Histone Deacetylases and Cardiometabolic Diseases

Kan Hui Yiew, Tapan K. Chatterjee, David Y. Hui, Neal L. Weintraub

Abstract—Cardiometabolic disease, emerging as a worldwide epidemic, is a combination of metabolic derangements leading to type 2 diabetes mellitus and cardiovascular disease. Genetic and environmental factors are linked through epigenetic mechanisms to the pathogenesis of cardiometabolic disease. Post-translational modifications of histone tails, including acetylation and deacetylation, epigenetically alter chromatin structure and dictate cell-specific gene expression patterns. The histone deacetylase family comprises 18 members that regulate gene expression by altering the acetylation status of nucleosomal histones and by functioning as nuclear transcriptional corepressors. Histone deacetylases regulate key aspects of metabolism, inflammation, and vascular function pertinent to cardiometabolic disease in a cell- and tissue-specific manner. Histone deacetylases also likely play a role in the metabolic memory of diabetes mellitus, an important clinical aspect of the disease. Understanding the molecular, cellular, and physiological functions of histone deacetylases in cardiometabolic disease is expected to provide insight into disease pathogenesis, risk factor control, and therapeutic development.

(Arterioscler Thromb Vasc Biol. 2015;35:1914-1919. DOI: 10.1161/ATVBAHA.115.305046.)

Key Words: cardiovascular ■ histone deacetylases ■ inflammation ■ metabolic disease ■ sirtuins

Epigenetic processes influence gene expression and regulation without altering the information encoded by the primary DNA sequence. In the 1960s, Allfrey et al. discovered that chemical modification of histones influenced chromatin structure and RNA synthesis in eukaryotic cells, thus laying the foundation for modern epigenetics research. Subsequently, proteins that possess intrinsic histone acetylase and deacetylase activities were identified, followed by enzymes involved in histone methylation, ubiquitination, and sumoylation. Reversible modification of histone proteins is a fundamental mechanism of gene regulation in cell differentiation, organogenesis, growth, aging, etc.

Please see http://atvb.ahajournals.org/site/misc/ATVB_in_Focus.xhtml for all articles published in this series.

Histone deacetylases (HDACs) are a class of enzymes that remove acetyl groups from an ε-N-acetyl lysine amino acid on histone or nonhistone proteins. Deacetylation of histones promotes a closed chromatin structure, thereby impairing access of transcription factors to their regulatory sites and silencing gene expression. Some HDACs are multifunctional proteins that can also suppress gene expression by functioning as transcriptional corepressors, independent of their deacetylase activity. To date, 18 evolutionary conserved mammalian HDACs have been identified and are grouped into 4 classes based on their phylogenetic conservation. HDACs exhibit a wide variety of functional activities and cellular and tissue distribution (Table I in the online-only Data Supplement). Numerous studies describing HDAC protein regulation, structure, and functions pertinent to cardiovascular and metabolic diseases have been summarized in recent publications. This review will highlight cellular mechanisms of HDAC action, in vivo data in animal models of cardiometabolic disease, and studies linking HDACs to cardiometabolic disease in humans.

There is a strong interplay between metabolic disease, inflammation, and cardiovascular risk factors. Metabolic syndrome is a proinflammatory state that is tightly linked to C-reactive protein levels in humans and vascular inflammation plays a role in all stages of atherosclerosis. Dyslipidemia, hypertension, and insulin resistance, major components of metabolic syndrome, are powerful cardiovascular disease risk factors. Data from the longitudinal Framingham heart study suggest that hypertension and glucose intolerance are interrelated phenomena that predispose to the development of premature atherosclerotic disease. Additionally, growing evidence suggests that insulin resistance predisposes to heart failure. A better understanding of the molecular mechanisms whereby HDACs regulate the interplay between metabolic disease, inflammation, and cardiovascular risk factors could lead to novel therapeutic approaches for cardiometabolic disease.

