes from all hospitals in Reykjavik from January 1987 until the day of the study examination were reviewed for the diagnosis of atrial fibrillation (ICD-9 code 427.9 or ICD-10 code I48).

Statistical analyses
Characteristics of the study participants are reported as mean (standard deviation) or median (interquartile range) for continuous variables and number (percentage) for categorical variables. Analyses on the association of NT-proBNP and CIMT with brain structural volumes were done using linear regression models. Given the skewed distribution of serum NT-proBNP, the log-transformed NT-proBNP was used in the analyses. In addition, analysis of covariance was applied to calculate the adjusted means and standard errors for the brain volumes in tertiles of NT-proBNP and CIMT. We performed our analyses in two steps. In the first step, all the analyses were adjusted for age and sex. In the next step, the analyses were additionally adjusted for socio-demographic and cardiovascular factors including education, current smoker, hypertension and/or use of antihypertensive medications, diabetes mellitus, systolic blood pressure, history of coronary heart disease, history of stroke, total cholesterol, body mass index, atrial fibrillation and estimated glomerular filtration rate. All models were corrected for total intracranial volume and MRI coil type. Furthermore, the longitudinal associations were adjusted for baseline brain volumes. The continuous variables were added to the statistical models in their original format without categorization. To test whether subjects with both high NT-proBNP and CIMT are at the highest risk for decline in brain volumes, we divided the cohort into four groups split at the median values of NT-proBNP and CIMT. We tested for group differences and specifically
whether the high NT-proBNP/high CIMT group had significantly higher change in brain volumes as compared to the other groups. Further, in fully adjusted model; we tested for the interaction between categories of NT-proBNP and CIMT. To boost our statistical signals for detection of interactions, we a priori considered a p value <0.1 to suggest a significant interaction to follow-up on with a stratified analysis. For the rest of analyses p<0.05 was set as the level to reject the null hypothesis. To assess the sensitivity of our results to missing data to the follow up we repeated the analyses with inverse probability weighting method. Using this method, observations are weighted by the inverse of the probability of an individual that is in the baseline participating in the follow up session. All analyses were carried out using SPSS software (version 20.0.0, SPSS Inc., Chicago, IL).

References

SUPPLEMENTAL MATERIAL

Suppl. Table-I. Characteristics of the baseline population and analysis population

<table>
<thead>
<tr>
<th></th>
<th>Baseline population</th>
<th>Analysis population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N= 4397</td>
<td>N= 2430</td>
</tr>
<tr>
<td>Socio-demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>76.4 (5.5)</td>
<td>74.6 (4.8)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>1851 (42.1)</td>
<td>1005 (41.4)</td>
</tr>
<tr>
<td>Low education*, n (%)</td>
<td>1030 (23.4)</td>
<td>487 (20.0)</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>525 (11.9)</td>
<td>269 (11.1)</td>
</tr>
<tr>
<td>Vascular risk factors and diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension**, n (%)</td>
<td>4181 (95.1)</td>
<td>1886 (77.6)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>500 (11.4)</td>
<td>225 (9.3)</td>
</tr>
<tr>
<td>Body mass index, kg/m², mean (SD)</td>
<td>27.0 (4.3)</td>
<td>27.2 (4.1)</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg, mean (SD)</td>
<td>142.5 (20.4)</td>
<td>141.3 (19.8)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg, mean (SD)</td>
<td>73.9 (9.6)</td>
<td>74.2 (9.4)</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L, mean (SD)</td>
<td>5.6 (1.2)</td>
<td>5.6 (1.1)</td>
</tr>
<tr>
<td>Coronary heart disease, n (%)</td>
<td>903 (20.5)</td>
<td>449 (18.5)</td>
</tr>
<tr>
<td>Atrial fibrillation, n (%)</td>
<td>704 (16.0)</td>
<td>256 (10.6)</td>
</tr>
<tr>
<td>Stroke, n (%)</td>
<td>231 (6.0)</td>
<td>99 (4.6)</td>
</tr>
<tr>
<td>eGFR (mL/min), mean (SD)</td>
<td>64.0 (19.7)</td>
<td>66.8 (18.5)</td>
</tr>
</tbody>
</table>

Abbreviations: n: number, SD: standard deviation, eGFR: estimated glomerular filtration rate
Suppl. Table-II. Cross-sectional associations between serum NT-proBNP and brain parenchymal volumes

<table>
<thead>
<tr>
<th>NT-proBNP</th>
<th>Beta* (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total brain volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-14.8 (-20.1, -9.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model-2</td>
<td>-8.9 (-15.0, -2.9)</td>
<td>0.004</td>
</tr>
<tr>
<td>Grey matter volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-11.1 (-15.1, -7.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model-2</td>
<td>-6.8 (-11.4, -2.2)</td>
<td>0.004</td>
</tr>
<tr>
<td>White matter volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-3.7 (-6.4, -1.1)</td>
<td>0.006</td>
</tr>
<tr>
<td>Model-2</td>
<td>-1.4 (-4.4, 1.6)</td>
<td>0.355</td>
</tr>
</tbody>
</table>

