Genetic Ablation of CaV3.2 Channels Enhances the Arterial Myogenic Response by Modulating the RyR-BKCa Axis

Osama F. Harraz, Suzanne E. Brett, Anil Zechariah, Monica Romero, Jose L. Puglisi, Sean M. Wilson, Donald G. Welsh

Objective—In resistance arteries, there is an emerging view that smooth muscle CaV3.2 channels restrain arterial constriction through a feedback response involving the large-conductance Ca2+-activated K+ channel (BKCa). Here, we used wild-type and CaV3.2 knockout (CaV3.2−/−) mice to definitively test whether CaV3.2 moderates myogenic tone in mesenteric arteries via the CaV3.2-ryanodine receptor-BKCa axis and whether this regulatory mechanism influences blood pressure regulation.

 Approach and Results—Using pressurized vessel myography, CaV3.2−/− mesenteric arteries displayed enhanced myogenic constriction to pressure but similar K+-induced vasoconstriction compared with wild-type C57BL/6 arteries. Electrophysiological and myography experiments subsequently confirmed the inability of micromolar Ni2+, a CaV3.2 blocker, to either constrict arteries or suppress T-type currents in CaV3.2−/− smooth muscle cells. The frequency of BKCa−induced spontaneous transient outward K+ currents dropped in wild-type but not in knockout arterial smooth muscle cells upon the pharmacological suppression of CaV3.2 channel. Line scan analysis performed on en face arteries loaded with Fluo-4 revealed the presence of Ca2+ sparks in all arteries, with the subsequent application of Ni2+ only affecting wild-type arteries. Although CaV3.2 channel moderated myogenic constriction of resistance arteries, the blood pressure measurements of CaV3.2−/− and wild-type animals were similar.

Conclusions—Overall, our findings establish a negative feedback mechanism of the myogenic response in which CaV3.2 channel modulates downstream ryanodine receptor-BKCa to hyperpolarize and relax arteries. (Arterioscler Thromb Vasc Biol. 2015;35:1843-1851. DOI: 10.1161/ATVBHA.115.305736.)

Key Words: arteries • calcium-activated potassium channels • calcium channels • calcium signaling • ryanodine receptors • T-type calcium channels • vascular smooth muscle

The cardiovascular system comprises a muscular pump and a distribution network of arteries, veins, and capillaries. Within this integrated system, resistance arteries control the magnitude and distribution of tissue perfusion and respond to vasoactive stimuli, including mechanical forces, neurotransmitters, and metabolites. Bayliss first described the inherent ability of resistance arteries to constrict to elevated pressure, and studies have shown that the so-called myogenic response is intimately tied to depolarization and the activation of smooth muscle L-type Ca2+ channels. It is often presumed that Ca1.2 is the only Ca2+ channel of functional significance because dihydropyridines, L-type blockers, prominently attenuate myogenic tone. This traditional perspective has begun to change with the identification of arterial T-type Ca2+ channels, including CaV3.1 and CaV3.2 subtypes. Recent findings suggest that the former (ie, CaV3.1) modestly facilitates myogenic constriction at hyperpolarized voltages, whereas the latter (ie, CaV3.2) facilitates a negative feedback response restraining arterial constriction.

Our recent observations have tied the paradoxical ability of rat cerebral arterial CaV3.2 channel to limit myogenic tone to the triggering of ryanodine receptors (RyR) on the sarcoplasmic reticulum. The RyR-mediated generation of Ca2+ sparks subsequently activates the large conductance Ca2+-activated K+ channels (BKCa), eliciting a hyperpolarization to counteract pressure-induced constriction. Furthermore, the CaV3.2 conductance in the human cerebral circulation seems to mediate a similar physiological role. Although the concept of a voltage-gated Ca2+ channel counterbalancing vasoconstriction is novel and intriguing, it is one delimited by 2 primary concerns. First, current work is heavily reliant on the presumed selectivity of Ni2+ to block CaV3.2 channels. Second, there is a lack of corroborative observations, outside the cerebral circulation, in vascular beds known to acutely and sustainably regulate systemic blood pressure.
Here, we used wild-type and CaV3.2 knockout (CaV3.2−/−) mice to definitively test whether CaV3.2 channel moderates myogenic tone in mesenteric arteries via the CaV3.2-RyR-BKCa axis and, more generally, whether this regulatory mechanism influences blood pressure regulation. Experiments ranged from cells to whole animals and encompassed the integrative use of myography, electrophysiology, Ca2+ imaging, and intravascular catheterization. Arteries displayed enhanced myogenic tone when CaV3.2 channels were genetically ablated or pharmacologically suppressed using Ni2+. Subsequent analyses indicated that Ni2+ inhibited BKCa currents and Ca2+ sparks in wild-type but not CaV3.2−/− arteries. Although CaV3.2 channel moderated myogenic constriction, the blood pressure measurements of both animal types were similar. In conclusion, this study establishes a negative feedback response in which CaV3.2 channel modulates downstream activity of the RyR-BKCa complex to hyperpolarize and relax resistance arteries.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

Genetic Ablation of CaV3.2 Enhances Arterial Myogenic Tone

Our earlier reports revealed the involvement of CaV3.2 channels in negative feedback control of rat cerebral arterial tone10; thus, channel deletion should enhance myogenic tone. Figure 1A and 1B demonstrates that C57BL/6 and CaV3.2−/− arteries display enhanced myogenic tone. Although CaV3.2 channel moderated myogenic constriction, the blood pressure measurements of both animal types were similar. In conclusion, this study establishes a negative feedback response in which CaV3.2 channel modulates downstream activity of the RyR-BKCa complex to hyperpolarize and relax resistance arteries.

