Treating Atherosclerosis With Regulatory T Cells

Amanda C. Foks, Andrew H. Lichtman, Johan Kuiper

Abstract—Regulatory T cells (Tregs) play an important role in the regulation of T-cell–mediated immune responses through suppression of T-cell proliferation and secretion of inhibitory cytokines, such as interleukin-10 and transforming growth factor-β. Impaired Treg numbers and function have been associated with numerous diseases, and an imbalance between proinflammatory/proatherogenic cells and Tregs promotes atherosclerotic disease. Restoration of this balance by inducing Tregs has great therapeutic potential to prevent cardiovascular disease. In addition to suppressing differentiation and function of effector T cells, Tregs have been shown to induce anti-inflammatory macrophages, inhibit foam cell formation and to influence cholesterol metabolism. Furthermore, Tregs suppress immune responses of endothelial cells and innate lymphoid cells. In this review, we focus on the recent knowledge on Treg subsets, their activity and function in atherosclerosis, and discuss promising strategies to use Tregs as a therapeutic tool to prevent cardiovascular disease. (Arterioscler Thromb Vasc Biol. 2015;35:280-287. DOI: 10.1161/ATVBAHA.114.303568.)

Key Words: atherosclerosis ■ immune system

Regulatory T cells (Tregs) form an important T-cell subclass that provides protection against autoimmunity and may be used for treatment of autoimmune-like disorders, such as atherosclerosis. Various subsets of Tregs exist, but the best-characterized are CD4+Foxp3+CD25hiCD127lo cells that comprise 5% to 10% of the CD4+ T cells in human blood, lymphoid tissue, and epithelial barrier tissues. A significant fraction of these CD4+ Tregs develops in the thymus and are called natural or thymic Tregs. The transcription factor Helios is reported to be exclusively expressed in thymic Tregs although this has been disputed. Tregs exert their immunosuppressive function mainly through secretion of the inhibitory cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β, mediated by membrane-bound TGF-β, cytotoxic T lymphocyte-associated antigen (CTLA-4), and glucocorticoid-induced tumor necrosis factor receptor family-related protein. In addition to the natural Tregs, CD4+ Tregs differentiate from naïve CD4+ T cells in secondary lymphoid organs and are called adaptive or peripheral Tregs, which include CD4+Foxp3+CD25hiCD127lo cells with a similar phenotype to natural Treg, as well as IL-10–producing T regulatory type 1 cells, TGF-β–producing T helper-3 cells, and CD8+Foxp3+ Tregs. When fed a high-fat diet, ApoE−/− mice have reduced numbers of Tregs, identified as either CD4+CD25+ cells or CD25+Foxp3+ cells, in lymphoid organs compared with C57BL/6 mice and younger ApoE−/− mice that have no evident atherosclerotic lesions. When fed a high-fat diet, ApoE−/− mice showed a reduction in CD4+CD25+Foxp3+ cells compared with mice fed a regular diet.
diet. In LDLr−/− mice, circulating and lesional CD4+Foxp3+ Tregs peak 4 weeks after initiation of a high-fat diet, but these numbers subsequently decline, resulting in an accumulation of effector T cells that contribute to disease progression. Similarly, low levels of circulating human Tregs are associated with an increased risk to develop acute coronary syndrome (ACS; Table) and decreased lesional Tregs are associated with increased lesion vulnerability. Interpretation of these studies may be complicated because the term ACS often comprises different patient groups, including those having unstable angina, non–ST-segment–elevation myocardial infarction (MI) and ST-segment–elevation MI. Moreover, control groups vary in different studies, including either healthy individuals or patients with stable angina.