Model-1: adjusted for age, sex, intracranial volume
Model-2: adjusted for age, sex, intracranial volume, education, current smoker, hypertension, diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation and glomerular filtration rate

*Beta (95% CI) and p-values are calculated using the continuous value of NT-proBNP as the determinant
Suppl. Table-III. Cross-sectional associations between carotid intima media thickness and brain parenchymal volumes

<table>
<thead>
<tr>
<th>Carotid intima media thickness</th>
<th>Beta* (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total brain volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-7.7 (-23.1, 7.8)</td>
<td>0.330</td>
</tr>
<tr>
<td>Model-2</td>
<td>-5.4 (-21.6, 10.8)</td>
<td>0.627</td>
</tr>
<tr>
<td>Grey matter volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>3.2 (-8.7, 15.1)</td>
<td>0.602</td>
</tr>
<tr>
<td>Model-2</td>
<td>3.0 (-9.4, 15.5)</td>
<td>0.632</td>
</tr>
<tr>
<td>White matter volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-10.8 (-18.6, 3.1)</td>
<td>0.006</td>
</tr>
<tr>
<td>Model-2</td>
<td>-5.8 (-13.9, 2.3)</td>
<td>0.163</td>
</tr>
</tbody>
</table>

Model-1: adjusted for age, sex, intracranial volume
Model-2: adjusted for age, sex, intracranial volume, education, current smoker, hypertension, diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation and serum creatinine

*Beta (95% CI) and p-values are calculated using the continuous value of Carotid intima media thickness as the determinant
Suppl. Table-IV. Changes in brain parenchymal volumes in relation to both levels of NT-proBNP and carotid intima media thickness adjusted for socio-demographic and cardiovascular risk factors

<table>
<thead>
<tr>
<th></th>
<th>Low NT-proBNP</th>
<th>Low NT-proBNP</th>
<th>High NT-proBNP</th>
<th>High NT-proBNP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low CIMT</td>
<td>High CIMT</td>
<td>Low CIMT</td>
<td>High CIMT</td>
</tr>
<tr>
<td>(n=607)</td>
<td>(n=608)</td>
<td>(n=607)</td>
<td>(n=608)</td>
<td></td>
</tr>
</tbody>
</table>

\[\Delta \text{Total brain volume, ml, mean (SE)} \]
\[-44.7 (0.73) \]
\[-44.7 (0.77) \]
\[-45.2 (0.85) \]
\[-48.5 (0.88)*, **, *** \]

\[\Delta \text{Grey matter volume, ml, mean (SE)} \]
\[-15.6 (0.65) \]
\[-15.7 (0.71) \]
\[-16.9 (0.75) \]
\[-19.6 (0.79)*, **, *** \]

\[\Delta \text{White matter volume, ml, mean (SE)} \]
\[-28.2 (0.44) \]
\[-28.0 (0.46) \]
\[-27.5 (0.55) \]
\[-27.8 (0.49) \]

\(\Delta \): Second measure - First measure
All the analyses are adjusted for age, sex, baseline brain volumes, education, current smoker, hypertension, diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation, serum creatinine, intracranial volumes and coil type.

Low NT-proBNP <124.9 ng/L
High NT-proBNP ≥ 124.9 ng/L
Low CIMT <0.96 mm
High CIMT ≥ 0.96 mm

* Significant difference with Low NT-proBNP/Low CIMT group (p<0.05)
** Significant difference with Low NT-proBNP/High CIMT group (p<0.05)
*** Significant difference with High NT-proBNP/Low CIMT group (p<0.05)
Suppl. Table-V: Changes in brain parenchymal volumes in relation to serum NT-proBNP by applying inverse probability weighting method

Serum NT-proBNP (ng/L)

<table>
<thead>
<tr>
<th></th>
<th>Low (N=812)</th>
<th>Middle (N=796)</th>
<th>High (N=822)</th>
<th>Beta* (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total brain volume, ml, mean (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-38.5 (0.6)</td>
<td>-42.9 (0.5)</td>
<td>-44.1 (0.5)</td>
<td>-6.5 (-7.9, -5.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model-2</td>
<td>-42.7 (1.1)</td>
<td>-47.0 (1.1)</td>
<td>-46.5 (1.1)</td>
<td>-4.2 (-5.9, -2.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Grey matter volume, ml, mean (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-14.4 (0.6)</td>
<td>-17.9 (0.5)</td>
<td>-18.1 (0.4)</td>
<td>-5.7 (-7.1, -4.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model-2</td>
<td>-16.6 (1.6)</td>
<td>-20.1 (1.1)</td>
<td>-19.1 (1.0)</td>
<td>-4.1 (-5.6, -2.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>White matter volume, ml, mean (SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model-1</td>
<td>-23.9 (0.3)</td>
<td>-24.9 (0.3)</td>
<td>-26.4 (0.3)</td>
<td>-1.9 (-2.8, 0.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model-2</td>
<td>-29.2 (0.7)</td>
<td>-29.7 (0.7)</td>
<td>-30.4 (0.6)</td>
<td>-0.7 (-1.7, 0.2)</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Abbreviations: SE: standard error
* Beta (95% CI) and p-values are calculated using the continuous value of log-transformed NT-proBNP levels

Δ: Second measure - First measure

Model-1: adjusted for age, sex and baseline brain volumes
Model-2: adjusted for age, sex, baseline brain volumes, education, current smoker, hypertension (medical records or antihypertensive medication), diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation and glomerular filtration rate
All the analyses are adjusted for intracranial volumes and coil type.
Suppl. Table-VI: Changes in brain parenchymal volumes in relation to carotid intima media thickness by applying inverse probability weighting method

Carotid intima media thickness

<table>
<thead>
<tr>
<th></th>
<th>Low N=810</th>
<th>Middle N=811</th>
<th>High N=809</th>
<th>Beta* (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.62-0.9 mm</td>
<td>0.91-1.0 mm</td>
<td>1.02-2.03 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Δ **Total brain volume, ml, mean (SE)**

- **Model-1**
 - -39.3 (0.6)
 - -41.7 (0.5)
 - -45.1 (0.5)
 - -17.0 (-21.3, -12.7)
 - <0.001

- **Model-2**
 - -43.7 (1.1)
 - -44.8 (1.1)
 - -48.5 (1.1)
 - -13.5 (-18.1, -8.9)
 - <0.001

Δ **Grey matter volume, ml, mean (SE)**

- **Model-1**
 - -14.5 (0.5)
 - -15.9 (0.6)
 - -20.1 (0.5)
 - -16.2 (-20.2, -12.2)
 - <0.001

- **Model-2**
 - -16.8 (1.1)
 - -17.1 (1.1)
 - -21.8 (1.0)
 - -12.5 (-16.7, -8.3)
 - <0.001

Δ **White matter volume, ml, mean (SE)**

- **Model-1**
 - -24.9 (0.3)
 - -25.9 (0.3)
 - -25.1 (0.3)
 - -1.3 (-3.9, 1.2)
 - 0.300

- **Model-2**
 - -30.2 (0.7)
 - -30.6 (0.6)
 - -29.4 (0.6)
 - -1.0 (-3.6, 1.6)
 - 0.457

Abbreviations: SE: standard error, CIMT: carotid intima media thickness

Beta (95% CI) and p-values are calculated using the continuous value of carotid intima media thickness.

Δ: Second measure - First measure

Model-1: adjusted for age, sex and baseline brain volumes
Model-2: adjusted for age, sex, baseline brain volumes, education, current smoker, hypertension, diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation and glomerular filtration rate.
All the analyses are adjusted for intracranial volumes and coil type.
Suppl. Table-VII. Changes in brain parenchymal volumes in relation to both levels of NT-proBNP and carotid intima media thickness adjusted for socio-demographic and cardiovascular risk factors by applying inverse probability weighting method

<table>
<thead>
<tr>
<th></th>
<th>Low NT-proBNP</th>
<th>Low NT-proBNP</th>
<th>High NT-proBNP</th>
<th>High NT-proBNP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low CIMT</td>
<td>High CIMT</td>
<td>Low CIMT</td>
<td>High CIMT</td>
</tr>
<tr>
<td></td>
<td>(n=607)</td>
<td>(n=608)</td>
<td>(n=607)</td>
<td>(n=608)</td>
</tr>
<tr>
<td>Total brain volume, ml, mean (SE)</td>
<td>-39.2 (0.61)</td>
<td>-38.8 (0.61)</td>
<td>-39.8 (0.66)</td>
<td>-42.9 (0.59)*, **, *** <0.001</td>
</tr>
<tr>
<td>Grey matter volume, ml, mean (SE)</td>
<td>-14.7 (0.54)</td>
<td>-14.7 (0.57)</td>
<td>-15.9 (0.58)</td>
<td>-18.6 (0.55)*, **, *** 0.016</td>
</tr>
<tr>
<td>White matter volume, ml, mean (SE)</td>
<td>-26.2 (0.37)</td>
<td>-26.2 (0.37)</td>
<td>-25.2 (0.44)</td>
<td>-25.3 (0.34) 0.90</td>
</tr>
</tbody>
</table>

∆: Second measure - First measure
All the analyses are adjusted for age, sex, baseline brain volumes, education, current smoker, hypertension, diabetes mellitus, systolic blood pressure, coronary heart disease, stroke, total cholesterol, body mass index, atrial fibrillation, serum creatinine, intracranial volumes and coil type.

Low NT-proBNP <124.9 ng/L
High NT-proBNP ≥ 124.9 ng/L
Low CIMT <0.96 mm
High CIMT ≥ 0.96 mm

* Significant difference with Low NT-proBNP/Low CIMT group (p<0.05)
** Significant difference with Low NT-proBNP/High CIMT group (p<0.05)
*** Significant difference with High NT-proBNP/Low CIMT group (p<0.05)
Cumulative pathologies in the heart-brain axis >> Accelerated brain atrophy