Nonstandard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKCa</td>
<td>large-conductance Ca2+-activated K+ channel</td>
</tr>
<tr>
<td>CaV3.2−/−</td>
<td>CaV3.2-deficient (knockout) mice</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>STOC</td>
<td>spontaneous transient outward K+ current</td>
</tr>
</tbody>
</table>

Figure 1. CaV3.2−/− arteries display enhanced myogenic tone. A, Representative traces and summary data demonstrate that C57BL/6 mesenteric arteries constricted to elevations in intravascular pressure from 20 to 100 mm Hg in Ca2+ containing physiological saline solution (PSS). Maximum arterial diameters were obtained by replacing Ca2+ PSS with PSS with zero Ca2++2 mmol/L EGTA (n=12). B, Traces and averaged data of the myogenic response in CaV3.2−/− mesenteric arteries (n=8). C, Percentage myogenic tone was significantly higher in CaV3.2−/− (n=7) than in wild-type C57BL/6 (n=11) arteries (unpaired t test, *P<0.05). D, Vasoconstriction evoked by 60 mmol/L K+ was similar in C57BL/6 and CaV3.2−/− pressurized (15 mm Hg) arteries (n=11–17, unpaired t test; NS denotes not significant). E, Messenger RNA of key genes (CaV1.2, CaV3.1, BKCa-α, and RyR2) were not different in C57BL/6 and CaV3.2−/− mesenteric arteries. Relative expression was calculated using 3 independent quantitative PCR reactions.
CaV3.2−/− arteries were myogenically active and constricted as intravascular pressure increased from 20 to 100 mm Hg. Ca2+−free saline (0 mmol/L Ca2++2 mmol/L EGTA) reversed myogenic constriction and evoked passive arterial dilation. Expressing data as a percentage myogenic tone (Figure 1C) revealed the predicted enhancement in CaV3.2−/− arteries (at 60 mm Hg: CaV3.2−/−, 28%±2%; C57BL/6, 19%±3%). Although myogenic tone was significantly different, 60 mmol/L K+-induced vasoconstriction was similar in C57BL/6 (40%±2%) and CaV3.2−/− (43%±2%) pressurized arteries (Figure 1D). Note, the basal diameter of CaV3.2−/− arteries was smaller than that of C57BL/6, a finding consistent with variable myogenic tone. Interpretational cautious is, however, warranted because CaV3.2−/− mice display a lighter body mass than wild-type animals.12 Quantitative PCR showed that mRNA expression of CaV1.2, CaV3.1, BKCa−α, or RyR2 was comparable in wild-type and CaV3.2−/− arteries (Figure 1E).

Micromolar Ni2+ Selectively Blocks CaV3.2 Currents

Mesenteric arterial smooth muscle cells from C57BL/6 mice express 3 subtypes of voltage-gated Ca2+ channels (CaV1.2, CaV3.1, and CaV3.2),9 and thus, total inward current is representative of this ensemble of channels. To distinguish between the subcomponents, we used patch clamp electrophysiology in combination with defined pharmacology.10 First, nifedipine (200 nmol/L) was applied to block L-type CaV1.2 channels and reveal a current predominated by T-type conductances (Figure 2A). Subsequent application of 50 μmol/L Ni2+, which is presumed to be a selective CaV3.2 blocker,10–14 reduced the nifedipine-insensitive T-type currents in C57BL/6 but not in CaV3.2−/− smooth muscle cells (Figure 2B and 2C). The absence of an effect of Ni2+ in CaV3.2−/− myocytes is consistent with this pharmacological selectivity. Note that the broad-spectrum T-type blocker (NCC 55–0396, 1 μmol/L) subsequently abolished the residual current15 in both C57BL/6 and CaV3.2−/− myocytes because of the suppression of remaining CaV3.1 current (Figure 2C). Importantly, voltage dependence profiles demonstrated that the T-type current is available for activation at physiological membrane potentials (Figure I in the online-only Data Supplement). As noted previously, CaV3.1 mRNA levels were similar among the 2 groups of animals, whereas CaV1.2 was modestly but insignificantly lower in CaV3.2−/− arteries (Figure 1E).