Originally, Tregs were characterized as CD4+CD25high cells that express Foxp3 to maintain their suppressive capacity and as shown in the Table numerous studies validate their association with the development of ACS. Foxp3 is, however, also transiently upregulated in activated effector human T cells. Therefore, additional markers for the characterization of Tregs are required for accurate identification, including CD127, inducible T-cell costimulator (ICOS), latency-associated peptide (LAP), and glycoprotein A repetitions predominant (GARP). CD127 (IL-7 receptor) is downregulated on Tregs and inversely correlated with Foxp3 expression. Although Ammirati et al. found no correlation between circulating CD4+CD25+CD127low cells and intima-media thickness of the common carotid artery, Zhang et al. observed lower mRNA levels of the antiapoptotic gene Bcl-2 and higher levels of the proapoptotic gene Bak. Moreover, they showed that oxLDL-induced apoptosis of Tregs and in light of elevated oxLDL levels in patients with non–ST-segment–elevation ACS, which may suggest that oxLDL is involved in the Treg defect in patients with cardiovascular disease. Previously, Mor et al. already observed that oxLDL can reduce numbers of CD4+CD25+ Tregs in vitro, partially because of apoptosis induction. It was also found that oxLDL dose dependently increased methylation of the Treg-specific demethylated region within the Foxp3 gene, thereby reducing Foxp3 expression in PBMCs isolated from healthy individuals. Most interestingly, reduced Treg levels defined as demethylation at the Foxp3 demethylated region are observed in patients with ACS, and this was associated with the severity of ACS. Another possibility that might explain reduced Treg numbers in patients with cardiovascular disease was proposed by Zhang et al. who found that non–ST-segment–elevation ACS patients have impaired thymic Treg output determined by lower circulating CD45RO+CD45RA+CD31− Tregs compared with patients with chronic stable angina.

Possible Mechanisms Underlying the Low Frequency of Tregs in Atherosclerosis

Several mechanisms underlying the inverse correlation between Tregs and atherosclerosis progression have been explored. Possibly, survival of Tregs is impaired because Ammirati et al. observed increased apoptosis in Tregs of patients with non–ST-segment–elevation ACS compared with patients with chronic stable angina/chest pain syndrome. Tregs from patients with non–ST-segment–elevation ACS contain lower mRNA levels of the antiapoptotic gene Bcl-2 and higher levels of the proapoptotic gene Bak. Moreover, they showed that oxLDL-induced apoptosis of Tregs and in light of elevated oxLDL levels in patients with non–ST-segment–elevation ACS, which may suggest that oxLDL is involved in the Treg defect in patients with cardiovascular disease. Previously, Mor et al. already observed that oxLDL can reduce numbers of CD4+CD25+ Tregs in vitro, partially because of apoptosis induction. It was also found that oxLDL dose dependently increased methylation of the Treg-specific demethylated region within the Foxp3 gene, thereby reducing Foxp3 expression in PBMCs isolated from healthy individuals. Most interestingly, reduced Treg levels defined as demethylation at the Foxp3 demethylated region are observed in patients with ACS, and this was associated with the severity of ACS. Another possibility that might explain reduced Treg numbers in patients with cardiovascular disease was proposed by Zhang et al. who found that non–ST-segment–elevation ACS patients have impaired thymic Treg output determined by lower circulating CD45RO+CD45RA+CD31− Tregs compared with patients with chronic stable angina.

Function of Tregs in Atherosclerosis

In addition to lower numbers of Tregs in the circulation and atherosclerotic lesions, multiple studies report a dysfunction in their suppressive capacity during disease. Tregs from ApoE−/− mice show hampered inhibition of effector T cells when compared with Tregs isolated from C57BL/6 mice and the suppressive function of human Tregs isolated from peripheral blood of patients with ACS is strongly decreased when compared with patients with stable angina and normal...
coronary artery subjects. These studies strongly suggest that patients having cardiovascular disease would benefit from increased numbers of atheroprotective Tregs. Most research is, therefore, focused on expanding the potency of Tregs as a new immune-therapy to inhibit proinflammatory immune responses in atherosclerosis (Figure).

Inhibition of Effector T Cells

Tregs show the ability to suppress proatherogenic effector T cells in atherosclerosis. The majority of the pathogenic CD4+ T cells in atherosclerosis are effector Th1 cells, which via secretion of interferon (IFN)-γ stimulate the recruitment of monocytes and T cells into the plaque, increase lipid uptake by macrophages, and activate lesional APCs. Correspondingly, deficiency in T-bet or IFN-γ attenuates atherosclerosis. Multiple studies in mice have shown that inducing Tregs in atherosclerosis affects Th1 cells and and in patients with cardiovascular an inverse correlation between Th1 cells and Tregs exists. Whereas circulating Th1 cells are expanded in patients with stable angina, unstable angina, and acute MI compared with healthy individuals, Tregs are reduced. IL-17–producing Th17 cells form another proinflammatory subset of effector CD4+ T cells although mouse studies have shown both Th17 cells or IL-17 may have either pro- or antiatherogenic effects. Nonetheless, a significant negative correlation between Th17 and Treg cell frequencies has been found in the circulation of patients with unstable carotid artery lesions. This imbalance between Th17 cells and Tregs has been confirmed, suggesting one of the mechanisms through which Tregs regulate atherosclerosis is the inhibition of Th17 cells. Interestingly, the ability of Treg to suppress Th1 or Th17 responses may require differential stimulation of the Treg by IFNγ and IL-17 versus IL-10, respectively.