Potential Role of HDACs in Metabolic Disease

Class I and II HDACs have been reported to regulate a variety of metabolic processes, including differentiation of pancreatic...
islet cells and adipocytes. HDAC5 or HDAC9 gene deletion increased pancreatic β-cell mass and insulin secretion but not β-cell proliferation, consistent with a primary effect on pancreatic β-cell differentiation. This may have important clinical implications for optimization of stem cell transplantation therapy for diabetes mellitus. In addition to the pancreas, adipose tissues factor prominently in metabolic disease. Failure of white adipocytes to differentiate and properly store excess calories in obesity is associated with adipose tissue inflammation, insulin resistance, and type 2 diabetes mellitus. Conversely, thermogenic beige and brown adipocytes promote insulin sensitivity and weight loss. HDAC3 inhibition was reported to regulate PPARγ (peroxisome proliferator-activated receptor gamma) acetylation and activity, thereby enhancing insulin signaling and glucose uptake in white adipocytes and improving insulin sensitivity in diet-induced obese (DIO) mice. Adipose HDAC3 was also demonstrated to repress phosphoenolpyruvate carboxykinase, the key enzyme controlling glyceroneogenesis, resulting in reduced triglyceride biosynthesis and lipoatrophy. The mechanism was linked to activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B) by HDAC3.

HDAC9 overexpression repressed, whereas HDAC9 gene deletion accelerated, white adipocyte differentiation in vitro. Interestingly, DIO was associated with upregulated HDAC9 expression in white adipose tissues and impaired adipocyte differentiation, which was abrogated by HDAC9 gene deletion. HDAC9 gene deletion led to diminished weight gain and hepatic steatosis along with improved glucose tolerance and insulin sensitivity. Additionally, HDAC9 deficiency promoted accumulation of beige adipocytes in subcutaneous adipose, which likely contributed to the lean body mass in these mice.

Class III HDACs (sirtuins, or SIRTs) have been reported to favorably regulate key metabolic pathways, including adipogenesis, fatty acid metabolism, amino acid metabolism, and gluconeogenesis. For example, SIRT1 was reported to repress visceral white adipogenic genes associated with insulin resistance and stimulate brown adipogenic gene expression. Mice lacking SIRT1 that were fed a high-fat diet developed excessive hepatic lipid accumulation, altered gut microbiota, insulin resistance, and hypertrophic white and brown adipose tissues. Likewise, loss of SIRT3 promoted hyperacetylation of mitochondrial proteins, resulting in metabolic perturbations and increased susceptibility to metabolic disease. Additionally, SIRT3 was demonstrated to regulate systemic oxidative stress, limit expedited weight gain, and promote metabolic adaptation. Thus, animal studies suggest that SIRTs may protect against the development of metabolic disease. An ongoing clinical trial is testing the anti-diabetic efficacy of SIRT1 activation in humans.

The liver has emerged as an important target of HDACs’ metabolic effects. Liver-specific HDAC3 and SIRT6 have been shown to regulate hepatic lipid synthesis, glycolysis, and fatty acid oxidation. Mice lacking SIRT1 specifically in the liver displayed impaired mTORC2/Akt signaling, resulting in oxidative damage, insulin resistance, and hyperglycemia. Hepatic SIRT1 deficiency also impaired PPARγ signaling and decreased fatty acid β-oxidation, resulting in hepatic steatosis, hepatic inflammation, and endoplasmic reticulum stress in high fat–fed mice. Conversely, loss of hepatic class IIa HDACs (HDAC4, -5, -7) was metabolically protective because it lowered fasting blood glucose levels and improved glucose tolerance in diabetic mouse models.

Skeletal muscle, which is responsible for >30% of resting metabolic rate and 80% of whole-body glucose uptake, is also emerging as a target of HDACs. Skeletal muscle is composed of heterogeneous myofibers with characteristic metabolic properties. Class II HDACs have been shown to suppress the formation of type I myofibers, which stimulate insulin-mediated glucose uptake and protect against glucose intolerance, through the repression of MEF2 (myocyte enhancer factor-2) activity. Overexpression of HDAC5 was reported to suppress skeletal muscle glucose uptake by repressing GLUT4 gene expression. Conversely, deletion of SIRT3 in skeletal muscle perturbed mitochondrial function and promoted oxidative stress and insulin resistance.

Mounting evidence suggests that both peripheral and central mechanisms act in concert to maintain energy balance. The hypothalamic/pituitary axis is essential to the central control of whole-body metabolism. Delivery of a SIRT1 activator, resveratrol, into the central nervous system was shown to attenuate hyperglycemia and hyperinsulinemia in diabetic and DIO mice. SIRT1 in pro-opiomelanocortin neurons was reported to be required for leptin’s central functions and for energy expenditure adaptations to DIO. Furthermore, SIRT1 was found to act on steroidogenic factor 1 neurons to protect against the development of DIO and hyperglycemia via promoting energy expenditure and skeletal muscle insulin sensitivity.

The concept of metabolic memory was proposed by Nathan et al in relation to their clinical findings that the benefits of tight glycemic control on micro- and macrovascular complications in diabetic patients might not be immediately obvious but become more evident with time. Consistently, metabolic memory has been demonstrated in experimental models; transient hyperglycemia resulted in persistent epigenetic changes leading to aberrant antioxidant and inflammatory gene expressions in vascular smooth muscle cell (VSMC) and endothelial cells during subsequent normoglycemia. With regard to HDACs, SIRT1 was shown to mediate high glucose–induced cellular metabolic memory via the liver kinase B1/AMPK/ROS pathway.

HDACs and Inflammation

Inflammation is a pivotal factor that underlies both cardiovascular and metabolic diseases, and HDACs have been implicated in regulating both the innate and adaptive immune systems. HDAC3, HDAC4, and HDAC9 have been associated
with proinflammatory responses in macrophages and monocytes. HDAC3 was reported to promote inflammatory gene expression in lipopolysaccharide-stimulated macrophages and HDAC4 to contribute to tumor necrosis factor-α-induced monocyte adhesion to VSMCs. HDAC9 was reported to promote inflammatory gene expression in lipopolysaccharide-stimulated macrophages and HDAC4 to contribute to tumor necrosis factor-α–induced monocyte adhesion to VSMCs. HDAC9 was reported to induce inflammatory gene expression in macrophages and prevent polarization to anti-inflammatory M2 phenotype. Interestingly, HDAC9 and HDAC3 were shown to control CD4+ Foxp3+ T regulatory cell development and function. HDAC9-deficient mice exhibited enhanced expression of Foxp3, a master regulator of T regulatory cell development and function, whereas deletion of HDAC3 disrupted T regulatory cell development and function, restored interleukin (IL)-2 production, and upregulated proinflammatory IL-6. The pan-HDAC inhibitor SAHA (vorinostat) enhanced oxidized low-density lipoprotein–induced interleukin-8 and monocyte-chemoattractant protein-1 expression in human vascular endothelial cells. However, vorinostat is remarkably effective at preventing allogeneic transplant rejection; allogeneic hematopoietic cell transplant patients treated with vorinostat have increased T regulatory cell numbers with greater suppressive function and reduced plasma levels of proinflammatory cytokines, such as IL-1β, tumor necrosis factor-α, IL-6, and IL-8. Thus, pan HDAC inhibition produces complex effects on the immune system that can potentially modulate pro- and anti-inflammatory pathways in the context of specific diseases.

Potential Role of HDACs in Cardiovascular Diseases

The link between HDACs and cardiovascular disease is less well developed compared with metabolic disease. However, the body of data is growing dramatically, and evidence of link to human cardiovascular disease is also emerging. HDACs clearly have the potential to regulate many aspects of cardiovascular disease, including inflammation, as discussed earlier. HDACs are fundamentally important in cardiac development and regulate hypertrophy, fibrosis, ischemia/reperfusion injury, and other aspects of cardiac function. HDAC inhibitors have shown promise in experimental studies for their ability to prevent heart failure. As is the case for metabolic disease and inflammation, the mechanisms whereby HDACs modulate cardiac function are complex. For example, HDACs were recently identified as part of a chromatin repressor complex that inhibits transcription of a long noncoding RNA, which in turn protects the heart against pathological hypertrophy. It is tempting to speculate that HDACs could play a particularly important role in cardiomyopathy associated with metabolic diseases, such as uncontrolled diabetes mellitus, but in vivo experimental data are lacking.

Modulation of inflammation by HDACs has important implications for both cardiac and vascular diseases. For example, in spontaneously hypertensive rats, HDAC inhibition (valproic acid) led to reduced left ventricular expression of IL-1β and tumor necrosis factor-α, attenuation of cardiac hypertrophy and fibrosis, and improved cardiac function. Conversely, SIRT1 has been reported to protect against atherosclerosis in part through its anti-inflammatory effects. Its expression in endothelial cells and macrophages was reported to diminish foam cell formation and vascular reactive oxygen species and promote ABCA1-driven reverse cholesterol transport.

Moreover, SIRT1 expression in VSMC protected against DNA damage, medial degeneration, and atherosclerosis. In diabetic patients, incretin therapy was associated with SIRT6 induction, reduced inflammation and oxidative stress, and a more stable plaque phenotype. Interestingly, mice treated with the HDAC inhibitor trichostatin A showed a significant and dose-dependent improvement in high-density lipoprotein cholesterol levels and reduced serum glucose, triglycerides, and total cholesterol, suggesting favorable metabolic effects with regard to the pathogenesis of vascular disease.

A recent genome-wide association study identified HDAC9 to be associated with large vessel ischemic stroke and atherosclerosis. Elevated expression of HDAC9 was also noted in human atherosclerotic plaques. A polymorphism in the intergenic region between HDAC9 and TWIST1/FERD3L

Figure. The role of histone deacetylases (HDACs) in cardiometabolic disease. ER indicates endoplasmic reticulum; Foxp3+, forkhead box p3+; NO, nitric oxide; ROS, reactive oxygen species; T reg cells, T regulatory cell; VCAH-1, vascular cell adhesion protein 1; and VSMC, vascular smooth muscle cells.
in humans was associated with selectively increased HDAC9 expression and an increased incidence of atherosclerosis. In animal models, HDAC9 gene deficiency was shown to be atheroprotective, favorably modulating inflammatory and lipid homeostatic gene expression while polarizing macrophages toward a protective M2 phenotype.

Experimental studies have established the relevance of HDACs in hypertension and neointima formation. SIRT1 in VSMC was shown to protect against angiotensin II–induced vascular remodeling, oxidative stress, inflammation, and hypertension in mice. Conversely, in isolated mesenteric arteries, trichostatin A reversed angiotensin II–induced contraction and increased endothelium-dependent relaxation stimulated by acetylcholine in spontaneously hypertensive rats. HDAC4 has been implicated in hypertension through its effects on VSMCs; HDAC4 gene silencing inhibited tumor necrosis factor–induced monocyte adhesion, vascular cell adhesion protein 1 expression, transcriptional activity of NF-κB, and oxidative stress in VSMC. Additionally, HDAC4 has been suggested to control neointima hyperplasia by promoting the activation of p38 mitogen–activated protein kinase/heat shock protein 27 signaling and inducing VSMC proliferation and migration. In contrast, HDAC7 (unspliced isoform) was shown to suppress VSMC proliferation and neointima formation by preventing β-catenin nuclear translocation and activity. Class II HDAC inhibition increased neointimal thickening in a murine model of postangioplasty restenosis, whereas class Ila HDAC inhibition prevented neointimal hyperplasia in a murine carotid ligation model. These conflicting results may reflect the diverse functions of HDACs and nonspecificity of HDAC inhibitors.

Perspective/Future Research

Recent scientific advances have improved our understanding of HDAC function and its potential role in cardiometabolic disease (Figure). Several issues remain to be resolved, however. Most contemporary HDAC inhibitors lack selectivity toward individual HDACs and have limited efficacy against class II HDACs. Nonselectively inhibiting HDACs could yield adverse effects given their broad contributions to cell differentiation, development, and tissue homeostasis. Furthermore, HDACs may produce divergent, cell-specific actions. For instance, endothelial HDAC3 is atheroprotective in response to exposure to disturbed flow, whereas myeloid HDAC3 prevents collagen deposition and induction of a stable plaque phenotype. Selectively targeting HDAC isoforms in a tissue-specific manner may thus be beneficial but would require identification of tissue-specific mechanisms whereby HDACs function (ie, histone deacetylase enzymatic activity, transcriptional repression, and interactions with other epigenetic regulatory mechanisms). Subsequently, designing inhibitors to target key HDAC functional domains (rather than full-length protein function) could enhance selectivity and minimize unwanted side effects. Also, designing inhibitors against key HDACs (such as HDAC9), which produce consistent cell-specific actions in metabolic and vascular tissues, is a compelling approach.

Further studies are needed to understand the interplay between histone post-translational modifications, DNA methylation, and noncoding RNAs and the consequence of their dysregulation in disease phenotype. Additionally, more work is required to dissect the mechanisms of cellular and trans-generational epigenetic memory. Advancing such studies will likely refine our knowledge of the role of HDACs in cardiometabolic disease and their potential as therapeutic targets.

Sources of Funding

This work was supported by National Institute of Health grants HL076684 and HL112640 (to N.L. Weintraub), HL086555 (to Y. Tang), and DK74932 (to D.Y. Hui) and an American Heart Association predoctoral fellowship 15PRE21580003 (to K.H. Yiew).

Disclosures

None.

References

Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011;121:4877–4890. doi: 10.1172/JCI46243.

Significance

Cardiometabolic disease, emerging as a worldwide epidemic, is a combination of metabolic derangements leading to type 2 diabetes mellitus and cardiovascular disease. These derangements are generally long lasting and resistant to conventional therapies. Histone deacetylases are a class of enzymes that alter chromatin structure and epigenetically reprogram gene expression, thereby influencing key metabolic pathways, such as differentiation and function of pancreatic islet cells, adipocytes, hepatocytes, and skeletal muscle. Histone deacetylases also play complex roles in regulating the immune and cardiovascular systems. Increasing evidence suggests that histone deacetylases are centrally positioned to regulate the interplay between metabolic disease, inflammation, and cardiovascular risk factors. Understanding the molecular, cellular, and physiological functions of histone deacetylases in cardiometabolic disease is expected to provide insight into disease pathogenesis, risk factor control, and therapeutic development.
Histone Deacetylases and Cardiometabolic Diseases
Kan Hui Yiew, Tapan K. Chatterjee, David Y. Hui and Neal L. Weintraub

Arterioscler Thromb Vasc Biol. 2015;35:1914-1919; originally published online July 16, 2015;
doi: 10.1161/ATVBAHA.115.305046
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272
Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://atvb.ahajournals.org/content/35/9/1914

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2015/07/16/ATVBAHA.115.305046.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the
Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for
which permission is being requested is located, click Request Permissions in the middle column of the Web
page under Services. Further information about this process is available in the Permissions and Rights
Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online
at:
http://atvb.ahajournals.org//subscriptions/
<table>
<thead>
<tr>
<th>Class HDACs</th>
<th>Activity</th>
<th>Subcellular localization</th>
<th>Metabolically-relevant tissue</th>
<th>CV-relevant tissue</th>
<th>Immune/Nervous system</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I HDACs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC1</td>
<td>Deacetylase</td>
<td>Predominantly nuclear</td>
<td>Ubiquitous</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HDAC2</td>
<td>Deacetylase</td>
<td>Predominantly nuclear</td>
<td>Ubiquitous</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HDAC3</td>
<td>Deacetylase</td>
<td>Predominantly nuclear</td>
<td>Ubiquitous</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HDAC8</td>
<td>Deacetylase</td>
<td>Predominantly cytosolic</td>
<td>Exclusively in cells showing smooth muscle differentiation (including visceral and vascular smooth muscle, myoepithelial cells, myofibroblasts)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Class IIa HDACs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC4</td>
<td>Weak deacetylase</td>
<td>Nucleus, cytoplasm</td>
<td>Liver, skeletal muscle, pancreas, adipose</td>
<td>Heart</td>
<td>Macrophage, B cells, brain</td>
<td>3-10</td>
</tr>
<tr>
<td>HDAC5</td>
<td>Weak deacetylase</td>
<td>Nucleus, cytoplasm</td>
<td>Liver, skeletal muscle, pancreas, adipose</td>
<td>Heart, endothelium</td>
<td>Macrophage, brain</td>
<td>3, 7, 8, 10-14</td>
</tr>
<tr>
<td>HDAC7</td>
<td>Weak deacetylase</td>
<td>Nucleus, cytoplasm</td>
<td>Liver, skeletal muscle, pancreas</td>
<td>Heart, smooth muscle</td>
<td>T cells, B cells, macrophage</td>
<td>3, 13, 15-20</td>
</tr>
<tr>
<td>HDAC9</td>
<td>Weak deacetylase</td>
<td>Nucleus, cytoplasm</td>
<td>Liver, skeletal muscle, pancreas, adipose</td>
<td>Heart, smooth muscle, endothelium</td>
<td>T cells, macrophage, brain</td>
<td>3, 8, 12, 21-27</td>
</tr>
<tr>
<td>Class IIb HDACs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC6</td>
<td>Deacetylase</td>
<td>Predominantly cytoplasmic</td>
<td>Liver, skeletal muscle, pancreas</td>
<td>Endothelium</td>
<td>T cells</td>
<td>28-33</td>
</tr>
<tr>
<td>HDAC10</td>
<td>Weak deacetylase</td>
<td>Nucleus, cytoplasm</td>
<td>Liver, skeletal muscle, pancreas, kidney</td>
<td></td>
<td></td>
<td>34, 35</td>
</tr>
<tr>
<td>Class III HDACs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIRT1</td>
<td>Deacetylase ADP-ribosyltransferase</td>
<td>Predominantly nuclear</td>
<td>Ubiquitous</td>
<td></td>
<td></td>
<td>36-38</td>
</tr>
<tr>
<td>SIRT2</td>
<td>Deacetylase ADP-ribosyltransferase</td>
<td>Nucleus</td>
<td>Ubiquitous</td>
<td></td>
<td></td>
<td>37-39</td>
</tr>
<tr>
<td>SIRT3</td>
<td>Deacetylase ADP-ribosyltransferase</td>
<td>Mitochondria, nucleus, cytoplasm</td>
<td>Ubiquitous</td>
<td>36-38, 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIRT4</td>
<td>ADP-ribosyltransferase</td>
<td>Mitochondria</td>
<td>Ubiquitous</td>
<td>37, 38, 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIRT5</td>
<td>Deacetylase Demalonylase Desuccinylase</td>
<td>Mitochondria, cytoplasm</td>
<td>Ubiquitous</td>
<td>37, 38, 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIRT6</td>
<td>Deacetylase ADP-ribosyltransferase</td>
<td>Nucleus</td>
<td>Ubiquitous</td>
<td>37, 43-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIRT7</td>
<td>Deacetylase</td>
<td>Nucleolus cytoplasm</td>
<td>Ubiquitous</td>
<td>37, 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class IV HDACs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC11</td>
<td>Deacetylase</td>
<td>Predominantly nuclear</td>
<td>Liver, skeletal muscle, kidney</td>
<td>Heart, Brain</td>
<td>26, 47</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary table 1. Characterizing histone deacetylases activity, subcellular localization, and expression in cardiovascular and metabolically-relevant tissues (partial list). Abbreviations: CV, cardiovascular; Ref, references.
References

12. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals
and play redundant roles in heart development. *Molecular and cellular biology*. 2004;24:8467-8476

38. Frye RA. Characterization of five human cdnas with homology to the yeast sir2 gene: Sir2-like proteins (sirtuins) metabolize nad and may have protein adp-ribosyltransferase activity. *Biochemical and biophysical research communications*. 1999;260:273-279