CaV3.2 Activity Regulates BKCa-Mediated STOCs

Given the enhancement of myogenic constriction in CaV3.2−/− arteries, we next tested whether this T-type channel modifies myogenic reactivity through a negative feedback response that involves downstream BKCa.10,12 We used perforated patch clamp electrophysiology to monitor BKCa-medicated spontaneous transient outward K+ currents (STOCs) in arterial smooth muscle cells from wild-type and knockout animals. In C57BL/6 cells held at the physiological voltage of −40 mV, Ni2+ significantly suppressed STOC frequency. In contrast, Ni2+ had no effect on STOCs when C57BL/6 cells were voltage-clamped at more depolarized potentials (−20 mV), a finding consistent with the voltage profile of CaV3.2 channel (Figure 3A). In CaV3.2−/− cells, Ni2+ had no effect at either −40 or −20 mV (Figure 3B). All STOCs were fully abolished by the

Figure 2. Micromolar Ni2+ suppresses CaV3.2 current. A, Current–voltage (I−V) plots illustrate total inward currents in wild-type C57BL/6 and CaV3.2−/− smooth muscle cells and the effects of CaV1.2 and CaV3.2 blockade using nifedipine (200 nmol/L) and Ni2+ (50 μmol/L), respectively. All recordings used 10 mmol/L Ba2+ as the charge carrier. B and C, Representative traces and summary data illustrate the effect of Ni2+ on nifedipine insensitive T-type currents. Representative traces were evoked using a prepulse (−90 mV) followed by a test pulse (0 mV). Ni2+ significantly suppressed T-type currents in C57BL/6 but not CaV3.2−/− smooth muscle cells (n=7 each; *P<0.05).
Figure 3. Ca₃.₂ channel modulates BKᵥ-mediated spontaneous transient outward K⁺ currents (STOCs). A and B, Representative traces of STOCs recorded at −40 and −20 mV in wild-type C57BL/6 (A) or Ca₃.₂⁻/⁻ (B) arterial smooth muscle cells. Application of 50 μmol/L Ni²⁺ suppressed STOC frequency only at −40 mV in C57BL/6 cells with no noticeable effect at other conditions. C, Averaged bar graphs illustrate the effect of Ni²⁺ on STOC frequency (Hz) and amplitude (pA) at −40 or −20 mV in C57BL6 or Ca₃.₂⁻/⁻ arterial myocytes (n=8–11, *P<0.05, paired t test).
application of the BK$_{Ca}$ inhibitor paxilline (1 μmol/L; Figure II in the online-only Data Supplement). Message expression of the BK$_{Ca}$ pore-forming subunit (BK$_{Ca}$-α) was similar in C57BL/6 and CaV3.2$^{-/-}$ arteries (Figure 1E). Further, Ni$^{2+}$ had no effect on STOC amplitude under different experimental conditions (Figure 3C). Note, basal STOCs tended to fire at lower frequencies in CaV3.2$^{-/-}$ myocytes compared with C57BL/6 counterparts. Statistical analysis was not performed across groups as cells that did not fire sufficient STOCs were eliminated a priori from experimentation.

CaV3.2 Channel Controls Ca$^{2+}$ Spark Generation

Given the ability of CaV3.2 channel to modulate BK$_{Ca}$ current (Figure 3) and the reported correlation between RyR-mediated spark generation and BK$_{Ca}$ activation,10,16 we next explored the CaV3.2-Ca$^{2+}$ spark relationship using Ca$^{2+}$ imaging and line scan analysis of mouse mesenteric arteries (Figure 4). In C57BL/6 arteries loaded with Fluo-4, Ca$^{2+}$ sparks were observed in 76% of the 454 line scans performed under control conditions. Depolarizing arteries (30 mmol/L K$^+$) increased spark activity (95%), whereas the subsequent addition of Ni$^{2+}$ significantly reduced firing (52%; Figure 4A and 4B). In comparison, 30 mmol/L K$^+$ increased spark firing in CaV3.2$^{-/-}$ arteries from 58% to 94% (456 line scans) but Ni$^{2+}$ failed to attenuate sparks (98%; Figure 4A and 4B). In depolarized wild-type C57BL/6 arteries, Ca$^{2+}$ spark frequency was calculated to be 0.0347 and 0.0153 sparks/μm s in the absence and presence of Ni$^{2+}$, respectively; spark frequency in knockout tissues was distinctively insensitive to the application of Ni$^{2+}$ (Figure 4C). The genetic absence of CaV3.2 channels was notably associated with lower percentage firing (CaV3.2$^{-/-}$, 58%; C57BL/6, 76%) and lower basal Ca$^{2+}$ spark frequency when compared with wild-type arteries (CaV3.2$^{-/-}$, 0.0065±0.0014; C57BL/6, 0.0169±0.005 sparks/μm s). The amplitudes and spatiotemporal characteristics of Ca$^{2+}$ sparks displayed no significant changes before and after the application of Ni$^{2+}$ on C57BL/6 and CaV3.2$^{-/-}$ arteries (Figure 4D).

CaV3.2 Activity Restrains Myogenic Constriction by Altering BK$_{Ca}$ Feedback

The application of Ni$^{2+}$ (50 μmol/L) onto C57BL/6 arteries evoked vasoconstriction at intravascular pressure values between 20 and 60 mm Hg, and this vasomotor effect diminished at higher pressures; CaV3.2$^{-/-}$ arteries lacked a similar response (Figure 5A). The percentage of myogenic tone in wild-type C57BL/6 arteries increased after the application of Ni$^{2+}$ (at 60 mm Hg: control 20%±4% versus Ni$^{2+}$ 25%±1%), but was not altered in CaV3.2$^{-/-}$ arteries (control 30%±5% versus Ni$^{2+}$ 28%±8%; Figure 5B). Coinciding with vasomotor data, membrane potential measurements showed that Ni$^{2+}$ only depolarized C57BL/6 but not CaV3.2$^{-/-}$ pressurized arteries (60 mm Hg; Figure 5C). In C57BL/6 arteries, the BK$_{Ca}$,...
blocker (paxilline, 1 μmol/L) evoked vasoconstriction and enhanced myogenic tone similar to that of Ni²⁺ (Figure 5D), an observation consistent with a common signaling axis between CaV3.2 and BKCa channels. When Ni²⁺ and paxilline were sequentially added to the same wild-type artery, Ni²⁺ evoked vasoconstriction, whereas subsequent paxilline had no additional effect. Similar experiments using CaV3.2⁻/⁻ arteries demonstrated a lack of vasomotor responses to Ni²⁺ but preserved responsiveness to paxilline (Figure 5E).

CaV3.2⁻/⁻ Mice Display Normal Blood Pressure Responses

Pharmacological and genetic approaches suggested that CaV3.2 channel counterbalances myogenic constriction (Figure 1 and 5) and could as such influence blood pressure regulation. To explore this possibility, we catheterized carotid arteries of C57BL/6 and CaV3.2⁻/⁻ mice to monitor blood pressure under resting conditions and in response to a vasopressor challenge. As depicted (Figure 6A), basal mean arterial pressure was similar in wild-type and knockout mice (C57BL/6, 100±2 mmHg; CaV3.2⁻/⁻, 103±5 mmHg), a finding consistent with earlier reports in conscious animals.\(^{17,18}\) Given that CaV3.2 channels seem to be involved in a feedback mechanism, we next assessed whether this conductance can alter mean arterial pressure responsiveness to a vasopressor challenge. The intravenous administration of phenylephrine (α₁-adrenoceptor agonist, 1–16 μg/kg body weight) evoked dose-dependent rises in mean arterial pressure, and these transient responses were similar among the 2 groups (Figure 6B). Analogous to in vivo experiments, phenylephrine (0.01–10 μmol/L)-induced vasoconstriction was similar in C57BL/6 and CaV3.2⁻/⁻ mesenteric arteries (Figure 6C and 6D).

Discussion

This study used wild-type and CaV3.2 knockout mice to examine the purported contribution of CaV3.2 channels to a negative feedback response that counterbalances arterial tone development. Using mesenteric arteries, functional experiments illustrated that the genetic ablation or pharmacological suppression of CaV3.2 channel selectively enhanced myogenic constriction. Subsequent electrophysiological recordings revealed that CaV3.2 channel modulates downstream BKCa⁻/⁻-mediated STOCs. Ca²⁺ imaging further demonstrated that
Ca²⁺ spark generation is an intermediary step in the CaV3.2-BKCa functional axis. Finally, although CaV3.2 moderated myogenic tone, this regulatory mechanism did not influence resting blood pressure or vasopressor-induced responses. In summary, findings from this study establish a model by which CaV3.2 channel restrains myogenic constriction by driving a process where Ca²⁺ influx triggers Ca²⁺ sparks and downstream activation of BKCa currents (Figure III in the online-only Data Supplement).

Resistance arteries control tissue perfusion and respond to a range of vasoactive stimuli. Resistance arteries control tissue perfusion and respond to a range of vasoactive stimuli. Resistance arteries control tissue perfusion and respond to a range of vasoactive stimuli. Resistance arteries control tissue perfusion and respond to a range of vasoactive stimuli. Resistance arteries control tissue perfusion and respond to a range of vasoactive stimuli.

The unexpected ability of CaV3.2 channel to mediate a negative feedback response has been previously tied to downstream modulation of BKCa channels through intermediary activation of ryanodine receptors. To activate arterial BKCa, vasoactive stimuli must induce depolarization and eliciting a discrete micromolar rise in [Ca²⁺]i in the subsarcolemma taking the form of a Ca²⁺ spark. Here, we present multiple lines of evidence implicating BKCa as the final downstream effector of CaV3.2 channel. First, electrophysiology revealed that BKCa-mediated STOCs were sensitive to Ni²⁺ in wild-type but not in CaV3.2−/− arterial myocytes. Second, pressure myography illustrated no significant differences between wild-type C57BL6 and CaV3.2−/− arteries (n=8 each).

Figure 6. CaV3.2−/− mice display normal resting blood pressure and responsiveness to phenylephrine. A, Resting mean arterial pressure of anesthetized C57BL/6 or CaV3.2−/− mice (n=10 each). B, Changes in mean arterial pressure (ΔMAP, mm Hg) in response to intravenous phenylephrine (1–16 μg/kg body weight) in C57BL6 and CaV3.2−/− mice (n=10 each). C, Diameter responses of C57BL6 and CaV3.2−/− mesenteric arteries to increased pressure from 15 to 60 mm Hg followed by cumulative application of phenylephrine (PE; 0.01–10 μmol/L). Maximum diameters (Dmax) were finally achieved by perfusion of Ca²⁺ free PSS. D, Phenylephrine concentration response curve shows no significant differences between wild-type C57BL6 and CaV3.2−/− arteries (n=8 each).
inhibitor) to the superfusate comparably augmented myogenic tone. Intriguingly, applying papilaxine to wild-type arteries pretreated with Ni^{2+} had no additive effect, consistent with Ca_{V3.2} and BK_{Ca} channels being linked through a common sequential pathway.

It has been long established that RyR activation is responsible for the initiation of BK_{Ca}-mediated STOCs in arterial smooth muscle,6,24 and this recognized relationship led us to examine the nature of Ca^{2+} spark generation in mouse mesenteric arteries. Indeed, inhibitors of RyR (eg, ryanodine) have been shown to suppress the generation of STOCs in vascular smooth muscle irrespective of their origin.24 Here and in consistency with Ca_{V3.2} channel driving Ca^{2+} sparks and subsequently STOC generation, we used Ca^{2+} imaging and line scan analysis and observed that spark frequency decreased in wild-type arteries when Ca_{V3.2} channels were inhibited with Ni^{2+}. We also found that firing of Ca^{2+} sparks was unaffected by this divalent cation in Ca_{V3.2}−/− arteries and that basal Ca^{2+} spark frequency was lower than those of wild-type arteries. These findings align well with recent work from the cerebral circulation where a variety of functional, structural, electrophysiological, and computational observations draw a critical relationship between Ca_{V3.2} and RyR and then BK_{Ca} (Figure III in the online-only Data Supplement).10 Intriguingly, the preceding work is distinct from neuronal studies where T-type conductances have been suggested to directly activate Ca^{2+}-activated K+ channels independent of RyR.25–28

With Ca_{V3.2} channels playing an intimate role in limiting myogenic constriction, it is logical to argue that the loss of this conductance would alter peripheral resistance and systemic blood pressure regulation. We tested this supposition by catheterizing anesthetized mice and assessing blood pressure at rest and in response to a vasopressor challenge. Resting blood pressure was similar among wild-type and Ca_{V3.2}−/− mice, a finding consistent with earlier reports which used different monitoring approaches (eg, catheterization, tail cuff) in conscious animals over longer time spans (days to weeks).17,18 Given the presumed role of Ca_{V3.2} in feedback (rather than active vasodilation), we challenged blood pressure regulation using intravenous phenylephrine.

In conclusion, this study showed that arterial Ca_{V3.2} channels retain a unique ability to counterbalance myogenic constriction. This negative feedback response entails a modulatory paradigm in which Ca^{2+} flux through Ca_{V3.2} channel triggers Ca^{2+} spark generation and then activates BK_{Ca} channels to hyperpolarize and relax arteries (Figure III in the online-only Data Supplement). This novel functional axis, recently described in the human cerebral circulation,31 challenges the traditional view that voltage-gated Ca_{V3.2} channels solely facilitate arterial tone development.

Sources of Funding

This work was supported by an operating grant from the Canadian Institutes of Health Research (CIHR, MOP-69088 to D.G. Welsh). D.G. Welsh is the recipient of the Rorabeck Chair in Neuroscience and Vascular Biology (University of Western Ontario). O.F. Harraz is a Vanier Scholar and was supported by salary studentships from Alberta Innovates Health Solutions (AIHS) and Achievers in Medical Sciences. A. Zechariah was supported by AIHS and Eyes High post-doctoral fellowships. Imaging was performed in the Loma Linda University School of Medicine Advanced Imaging and Microscopy Core that is supported by the National Science Foundation (MRI-DBI 0923559 to S.M. Wilson) and the Loma Linda University School of Medicine. The work was also supported in part by USPHS (United States Public Health Service) Grant (HD069746 to S.M. Wilson).

Disclosures

None.

References

Vascular smooth muscle cells express T-type Ca\(^{2+}\) channels along with L-type channels. Although the latter have been long implicated in arterial excitation–contraction coupling, studies have only recently begun to assess the role of T-type channels. Using an animal model in which Ca\(_{3.2}\), a T-type channel, was genetically deleted, we tested its role in arterial tone development. We demonstrate that resistance arteries from knockout animals paradoxically display enhanced responsiveness to arterial pressure. This enhancement was mechanistically attributed to the ability of Ca\(_{3.2}\) to modulate downstream K\(^+\) channels, which hyperpolarize and relax arteries. This novel data challenge the traditional view that voltage-gated Ca\(^{2+}\) channels are singularly involved in the genesis of arterial constriction.
Genetic Ablation of CaV3.2 Channels Enhances the Arterial Myogenic Response by Modulating the RyR-BK Ca Axis

Osama F. Harraz, Suzanne E. Brett, Anil Zechariah, Monica Romero, Jose L. Puglisi, Sean M. Wilson and Donald G. Welsh

Arterioscler Thromb Vasc Biol. 2015;35:1843-1851; originally published online June 11, 2015; doi: 10.1161/ATVBAHA.115.305736

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/35/8/1843

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2015/06/11/ATVBAHA.115.305736.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIALS

Genetic ablation of Cav3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis

Osama F. Harraz¹,²; Suzanne E. Brett¹; Anil Zechariah¹; Monica Romero³; Jose L. Puglisi⁴; Sean M. Wilson³; Donald G. Welsh¹,⁵,#

¹ Dept. of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, AB, Canada
² Dept. of Pharmacology and Toxicology, Alexandria University, Egypt
³ Division of Pharmacology, Loma Linda University, CA, USA
⁴ Dept. of Pharmacology, University of California Davis, CA, USA
⁵ Dept. of Physiology and Pharmacology, University of Western Ontario, ON, Canada

Running Title: Cav3.2 counterbalances myogenic constriction

Corresponding Author:
Donald G. Welsh, PhD
GAA-14 Health Research Innovation Center
University of Calgary, 3280 Hospital Dr NW
Calgary, Alberta, Canada, T2N4N1
E-mail: dwelsh@ucalgary.ca
Tel: +1-403-210-3819
DETAILED METHODS

Animal procedures
Animal procedures were approved by the Animal Care and Use Committee at the University of Calgary and Loma Linda University. Briefly, male or female C57BL/6J (wild-type) and CaV3.2 knockout (CaV3.2⁻/⁻) mice (2–4 months old, obtained from Jackson Laboratories) were asphyxiated in a CO₂ chamber. The mesentry was carefully removed and placed in cold phosphate-buffered saline solution (pH 7.4) containing (in mM): 138 NaCl, 3 KCl, 10 Na₂HPO₄, 2 NaH₂PO₄, 5 glucose, 0.1 CaCl₂ and 0.1 MgSO₄. Third and fourth order mesenteric arteries were dissected out of surrounding tissues and cut into 2–3 mm segments.

Vessel myography and membrane potential (Vₘ) measurement
Mesenteric arteries were mounted in an arteriograph and superfused with physiological saline solution (PSS; 37°C; pH 7.4; 21% O₂, 5% CO₂, balance N₂) containing (in mM): 119 NaCl, 4.7 KCl, 20 NaHCO₃, 1.1 KH₂PO₄, 1.2 MgSO₄, 1.6 CaCl₂ and 10 glucose. To limit the endothelial influence, air bubbles were passed through the lumen for 1–2 min. Arteries were equilibrated at 15 mmHg and contractile responsiveness assessed by briefly applying 60 mM KCl. Following equilibration, intravascular pressure was incrementally elevated from 20 to 100 mmHg and external diameter monitored. Maximal diameter was assessed in Ca²⁺-free PSS (zero Ca²⁺ + 2 mM EGTA). Percentage myogenic tone was calculated as follows: % Myogenic tone=100*(D₀–D)/D₀; where D is external diameter under control conditions (Ca²⁺ PSS) or treated conditions (Ca²⁺ PSS) or treated conditions, and D₀ is external diameter in Ca²⁺-free PSS. Smooth muscle membrane potential (Vₘ) was ascertained as previously published¹ by inserting a glass microelectrode backfilled with 1 M KCl (tip resistance ~120-150 MΩ) into the vessel wall while pressurized at 60 mmHg. Criteria for successful impalement included: 1) a sharp negative Vₘ deflection upon insertion; 2) a stable Vₘ for ≥1 min after entry; and 3) a sharp return to baseline upon electrode removal.

Quantitative polymerase chain reaction (qPCR)
Total RNA was isolated from mouse C57BL/6 or CaV3.2⁻/⁻ mesenteric arteries using the RNeasy plus micro kit (Qiagen) following manufacturer's recommendations. Reverse transcription was performed with 20 ng per sample of total RNA using the Quantitect reverse transcription kit (Qiagen). For the negative control groups, all components except the reverse transcriptase were included in the reaction mixtures. Real-Time PCR using intron-spanning primer sequences was performed using the Kapa SYBR Fast Universal qPCR Kit (Kapa Biosystems). Mouse beta-actin gene was utilized as the reference gene. Control reactions and those containing cDNA from arteries were performed with 1 ng of template per reaction. The running protocol extended to 45 cycles consisting of 95°C for 5 s, 55°C for 10 s and 72°C for 10 s using an Eppendorf Realplex 4 Mastercycler. PCR specificity was checked by dissociation curve analysis, and assay validation was confirmed by testing serial dilutions of pooled template cDNAs suggesting a linear dynamic range of 50-0.05 ng template and yielded percent efficiencies ranging from 85-95%. No template controls yielded no detectable fluorescence. Expression levels of the various genes of interest in arteries from CaV3.2⁻
relative to C57BL/6 mice were determined using the relative expression software tool (REST) version 2.0.13.²

Quantitative PCR primer sequences and validation parameters.

<table>
<thead>
<tr>
<th>Target</th>
<th>Primers</th>
<th>Amplicon</th>
<th>Efficiency (%)</th>
<th>Linear Dynamic Range</th>
<th>Cq values ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cav1.2</td>
<td>ATTCGACGTGAAGGCACTG GAGTTGAGGACCACCTGGAG</td>
<td>90</td>
<td>95</td>
<td>50-0.05</td>
<td>33.22±0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(23.41-33.75)</td>
<td>31.93±0.24</td>
</tr>
<tr>
<td>Ca3.1</td>
<td>TCCTGTCAATACCCCTACGC GAGGCTGTTGAAGACGATGT</td>
<td>98</td>
<td>85</td>
<td>50-0.005</td>
<td>38.98±0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(24.09-39.29)</td>
<td>36.68±1.05</td>
</tr>
<tr>
<td>BKCaα</td>
<td>TCTCAGCATGTTGCGCTCGAAT GTAGAGGAGGAAGACACGTTGAA</td>
<td>127</td>
<td>92</td>
<td>33-0.0033</td>
<td>34.56±0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(22.48-36.48)</td>
<td>32.30±0.14</td>
</tr>
<tr>
<td>RyR2</td>
<td>CTGAGCTGGCATCAGAGAC AGCCCTTTGGTAAGCCACAG</td>
<td>144</td>
<td>88</td>
<td>50-0.005</td>
<td>35.11±0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(21.78-36.15)</td>
<td>33.47±0.02</td>
</tr>
<tr>
<td>ACTB</td>
<td>ACTGTCGAGTCCGCTCCA GCAGCGATATCGCTCATCCAT</td>
<td>100</td>
<td>88</td>
<td>50-0.0005</td>
<td>31.15±0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(20.61-39.35)</td>
<td>28.71±0.59</td>
</tr>
</tbody>
</table>

Isolation of arterial smooth muscle cells

As previously described⁴, arterial segments were placed in an isolation medium containing (in mM): 60 NaCl, 80 Na-glutamate, 5 KCl, 2 MgCl₂, 10 glucose and 10 HEPES with 1 mg/ml bovine serum albumin (pH 7.4, 37 °C, 10 min). Vessels were then exposed to a two-step digestion process: 1) 13 min incubation in isolation medium containing 0.5 mg/ml papain and 1.5 mg/ml dithioerythritol; and 2) 10 minutes incubation in isolation medium containing 100 µM Ca²⁺, 0.7 mg/ml type F collagenase and 0.4 mg/ml type H collagenase. Following incubation, tissues were washed repeatedly with ice-cold isolation medium and triturated with a fire-polished pipette. Liberated cells were stored in ice-cold isolation medium for use within ~6 hr.

Electrophysiological recordings

Conventional patch-clamp electrophysiology was used to monitor whole-cell voltage-gated Ca²⁺ channel currents in isolated smooth muscle cells. ³ Recording electrodes (5-8 MΩ) were pulled from borosilicate glass microcapillary tubes using a micropipette puller, and backfilled with pipette solution (in mM): 135 CsCl, 5 Mg-ATP, 10 HEPES, and 10 EGTA (pH 7.2). Cells were voltage-clamped and equilibrated in bath solution (in mM): 110 NaCl, 1 CsCl, 10 BaCl₂, 1.2 MgCl₂, 10 glucose, and 10 HEPES (pH 7.4). A 1 M NaCl–agar salt bridge between the reference electrode and the bath solution was used to minimize offset potentials. To record whole-cell Ba²⁺ currents, isolated cells held at -60 mV were exposed to a pre-pulse (-90 mV, 200 ms) and then test pulses (-50 to 40 mV, 10 mV intervals, 300 ms).
Perforated patch-clamp electrophysiology was used to measure spontaneous transient outward K⁺ currents (STOCs) in freshly isolated smooth muscle cells. The bath solution contained (in mM): 134 NaCl, 4 KCl, 2 MgCl₂, 2 CaCl₂, 10 glucose, and 10 HEPES (pH 7.4). The pipette solution contained (in mM): 110 K aspartate, 30 KCl, 10 NaCl, 2 MgCl₂, 10 HEPES, and 0.05 EGTA (pH 7.2) with 200 µg/ml amphotericin B. Currents were recorded while cells were held at -40 or -20 mV. STOC analysis was performed using Clampfit 10.3; threshold for detection was set to be ~3 times the BKCa single channel conductance. Whole-cell currents were recorded using an Axopatch 200B patch-clamp amplifier, filtered at 1 kHz, digitized at 5 kHz, and were stored on a computer for offline analysis. Whole-cell capacitance averaged ~13 pF and all experiments were performed at room temperature.

Ca²⁺ spark measurement
Ca²⁺ sparks were recorded in mouse arterial myocytes loaded with the Ca²⁺ sensitive dye Fluo-4 AM and using a Zeiss LSM 710 NLO laser scanning confocal imaging workstation on an inverted microscope platform (Zeiss Axio Observer Z1). Fluo-4 AM was dissolved in DMSO and added from a 1 mM stock to the arterial suspension at a final concentration of 10 µM, along with 0.1% pluronic F127 for 1-1.5 hr at room temperature in the dark in balanced salt solution. Arterial segments were then washed (30 min) to allow dye esterification and then cut into linear strips. Arterial segments were pinned to Sylgard blocks and placed in an open bath imaging chamber mounted on the confocal imaging stage. Arteries were illuminated at 488 nm with a krypton argon laser, and emitted light was collected using a photomultiplier tube. Line scans were imaged at 529 fps with the emission signal recorded at 493-622 nm. The acquisition period for Ca²⁺ spark recordings was 18.9 s and the resultant pixel size ranged from 0.0148 to 0.0911 µm per pixel. To ensure that sparks within the cell were imaged, the pinhole was adjusted to provide an imaging depth of 2.5 µm, this is roughly equivalent to 50% the width of the cell based on morphological examination of live preparations. Analysis was performed to characterize the percentage of scans with Ca²⁺ sparks (% firing), Ca²⁺ spark frequency, amplitude and spatiotemporal characteristics using SparkLAB 4.2.1. Threshold for spark detection was 3.2 times the standard deviation of the background noise above mean background. Prior to analysis, background fluorescence was subtracted from each image assuming homogeneous background levels in each cell.

Intravascular catheterization
Male C57BL/6 or Cav3.2⁻/⁻ mice were anesthetized with intraperitoneal injection of ketamine (150 mg/kg) and xylazine (10 mg/kg). Anesthesia was extended by additional ketamine (10 mg/kg) as required. Anesthesia adequacy was verified by the abolition of the withdrawal and blink reflexes. A small neck incision was made and the left common carotid artery was ligated and catheterized using an arterial cannula. Similarly, a small incision was made to expose and catheterize the right jugular vein for intravenous drug administration. Changes in mean arterial pressure (ΔMAP) were monitored using a data acquisition system (ACQKnowledge). Mice were sacrificed at the end of the experiment using a high dose of anesthetic.
Statistical analysis

Data are expressed as means±S.E.M., and n indicates the number of cells, arteries or mice. Where appropriate, paired/unpaired t-tests or one way ANOVA were performed to compare the effects of a given condition/treatment on arterial diameter, or whole-cell current. *P values ≤ 0.05 were considered statistically significant. Averaged current-voltage relationships were fit to the following Peak Gaussian function: $I(V) = I_{\text{max}} \exp[-0.5((V-V_{\text{max}})/b)^2]$; where I_{max} is peak current (I), V_{max} is V at I_{max}, and b is the slope of the distribution.

Solutions and Chemicals

Drugs, enzymes and buffer reagents were purchased from Sigma-Aldrich, unless otherwise mentioned.

SUPPLEMENTAL REFERENCES

SUPPLEMENTAL MATERIALS

Genetic ablation of Ca\textsubscript{v}3.2 channels enhances the arterial myogenic response by modulating the RyR-BK\textsubscript{Ca} axis

Osama F. Harraz1,2; Suzanne E. Brett1; Anil Zechariah1; Monica Romero3; Jose L. Puglisi4; Sean M. Wilson3; Donald G. Welsh1,5,\#

1 Dept. of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Institutes, University of Calgary, AB, Canada
2 Dept. of Pharmacology and Toxicology, Alexandria University, Egypt
3 Division of Pharmacology, Loma Linda University, CA, USA
4 Dept. of Pharmacology, University of California Davis, CA, USA
5 Dept. of Physiology and Pharmacology, University of Western Ontario, ON, Canada

Running Title: Ca\textsubscript{v}3.2 counterbalances myogenic constriction

\# Corresponding Author:
Donald G. Welsh, PhD
GAA-14 Health Research Innovation Center
University of Calgary, 3280 Hospital Dr NW
Calgary, Alberta, Canada, T2N4N1
E-mail: dwelsh@ucalgary.ca
Tel: +1-403-210-3819
Supplementary Figure I: Voltage-dependence of activation and steady-state inactivation of T-type current. In C57BL/6 mesenteric arterial smooth muscle cells, voltage dependence of activation and steady-state inactivation (availability) of T-type current was assessed. Barium (10 mM) was employed as the charge carrier and recordings were made in the presence of an L-type blocker (nifedipine, 200 nM). Upper insets depict protocols employed to assess availability (left) and activation (right). The red bar denotes physiological potentials that overlaps with the window current. Note that in physiological Ca^{2+} curves are expected to shift rightward by ~10-20 mV and window currents are expected to remain overlapping with physiological potentials.
Supplementary Figure II: Paxilline abolishes STOCs. Spontaneous transient outward K$^+$ currents were fully abolished in wild-type (C57BL/6) or knockout Cav3.2$^{-/-}$ smooth muscle cells by paxilline. This BK$_{Ca}$ inhibitor was equally effective at holding potentials -40 or -20 mV ($n=10$ cells each).
Supplementary Figure III: A diagram highlighting the proposed role of Cav3.2 channels in vascular smooth muscle. A stimulus, such as an increase in intravascular pressure, elicits membrane potential (V_M) depolarization of the smooth muscle cells. This electrical stimulus triggers the activation of the voltage-gated Ca$^{2+}$ channel, Cav3.2. Ensuing Ca$^{2+}$ influx through Cav3.2 pores activates RyR on the sarcoplasmic reticulum to release Ca$^{2+}$ sparks. The latter release events then activate BK$_{Ca}$ to generate hyperpolarizing K$^+$ currents. This hyperpolarizing stimulus feedbacks upon membrane depolarization (*red*) and Ca$^{2+}$ influx responsible for smooth muscle contraction.