The inhibitory cytokines IL-10 and TGF-β strongly contribute to T-regulated suppression of effector T cells in atherosclerosis. In mice, IL-10–producing T regulatory type 1 cells reduce immune responses in ApoE-/- mice resulting in a decreased plaque size and inflammation as shown by lower

<table>
<thead>
<tr>
<th>Treg Phenotype</th>
<th>Frequency in Disease</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4+CD25+ or CD25+Foxp3+</td>
<td>↓In lymphoid organs ApoE-/- mice compared to C57Bl6 mice or young ApoE-/- mice</td>
<td>Mor et al27</td>
</tr>
<tr>
<td>CD4+Foxp3+</td>
<td>↑In spleen of hypercholesterolemic LDLr-/- mice</td>
<td>Maganto-Garcia et al18</td>
</tr>
<tr>
<td>CD4+CD25+Foxp3+</td>
<td>↓In circulation and aorta of hypercholesterolemic LDLr-/- mice</td>
<td>Wang et al23</td>
</tr>
<tr>
<td>Humans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4+CD25+Foxp3+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers and suppressive capacity in patients with ACS compared with stable angina patients and healthy individuals, also reduced Foxp3 and CTLA-4 expression</td>
<td>Mor et al29</td>
<td></td>
</tr>
<tr>
<td>↓No correlation between circulating Tregs and the thickness of the carotid artery</td>
<td>Ammirati et al31</td>
<td></td>
</tr>
<tr>
<td>↑In patients with non–ST-segment–elevated ACS compared with controls</td>
<td>Mor et al30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD3+Foxp3+</td>
<td>Low numbers present in all stages of atherosclerotic lesions</td>
<td>De Boer et al25</td>
</tr>
<tr>
<td>CD4+Foxp3+</td>
<td>Numbers associated with higher release of proinflammatory cytokines and increased risk for acute coronary events but not stroke</td>
<td>Wigren et al22</td>
</tr>
<tr>
<td></td>
<td>Numbers with MI compared with healthy individuals</td>
<td>Ghourbani Gazar et al23</td>
</tr>
<tr>
<td></td>
<td>In vulnerable lesions</td>
<td>Dietel et al24</td>
</tr>
<tr>
<td>CD4+CD25+Foxp3+</td>
<td>Numbers and suppressive capacity in patients with ACS compared with patients with stable angina, unstable angina, and acute MI</td>
<td>Han et al25</td>
</tr>
<tr>
<td></td>
<td>Numbers and serum IL-10 in patients with recurrent cardiac events compared with stable patients</td>
<td>George et al28</td>
</tr>
<tr>
<td></td>
<td>Numbers and enhanced DNA methylation of the Treg-specific demethylated region in Foxp3 in patients with ACS compared with controls</td>
<td>Jia et al32</td>
</tr>
<tr>
<td>CD4+CD25+CD127+</td>
<td>↓No correlation between Treg levels and intima-media thickness (also no correlation with Foxp3 and IL-10 mRNA, or IL-10 serum levels)</td>
<td>Ammirati et al31</td>
</tr>
<tr>
<td></td>
<td>↑In patients with non–ST-segment–elevation ACS</td>
<td>Zhang et al39</td>
</tr>
<tr>
<td></td>
<td>↑In thrombi</td>
<td>Klingenberg et al39</td>
</tr>
<tr>
<td>CD4+ICOS+</td>
<td>↓In patients with MI and stable angina compared with healthy individuals</td>
<td>Ghourbani Gazar et al23</td>
</tr>
<tr>
<td>CD4+LAP+</td>
<td>↓In MI (patients with ST-segment–elevation and non–ST-segment–elevation) compared with patients with stable angina and healthy controls</td>
<td>Lin et al21</td>
</tr>
<tr>
<td></td>
<td>Numbers and suppressive capacity in patients with unstable angina and acute MI compared with patients with chronic stable angina and chest pain syndrome</td>
<td>Zhi et al31</td>
</tr>
<tr>
<td>CD4+GARP+</td>
<td>Numbers unstable angina and acute MI patients compared with patients with stable angina and chest pain syndrome</td>
<td>Zhu et al23</td>
</tr>
<tr>
<td>CD4+CD25+GARP+</td>
<td>Numbers, suppressive capacity and TGF-β in patients with ACS compared with patients with stable angina and control patients</td>
<td>Meng et al22</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; CTLA-4, cytotoxic T lymphocyte–associated antigen; IL, interleukin; MI, myocardial infarction; and TGF, transforming growth factor.
levels of IFN-γ. In addition, Tregs and serum IL-10 are decreased in vulnerable patients that have had recurrent cardiac events in comparison with stable patients. Deficiencies in total or T-cell–specific TGF-β signaling accelerate atherosclerosis and induce an unstable plaque phenotype in hypercholesterolemic mice. A relatively new cytokine associated with Treg-mediated effector T-cell suppression is IL-35. IL-35 consists of Epstein–Barr virus–induced gene 3 and IL-12 p35 (IL-12A), and both of these subunits are strongly coexpressed in human atherosclerotic lesions. Recently, it was shown that serum IL-35 is decreased in patients with acute MI, unstable angina, and stable angina compared with patients with chest pain syndrome, suggesting Treg-associated IL-35 can be a novel target to prevent atherosclerosis.

Inhibition of DCs

DCs are major contributors to the pathogenesis of atherosclerosis, in part, because of their essential role in activating T-cell activation. An inverse correlation between mature DCs expressing fascin and Tregs exists in atherosclerotic lesions; in vulnerable lesions, fascin-expressing DCs are increased, whereas Tregs are decreased when compared with patients with stable lesions. Tregs can inhibit DCs via not only their immunosuppressive cytokines, IL-10 and TGF-β, but also cell surface molecules, such as CTLA-4, programmed death-1, and their ligands programmed death-ligand (PD-L)-1/2, and lymphocyte activation gene-3. CTLA-4 expressed on Tregs binds to CD80/CD86 on DCs thereby blocking the ability of DC to activate naïve T cells. Increased mRNA levels of CTLA-4 have been associated with increased Tregs and reduced atherosclerosis in several studies. Moreover, treatment with a recombinant CTLA-4 Ig fusion protein, abatacept, reduced intimal thickening in a femoral artery cuff model in ApoE3*Leiden mice through reduced activation of IFN-γ–producing Th1 cells and elevated IL-10–producing Tregs. Signaling via coinhibitory PD-1 expressed on Tregs and PD-L1/2 on DCs also inhibits their activation. Mouse deficient in either PD-1 or PD-L1/2 showed aggravated atherosclerosis, mediated by increased effector T-cell responses. Lymphocyte activation gene-3 is upregulated on activated Tregs and can bind with higher affinity than CD4 to major histocompatibility complex-II on the DC, which suppresses maturation and the immune-stimulatory capacity of DCs; however, its importance in atherosclerosis remains to be determined.

Inhibition of Macrophage Inflammation and Foam Cell Formation

Tregs can also exert atheroprotective effects by promoting the differentiation of mouse M1 macrophages toward an anti-inflammatory M2 macrophage. Coculture of Tregs with monocytes from healthy individuals induced an M2 phenotype as illustrated by the surface expression of CD206 (mannose receptor), CD163 (hemoglobin scavenger receptor), elevated CCL18 (chemokine [C-C motif] ligand) production, and phagocytic activity. Moreover, in response to...
lipopolysaccharide, these Treg-treated monocytes strongly reduced secretion of proinflammatory cytokines.

The transition of macrophages into foam cells is a hallmark of atherosclerosis. It has been shown that Tregs can impede this process by inhibiting lipid accumulation in peritoneal macrophages via the downregulation of scavenger receptor class A (SR-A) and CD36, but Tregs do not affect reverse cholesterol transport. In addition, lesional Tregs may suppress MCP-1 expression and monocyte recruitment into plaques, thereby reducing foam cell macrophage accumulation.

Enhancing Lesion Stability

Because M2 macrophages promote collagen synthesis, Tregs contribute to lesion stability by inducing M2 macrophages. In line with this finding, expansion of Tregs enhanced lesion stabilization in a regression model of atherosclerosis. In addition, Tregs dose dependently increase lesion stability, as measured by decreased macrophage and lipid content and increased smooth muscle cell and collagen content, and lower the incidence of lesion disruption in ApoE knockout mice. