Atherosclerosis Susceptibility in Mice Is Independent of the V1 Immunoglobulin Heavy Chain Gene

Objective—The V1 (VHS107.1.42) immunoglobulin heavy chain gene is thought to be critical in producing IgM natural antibodies of the T15-idiotype that protect against both atherosclerosis and infection from Streptococcus pneumoniae. Our aim was to determine whether genetic loss of the V1 gene increased atherosclerotic plaque burden in vivo because of a reduction in the T15-idiotype or other atheroprotective antibodies.

Approach and Results—We crossed VHS107.1.42-deficient mice with the atherosclerosis-prone Apoe^{−/−} and Ldlr^{−/−} strains. Although these double knockout strains manifested no defects in B-cell development, we did observe a substantial reduction in early immune responses against phosphocholine after immunization. However, the titers of plasma antibodies reacting against defined atherosclerotic antigens such as oxidized low-density lipoprotein, as well as the T15-idiotype, were unaffected by loss of the VHS107.1.42 gene in hypercholesterolemic mice. Furthermore, we observed no increase in atherosclerotic lesion formation, either within the aortic arch or aortic root. Robust deposition of IgM within atherosclerotic plaques could also be readily observed in both control and experimental mice.

Conclusions—Our data indicate that IgM-dependent protection against atherosclerosis is unlikely to be dependent on antibodies that use the VHS107.1.42 gene, in contrast to the acute immune response conferred by this heavy chain in the response to phosphocholine and in providing resistance against lethal <i>S pneumoniae</i> infection. (Arterioscler Thromb Vase Biol. 2016;36:25-36. DOI: 10.1161/ATVBHA.115.305990.)

Key Words: aorta, thoracic atherosclerosis B-lymphocytes mice phosphorylcholine

There is a general consensus that the pathology of atherosclerotic plaque formation includes a strong inflammatory component and that selective amelioration of this inflammation could be of therapeutic benefit.¹ One of the immune cell subsets implicated in atherosclerosis disease progression are B lymphocytes, which as antibody-secreting cells form the humoral arm of immunity. B cells have been shown to have ambivalent functions in atherosclerotic plaque formation. Spleenocytes²,³ or genetic ablation of B cells⁴ resulted in an overall increase in atherosclerosis in susceptible animal models, whereas acute B-cell depletion via anti-CD20 therapy indicated possible pro-atherogenic functions.⁵ However, a major humoral function of B cells is the secretion of the so-called natural antibodies, which are germline encoded and of the IgM isotype and are thought to be predominately produced by the B-1 type of mature B cells. Mice unable to secrete IgM are more prone to diet-induced atherosclerosis.⁶ In addition, transfer of B-1 cells that cannot secrete IgM fails to protect against the increase in atherosclerosis in Apoe^{−/−} mice that is observed after splenectomy, whereas transfer of wild-type B-1 cells fully restored plasma IgM levels and prevented accelerated lesion formation in these mice.⁷

Many antigens have been implicated in the process of atherosclerotic lesion formation. Prominent among these is the modification of low-density lipoprotein (LDL) into oxidized low-density lipoprotein (OxLDL).¹⁰,¹¹ This modification unmasks the phosphocholine epitope of oxidized phospholipids that is subsequently recognized by the natural antibody identified by the T15-idiotype (T15-id).¹² The recognition of OxLDL by T15-id antibodies is thought to mediate protection from atherosclerosis because T15-id IgM antibodies have been shown to limit proinflammatory cytokine secretion by oxidized phospholipids in macrophages, block OxLDL-induced foam cell formation, and promote apoptotic cell clearance.¹²,¹³

Received on: June 1, 2015; final version accepted on: November 4, 2015.

The online-only Data Supplement is available with this article at http://atvb.ahajournals.orglookup/suppl/doi:10.1161/ATVBHA.115.305990/-/DC1.

Correspondence to Stephen Malin, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, L8:03, Karolinska University Hospital, S-171 76 Stockholm, Sweden. E-mail Stephen.malin@ki.se

© 2015 The Authors. Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.
The T15-id was originally discovered as a phosphocholine binding antibody of the IgA subtype from hybridomas obtained after pristane injection. The production of the T15-id is thought to be absolutely dependent on a successful V(D)J recombination event between the \(V_{15} \) and \(D_{mu}FL16.1 \) and the \(J_{mu} \) gene segments. The immune reaction to phosphocholine in a hapten form is characterized by an early response dominated by T15-id B cell clones. The secondary immune response against phosphocholine differs as the humoral response consists of antibodies that have incorporated \(V_{y}S107.1.42 \) immunoglobulin heavy chains in their rearrangement but are T15-id negative or alternatively uses other \(V_y \) genes in a productive V(D)J rearrangement but nevertheless bind phosphocholine.

A well-characterized protective physiological role of T15-id antibodies is the recognition of phosphocholine present in the capsular polysaccharide of Streptococcus pneumoniae. The T15-id is produced in both germfree and conventional mice 1 week after birth, thereby providing protection against \(S. \) pneumoniae infection. The T15-id is produced in both germfree and conventional mice from 1 week after birth, thereby providing protection against \(S. \) pneumoniae infection.24 This is thought to be because of the lack of T15-id antibodies induced in the early immune response that would normally prevent binding of \(S. \) pneumoniae to the platelet-activating factor receptor and subsequent transport across host cell membranes. Immunization of \(Ldr^{−/−} \) mice with heat killed \(S. \) pneumoniae increases the titers of T15-id IgM antibodies that bind OxLDL and decreases the extent of atherosclerosis. Moreover, infusion of T15-id IgM antibodies reduces plaque formation within grafted veins of Apoe−/− mice, whereas this was not sufficient to affect the extent of native atherosclerosis in the aortic origin. In addition, infusion of T15-Id IgM had no effect on accelerated atherosclerosis in a carotid cuff model in Apoe−/− mice fed an atherogenic diet. However, the duration of the T15-id IgM intervention or the levels achieved by the infusion strategy may not have been sufficient to mediate a protective effect in these studies.

In addition to the T15-id encoding \(H_{y}S107.1.42 \) gene segment, many other \(V_{y} \) genes can be incorporated into antiphosphocholine-binding specificities. Noticeably, mice that are deficient for \(D_{mu}FL16.1 \) lose T15-id IgM production and have increased susceptibility to \(S. \) pneumoniae infection, yet have normal levels of serum anti-OxLDL antibodies. Therefore, we wished to determine whether the loss of the \(V_{y}S107.1.42 \) gene is similarly critical against the development of atherosclerosis as it is for the protection against lethal \(S. \) pneumoniae infection. We present evidence that the atheroprotective effects of IgM do not depend on serum immunoglobulins that require the \(V_{y}S107.1.42 \) gene.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

Normal B-Cell Development in the Absence of the \(V_{y}S107.1.42 \) Gene

The production of T15-id antibodies is thought to be critically dependent on the \(V_{y}S107.1.42 \) gene. However, the in vivo function of \(V_{y}S107.1.42 \) with regard to B-cell development and atherosclerosis has to date not been determined. We first quantified the expression levels of the \(V_{y}S107.1.42 \) gene compared with those of the neighboring \(V_{y} \) genes in splenic B-1 cells using previously published mRNA-seq analysis of sorted cell populations from the spleen (Figure 1A). When compared with the most highly expressed B-1 \(V_{y} \) gene, namely \(V_{y}11.2.53 \), \(V_{y}S107.1.42 \) is expressed 77-fold lower (Figure 1B) and is only the 61st most highly expressed functional \(V_{y} \) gene of the 113 measured in splenic B-1 lymphocytes. Next, we crossed \(V_{y}S107.1.42^{−/−} \) mice onto the Apoe−/− background, so that effects of \(V_{y}S107.1.42 \) in the context of hyperlipidemia and spontaneous atherosclerotic plaque formation could be ascertained. We confirmed these mice were deficient for the \(V_{y}S107.1.42 \) gene by designing PCR primers specific for this gene segment. Whereas we could readily detect a positive PCR band in control Apoe−/− \(V_{y}S107.1.42^{−/−} \) mice for both the \(V_{y}S107.1.42 \) and the related \(V_{y}S107.3.62 \) genes, we could only detect the presence of \(V_{y}S107.3.62 \) in Apoe−/− \(S107.1.42^{−/−} \) experimental mice (Figure 1C), consistent with the fact that the \(V_{y}S107.1.42 \) has been deleted in experimental mice. Noticeably, we could also confirm the presence of the most 5’ and 3’ proximal genes to \(V_{y}S107.1.42 \), namely \(V_{y}Q52.13.40 \) and the \(V_{y}S107.2p4.43 \) pseudogene, respectively (Figure 1C). Therefore, the Apoe−/− \(V_{y}S107.1.42^{−/−} \) experimental mice are deleted for the \(V_{y}S107.1.42 \) gene in a minimally intrusive manner that has not lead to spurious deletions within the neighboring immunoglobulin heavy chain environment.

In the mouse, bone marrow lymphocytes commit to the B-cell lineage at the pro-B stage of development (defined CD19+ c-Kir+) with \(V_{y}−DI_{y} \) recombination of the immunoglobulin heavy chain also occurring at this developmental stage. Successful recombination of one of the IgH alleles results in the formation of the pre-B-cell receptor at the pre-B-cell stage (CD19+CD25+IgM+) followed by immunoglobulin light chain recombination and progression to the immature stage. Finally, B lymphocytes exit from the bone marrow to the spleen for the final maturation stages but can return as recirculating B cells. It has previously been reported that between 32% and 64% of hybridomas from aged Apoe−/− mice on a hybrid C57BL/129 background specifically recognize OxLDL, and that some of these secrete antibodies of the T15-id. Therefore, it was possible that loss of the \(V_{y}S107.1.42 \) encoded T15-id repertoire may impact B-cell development in the context of an Apoe−/− background even though, as described above, this \(V_{y} \) gene is not highly expressed. Therefore, we analyzed early B-cell development in \(V_{y}S107.1.42^{−/−} \)-deficient mice through fluorescence-activated cell sorter analysis of the bone marrow from 4- to 6-week-old Apoe−/− \(V_{y}S107.1.42^{−/−} \), Apoe−/− \(V_{y}S107.1.42^{+/−} \), and
Centa et al Atherosclerosis in the Absence of the V1 Gene

We found no significant differences in the ratios or absolute cell numbers of any B-cell examined stages in the 3 cohorts of mice. Therefore, we conclude that loss of a single or both copies of the VHS107.1.42 gene does not affect early B-cell development in the bone marrow.

Role of the VHS107.1.42 Gene in the Formation of Mature B-Cell Compartments and the Response to Phosphocholine-KLH Immunization

Mature B-1 cells can be readily isolated in the spleen and peritoneal cavity of the mouse. Therefore, we quantified the total number of B-1 (CD19+B220lo) and B-2 (CD19+B220+) cells...
Figure 2. The dependence of peripheral B-cell development and immune responses on the VHS107.1.42 gene. A, Representative fluorescence-activated cell sorter (FACS) analysis of splenic B-cell populations in ApoE−/−S107.1.42+/+ and ApoE−/−S107.1.42+/− mice and ApoE−/−S107.1.42−/− mice aged 10 to 14 wk shown in the left. Cells were gated to calculate absolute cell numbers for B-1 (Continued)
Surprisingly, however, reactivity of plasma IgM with the VHS107.1.42, strongly arguing against a critical function of the VHS107.1.42 gene in the generation of the peripheral B-1 cell population. Furthermore, these CD19[−]B220[−] B-1 cells were uniformly CD43⁺ and could be further subdivide into CD5[−] (B-1a) and CD5[−] (B-1b) populations. We also repeated this analysis on the peritoneal cavity of 10- to 14-week-old mice (Figure 2B), and again we could not detect any significant differences in the mature B-1 and B-2 cell populations regardless of the presence or absence of the V_i _p 107.1.42[−] immunoglobulin heavy chain gene.

It has been previously reported that V_i _p 107.1.42[−] mice have strongly reduced primary immune responses to the hapten phosphocholine. We repeated this analysis using control V_i _p 107.1.42[−] and V_i _{apoe} 107.1.42[−] experimental mice immunized with phosphocholine-KLH (phosphocholine coupled to keyhole limpet hemocyanin) with Alum adjuvant. Both control and experimental mice robustly formed germinal centers and produced plasma cells 6 days after primary immunization (Figure 2C). However, we observed a significant 88% reduction in IgM antibodies recognizing phosphocholine in experimental mice consistent with the original background.

Finally, we performed competition ELISA assays on control and experimental mice at these 2 sites. Fluorescence-activated cell sorter analysis of the spleen from 10- to 14-week-old V_i _{apoe} 107.1.42[−] V_i _{apoe} V_i _p 107.1.42[−], Apoe[−] V_i _p 107.1.42[−], and Apoe[−] V_i _p 107.1.42[−] mice demonstrated consistent numbers of B-1 and B-2 lymphocytes across all 3 genotypes (Figure 2A), strongly arguing against a critical function of the V_i _p 107.1.42[−] gene in the generation of the peripheral B-1 cell population. Furthermore, these CD19[−]B220[−] B-1 cells were uniformly CD43⁺ and could be further subdivide into CD5[−] (B-1a) and CD5[−] (B-1b) populations.

We repeated this analysis on the peritoneal cavity of 10- to 14-week-old mice (Figure 2B), and again we could not detect any significant differences in the mature B-1 and B-2 cell populations regardless of the presence or absence of the V_i _p 107.1.42[−] immunoglobulin heavy chain gene.

It has been previously reported that V_i _p 107.1.42[−] mice have strongly reduced primary immune responses to the hapten phosphocholine. We repeated this analysis using control V_i _p 107.1.42[−] and V_i _{apoe} 107.1.42[−] experimental mice immunized with phosphocholine-KLH (phosphocholine coupled to keyhole limpet hemocyanin) with Alum adjuvant. Both control and experimental mice robustly formed germinal centers and produced plasma cells 6 days after primary immunization (Figure 2C). However, we observed a significant 88% reduction in IgM antibodies recognizing phosphocholine in experimental mice consistent with the original background.

Finally, we performed competition ELISA assays on control and experimental mice at these 2 sites. Fluorescence-activated cell sorter analysis of the spleen from 10- to 14-week-old V_i _{apoe} 107.1.42[−] V_i _{apoe} V_i _p 107.1.42[−], Apoe[−] V_i _p 107.1.42[−], and Apoe[−] V_i _p 107.1.42[−] mice demonstrated consistent numbers of B-1 and B-2 lymphocytes across all 3 genotypes (Figure 2A), strongly arguing against a critical function of the V_i _p 107.1.42[−] gene in the generation of the peripheral B-1 cell population. Furthermore, these CD19[−]B220[−] B-1 cells were uniformly CD43⁺ and could be further subdivide into CD5[−] (B-1a) and CD5[−] (B-1b) populations.

We repeated this analysis on the peritoneal cavity of 10- to 14-week-old mice (Figure 2B), and again we could not detect any significant differences in the mature B-1 and B-2 cell populations regardless of the presence or absence of the V_i _p 107.1.42[−] immunoglobulin heavy chain gene.

It has been previously reported that V_i _p 107.1.42[−] mice have strongly reduced primary immune responses to the hapten phosphocholine. We repeated this analysis using control V_i _p 107.1.42[−] and V_i _{apoe} 107.1.42[−] experimental mice immunized with phosphocholine-KLH (phosphocholine coupled to keyhole limpet hemocyanin) with Alum adjuvant. Both control and experimental mice robustly formed germinal centers and produced plasma cells 6 days after primary immunization (Figure 2C). However, we observed a significant 88% reduction in IgM antibodies recognizing phosphocholine in experimental mice consistent with the original background.

Finally, we performed competition ELISA assays on control mice using the AB1-2 clone that recognizes the T15-id as a cap-
Function of V_H S107.1.42 Antibodies on Plasma Lipids

T15-id antibodies have been shown to form circulating immune complexes with ApoB100-carrying particles and have been suggested to function in preventing the uptake of OxLDL by macrophages. Therefore, we determined the plasma concentrations of cholesterol and triglycerides in control Apoe^{−/−} V_H S107.1.42^{−/−} and Apoe^{−/−} V_H S107.1.42^{−/−} experimental mice at 20 weeks on both a normal and a Western diet, as well as Ldlr^{−/−} V_H S107.1.42^{−/−} and Ldlr^{−/−} V_H S107.1.42^{−/−} mice maintained on a Western diet. Although plasma cholesterol levels were not altered in control Apoe^{−/−} V_H S107.1.42^{−/−} and Apoe^{−/−} V_H S107.1.42^{−/−} experimental mice on either normal or Western diet, we did observe a significant
A decrease (26%) in plasma cholesterol levels in experimental Ldlr−/−VHS107.1.42−/− versus Ldlr−/−VHS107.1.42+/+ control mice (Figure 5A). This pattern was repeated when plasma triglycerides were measured, with no effect seen on loss of the VHS107.1.42 gene on the Apoe−/− background, but a significant 47% drop in experimental Ldlr−/−VHS107.1.42−/− versus Ldlr−/−VHS107.1.42+/+ control mice (Figure 5B). We next determined the relative association of cholesterol with different lipoproteins by plasma high-performance liquid chromatography fractionation. Analysis of pooled serum revealed a small increase in cholesterol associated with high-density lipoprotein in experimental Ldlr−/−VHS107.1.42−/− versus Ldlr−/−VHS107.1.42+/+ control mice (Figure 5C). Interestingly, loss of the VHS107.1.42 gene correlated with small but significant decreases in body weight on both the Apoe−/− and Ldlr−/− genetic backgrounds (Figure 5D). These experiments would indicate that any humoral immune-mediated effects on lowering blood cholesterol and triglyceride levels are likely to be independent of the VHS107.1.42 T15-id antibody specificity.

Atherosclerotic Plaque Formation in the Aortic Root Is Independent of VHS107.1.42
Atherosclerotic plaque formation in the aortic root is associated with deposition of IgM that has previously been shown to contain the T15-id. Therefore, we quantify the extent of
Figure 5. Body weight and plasma lipid levels in the absence of the VHS107.1.42 gene. A, Plasma from 20-wk-old male Apoe\(^{−/−}\) V\(_{S107.1.42}\) control and Apoe\(^{−/−}\) V\(_{S107.1.42}\) experimental mice (left and middle) or Ldlr\(^{−/−}\) V\(_{S107.1.42}\) control and Ldlr\(^{−/−}\) V\(_{S107.1.42}\) experimental mice (right) were assayed to quantify total blood cholesterol levels. Apoe\(^{−/−}\) mice were either maintained on a conventional diet throughout or were first placed on conventional diet until 10 wk followed by 10 to 12 wk on Western diet. The Ldlr\(^{−/−}\) strain was placed on a conventional diet for 12 wk followed by 8 wk on a Western diet. Each point represents an individual mouse, and error bars show SEM. Control mice are depicted by white bars, and experimental are by gray. *\(P<0.05\) vs control. B, Plasma triglycerides levels from mice cohorts as described above. **\(P<0.01\) vs control. C, High-performance liquid chromatography fractionation of plasma lipoproteins to determine relative cholesterol content from Ldlr\(^{−/−}\) V\(_{S107.1.42}\) control and Ldlr\(^{−/−}\) V\(_{S107.1.42}\) experimental mice. D, Body weight from mice maintained on a Western diet as described above. ****\(P<0.0001\) vs control. CR indicates chylomicron remnant; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NC, normal chow; and VLDL, very low-density lipoprotein.
plaque formation in the absence of the $V_{n}S107.1.42$ encoded T15-id. Serial aortic root sections from female control $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ and $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ experimental mice aged 20 weeks maintained on normal chow diet were stained with Oil Red O, and the total lesion area was quantified. We did not detect any significant differences in plaque formation between control and experimental mice similar to the results from the en face analysis of the aorta. Female $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ had a similar extent of atherosclerosis development in the aortic root as $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ and $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ mice, indicating that that plaque formation proceeds similarly regardless of the status of the $V_{n}S107.1.42$ gene (Figure 6A). In addition, subjecting male mice to 8 weeks of Western diet approximately doubled the extent of atherosclerosis but again quantification revealed no difference between control and experimental mice (Figure 6B). Finally, using immunofluorescence, we were also able to robustly observe widespread

Figure 6. Aortic root atherosclerosis and IgM deposition in VHS107.1.42-deficient mice. **A**, Oil-red-O–stained aortic roots of 20-wk female $\text{Apoe}^{-/-}V_{n}S107.1.42^{+/+}, \text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$, and $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ mice maintained on a conventional chow diet. Quantification of the mice is shown on the right. The areas under the curves did not differ significantly between experimental and control groups. **B**, Male $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ and $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ mice fed conventional diet (top) or a Western diet for 8 wk (bottom). **C**, Confocal microscopy of total IgM (green) staining in aortic root sections from 20-wk-old female $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ control and $\text{Apoe}^{-/-}V_{n}S107.1.42^{-/-}$ experimental mice on normal chow (DAPI stained in blue). NC indicates normal chow.
IgM deposition in the atherosclerotic plaque of 20-week-old female mice maintained on a normal chow diet even in the absence of the V\textsubscript{H}S107.1.42 gene encoded T15-id antibodies (Figure 6C).

Discussion

Our current understanding of the pathology of both atherosclerotic plaque formation and protection from *S. pneumoniae* infection strongly implicates a protective function for T15-id natural antibodies secreted by the B-1 subset of mature B cells. In this study, we have crossed mice that are deleted for the V\textsubscript{H}S107.1.42 gene, which was thought to be required to produce the T15-id, with well-characterized atherosclerosis-prone mouse strains to determine the in vivo function of this humoral entity on plaque formation. In contrast to the protection from lethal infection from *S. pneumoniae* that the V\textsubscript{H}S107.1.42 confers, the development of atherosclerosis seems to be unaffected by the loss of the V\textsubscript{H}S107.1.42 gene.

The 2 major V\textsubscript{H} genes expressed in mature B-1 cells are the V\textsubscript{H}1.2.53 and V\textsubscript{H}12.1.78 segments. Interestingly, these genes when combined with the correct \(\kappa\) light chain are known to bind phosphatidylcholine, but their function in atherosclerosis has not been determined. In contrast, V\textsubscript{H}S107.1.42 is only expressed in a minor fraction of B-1 cells, and unsurprisingly deletion of V\textsubscript{H}S107.1.42 did not elicit a detectable defect in B-1 lymphopoiesis.

We were unable to observe any differences in the humoral responses to common atherosclerosis antigens after crossing V\textsubscript{H}S107.1.42−/− mice with either the Apoe−/− or the Ldlr−/− strains. This is in agreement with previous experiments that revealed normal titers of antibodies against modified LDL in the V\textsubscript{H}S107.1.42−/− strain when compared with control mice. Furthermore, loss of V\textsubscript{H}S107.1.42 still permitted humoral responses to phosphocholine in otherwise nonhyperlipidemic mice. However, we did not observe the expected decrease in T15-id reactivity in our hyperlipidemic strains. Although V\textsubscript{H}S107.1.42 is thought to be an essential component of the T15-id, many studies have shown that alternative immunoglobulin heavy chains can participate in a T15-id+ positive V(D)J rearrangement. Notably this seems to be strain specific. In the BALB/c strain, >99% of the T15-id incorporates V\textsubscript{H}S107.1.42, whereas in BALB/cXJCB A1 F1 hybrids, this ratio drops to 32%. Interestingly, the majority of peritoneal B-1a cells from the BALB/c strain that react against both phosphocholine and AB1-2 seem to use a V\textsubscript{H}11 immunoglobulin heavy chain gene. Crucially, however, it is the canonical T15-id incorporating V\textsubscript{H}S107.1.42 that provides a protective immune response against *S. pneumoniae*. In this regard, it is noticeable that the BALB/c strain is the most resistant to lethal *S. pneumoniae* infection, and it could be speculated that its almost total incorporation of V\textsubscript{H}S107.1.42 in its T15-id may confer this serological protection. The BALB/c strain is also among the most resistant to diet-induced atherosclerosis, and the relative contribution of V\textsubscript{H} genes to its atheroprotective humoral immune repertoire, not least within the T15-id, may in part contribute to atherosclerosis resistance. Noticeably, the Apoe−/− V\textsubscript{H}S107.1.42−/− experimental mice used in this study still had a strongly impaired acute response to phosphocholine, as measured by antiphosphocholine IgM titers in the primary immune response to phosphocholine-KLH immunization. This is consistent with the original description of V\textsubscript{H}S107.1.42−/− mice, which also showed a highly impaired primary immune response, whereas secondary immune responses were less affected because of the production of heteroclitic antibodies. Similarly, we demonstrate that in aged mice, the antibody titers against phosphocholine remained constant in the absence of V\textsubscript{H}S107.1.42. Therefore, we conclude that the acute V\textsubscript{H}S107.1.42-dependent antiphosphocholine IgM primary immune response, which is critical against *S. pneumoniae* infection, is dispensable for the protection against atherosclerosis. Alternatively, hypercholesterolemia in atherosclerosis-prone mice fails to robustly trigger this primary response in marked contrast to the vigorous reaction after immunization or bacterial infection. This suggests that hypercholesterolemia affects T15-id IgM responses differently or to a lesser extent. However, this may not be the case for other T15-id responses, produced independently of V\textsubscript{H}S107.1.42. In line with a protective role of T15-id IgM responses on immunization, expansion of T15-id IgM by pneumococcal immunization has been shown to decrease atherosclerotic lesion formation.

In addition, multiple antigenic epitopes on OxLDL are important in the immune response to atherosclerosis and likely these function in a redundant manner or elicit a large number of minor responses that are not easily distinguished. Notably, we observed normal deposition of IgM within aortic root plaques even in the absence of V\textsubscript{H}S107.1.42-containing T15-id antibodies.

In summary, we have used 2 different mouse strains that are susceptible to atherosclerosis and rendered these strains unable to produce V\textsubscript{H}S107.1.42-containing antibodies. Under all the conditions we tested, we were unable to detect an effect on atherosclerosis, regardless of sex, diet, age, or anatomic location of the plaque. Therefore, we conclude that the V\textsubscript{H}S107.1.42 gene is dispensable for atherosclerosis initiation and maintenance, which is in strong contrast to the protection against *S. pneumoniae* that this immunoglobulin heavy chain gene segment confers. We further speculate that protection against atherosclerosis mediated by IgM is likely to be mediated by many different V\textsubscript{H} genes with multiple specificities, for example, for epitopes of OxLDL.

Acknowledgments

M. Centa performed most experiments using the Apoe−/−. S. Gruber performed the experiments using the Ldlr−/− strain and performed ELISA. D.K. Johansson contributed to the initial atherosclerosis analysis. D. Nilsson prepared aortas together with M. Centa. M. Centa, S. Gruber, G.K. Hansson, C.J. Binder, and S. Malin devised experiments and interpreted results. S. Malin and C.J. Binder initiated the study. S. Malin wrote the article with contributions from M. Centa, S. Gruber, G.K. Hansson, D.F.J. Ketelhuth, and C.J. Binder.

Sources of Funding

This research was supported by the Swedish Medical Research Council (Vetenskapsrådet) to the Linné Center CERIC (Center of
Excellence for Research on Inflammation and Cardiovascular disease), the EU FP7-Health-2013-innovation-I programme Athero-B-Cell, the EU FP7 programme VIA, Groschinksy Stiftelse, Nanna Svartz Fond, Stiftelsen Apotekare Hedbergs prize, Stockholm County Council, Åke Wiberg Stiftelsen, and the Karolinska Institute.

Disclosures

None.

References

Significance

It is thought that humoral immune responses in the form of natural IgM protects against atherosclerosis. T15 idiotype antibodies have been implicated in the recognition and clearing of oxidized low-density lipoprotein and being essential for protection from *Streptococcus pneumoniae* infection. Therefore, it has been hypothesized that there is a common genetic determinant in the protection against both atherosclerosis and *S pneumoniae* infection. We have crossed mice deficient for the *VHS107.1.24* gene with both the *Apoe^{−/−}* and *Ldlr^{−/−}* strains. We find no evidence that *VHS107.1.24* protects against atherosclerosis or is critical to maintaining normal plasma titers of antibodies against antigens implicated in atherosclerosis. Our results indicate that antibody-mediated protection against atherosclerosis by B lymphocytes is likely to require multiple immunoglobulin heavy chain genes.
Atherosclerosis Susceptibility in Mice Is Independent of the V1 Immunoglobulin Heavy Chain Gene

Arterioscler Thromb Vasc Biol. 2016;36:25-36; originally published online November 12, 2015; doi: 10.1161/ATVBAHA.115.305990

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/36/1/25
Free via Open Access

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2015/11/12/ATVBAHA.115.305990.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
RNA-seq analysis of the Immunoglobulin heavy chain
Previously published data sets from spleen B-1 and follicular B cells were analysed with DESeq2 and visualised in the IgB browser.

Mice strains and genotyping
\(\nuS107.1.42^- (\nu\text{H})\) mice were obtained from the National Institutes of Health and National Institute of Aging. Mice were backcrossed 10 times onto the C57BL/6 background. \(\text{Apo}e^-\) mice were originally obtained from Taconic. LDL receptor-deficient mice (\(\text{Ldlr}^-\)) on a C57BL/6 background were purchased originally from The Jackson Laboratories (Bar Harbor, Maine, USA). Mice were bred under standard housing conditions. Adult mice received chow diet R70 (1254 kJ/100g, 14% protein, 4,5% fat; Lantmännen, Sweden). In some instances \(\text{Apo}e^-\) mice were also put on Western diet R638 (15,6 MJ/kg, 17,2% protein, 21% fat; Lantmännen, Sweden). \(\text{Ldlr}^-\) mice were placed a Western diet for 8 weeks consisting of 21% milk fat, 0.2% cholesterol (Ssniff Spezialitäten, Soest, Germany, TD88137). PCR genotyping on ear or tail biopsies was performed. The \(\nuH\) gene was amplified with the primers: 5´AGTGATTTCTACATGGAGTGGGT-3´ and 5´-TCG GTTCATCGTCTCCAGAG-3´ (136bp). The \(\nuS107.3.62\) gene was amplified with the following primers: 5´-TCCAGTGTGAGGTGAAGCTG-3´ and 5´-GGAAAGGCAC TTAGTGTGTTG-3´ (152bp). \(\nuS107.2pg.43\) with primers 5´-TCCAGTGTGAGGTGAAGCTG-3´ and 5´-CCGACCCCTTCATAGTGACAC-3´ (215bp).

The \(\text{Apo}e\) gene was amplified with the following primers; primer 1 (common), 5´-GCTAGCGAGGGAGACGGGCGG-3´, primer 2, 5´-TGTGACTTGGGAGCTCTGCAGC-3´ and primer 3, 5´-GCCGCCGACTGCTC-3´. Primers 1 and 2 amplified a 155 bp DNA fragment and primers 1 and 3 amplified a 245 bp DNA fragment.

All mouse experiments were approved by the Stockholm Regional Board for Animal Ethics, permit numbers N164/14 and N111/11 and by the institutional animal experimentation committee and the Austrian Ministry of Science.

FACS analysis of immune cell populations
Bone marrow, spleens and peritoneal cavity were analysed by flow cytometry. During all steps of the staining cells were kept in FACS buffer (0,5% BSA, 0,5% 1M EDTA in PBS). Tissues were fractioned to single cell suspension and filtered with 100 µm sterile cell strainers. Erythrocytes were lysed for 3 min with 1 ml of ACK buffer on ice. Cells were seeded at 100*10^6 cells/ml and Fc blocking was carried out for 30 min. Staining was performed on ice for 40 min against mouse B220 (APC-Cy7 RA3-6B2), CD19 (APC 1D3), CD25 (PE-Cy7 PC61.5), c-kit (PE 2B8), CD5 (PE 53.7.3), CD43 (FITC S7), GL7 (APC GL-7), CD95 (PE-Cy7 Jo2), CD138 (APC 281-2), CD28 (FITC E18), IgD (PerCP 11-26c.2a) and IgM (Pacific Blue Il/41). Immune cell populations were defined as follows: B-1 (CD19+B220lo), B-2 (CD19+B220+), Pro-B (CD19+B220+IgM-c-Kit+Cd25+), Pre-B (CD19+B220+IgM-c-Kit-Cd25+), Immature B (CD19+B220intIgM+), recirculating B (CD19+B220hilgM+), germinal centre B (CD19+B220+IgD-GL7+CD95+), plasma cells (CD19loB220loCD138+CD28+). Samples were analysed with a Dako CyAn (Beckman Coulter) flow cytometer.
ELISA
PC-BSA and PC-KLH (keyhole limpet hemocyanin) was obtained from Biosearch Technologies Inc. CuOx-LDL and MDA-LDL was prepared as described previously. For immunisation with PC-KLH, 100 μg of PC-KLH was precipitated on Alum and injected ip. 6 days after immunisation the spleen was analysed by FACS. Specific IgM responses against PC was determined by ELISA using plates coated with PC-BSA using alkaline phosphatase coupled goat anti-mouse IgM (Southern Biotechnology Associates) and alkaline phosphatase yellow (pNPP) Liquid Substrate (Sigma-Aldrich). Other antigen-specific antibody titers in plasma were determined by chemiluminescent ELISA as previously described. Purified rat anti-mouse IgM (Sigma-Aldrich) was used as capture Ab to measure total IgM levels. AP-labelled goat anti-mouse IgM (μ-chain specific; Sigma-Aldrich) was used for detection. For the detection of T15-clonospecific antibodies (e.g. E06) in plasma were quantified using a chemiluminescent based capture assay. In brief, the monoclonal anti-idiotypic antibody AB1-2 (provided by J. Kearney (University of Alabama at Birmingham, Birmingham, Alabama, USA), a mouse IgG1 which identifies a determinant requiring co-expression of the canonical T15 VH/T15 VL regions) was used as capture antibody. T15-clonospecific antibodies were detected using an AP-labelled goat anti-mouse IgM (μ-chain specific; Sigma-Aldrich). Purified E06 (a clonospecific IgM monoclonal antibody) was used as a positive control. For competition assays, AB1-2 was used for coating at 1 μg/ml and AP-labelled goat anti-mouse IgM (μ-chain specific; Sigma-Aldrich) was used for detection in the presence of inhibitors as indicated.

Cholesterol and triglycerides measurements
Cholesterol and triglyceride levels in mouse plasma were quantified using an enzymatic colorimetric method (Randox Laboratories) following the manufacturer’s protocol. Cholesterol lipoprotein profiles in plasma were determined by size-exclusion chromatography using HR10/30 Superose 6 column (GE Healthcare) and a Discovery BIO GFC-500 precolumn (5 cm × 7.8 i.d.; Supelco; Sigma-Aldrich) coupled to Prominence UFLC system (Shimadzu). The system was equilibrated with Tris-buffered saline, pH 7.4, and fractions were collected using Foxy Jr. fraction collector (Teledyne Isco, Inc.). Total cholesterol in each fraction was determined as described (Randox Laboratory, Ltd.).

Tissue preparation
Experimental Apoe^{-/-} V_iS107.1.42⁺ and littermate Apoe^{-/-} V_iS107.1.42⁺ control mice were sacrificed following inhalation of carbon dioxide. Blood was collected from the heart, prior to perfusion performed with 5 ml of PBS. For en face analysis of lesion, aortas were fixed in 4% para-formaldehyde (PFA) for 24 hours. For histological analysis, hearts were mounted in OCT (TissueTek SAKURA) and stored at -80°C for cryosectioning. Sections of proximal aorta were collected every 10 μm for a total of 800 μm starting from the aortic root, that were fixed in 4% formaldehyde (for Oil Red O staining) or acetone (for immunofluorescence).

Analysis of atherosclerotic lesion in en face preparations of the aorta
En face staining of dissected aortas with Sudan IV (5 g Sudan IV Sigma, 500 ml 70% ethanol, 500 ml 100% acetone) was performed as follows. Aortas were rinsed in 70% ethanol for 5 min, and stained in Sudan IV for 7-8 min. Following a washing step in 80% ethanol for 30 sec, aortas were rinsed in PBS and pictures were taken using a light microscope. Lesion quantification was performed with ImageJ software.

Histology of aortic root sections
Oil Red O working solution was prepared from a stock solution (1g oil red O, Sigma, in 100 ml isopropanol) by diluting 150 ml of stock in 100 ml H$_2$O. Aortic sections were incubated in filtered Oil Red O working solution for 20 min and rinsed in water for 5 min. Hematoxylin (Mayers HTX, Histolab) staining was carried out and rinsed in tepid H$_2$O. Lesion quantification was performed with ImageJ software in 8 consecutive sections, each 100 µm apart from each other. Ldlr$^{-/-}$ mice were analysed as previously described.

Immunofluorescence staining of aortic root sections
Frozen sections of the aortic root were first blocked with an Avidin/Biotin Blocking kit (Vector Laboratories) followed by a protein blocking step with 5% normal horse serum diluted in 0.1% Tween in TBS. The sections were then stained for total IgM (biotinylated rat anti-mouse IgM, Southern Biotechnology, followed by DyLight 488 conjugated Streptavidin, VECTOR Laboratories). Total IgA staining (biotin-anti-IgA and DyLight 488 conjugated Streptavidin, VECTOR Laboratories) was used as negative control. To reduce auto-fluorescence, sections were blocked in 0.03% Sudan Black (Sigma) in 70% ethanol and counterstained with DAPI (Sigma).

Statistical analysis
The data were analysed using Graphpad Prism. Student’s t test was performed, and the significance level was set at $P < 0.05$.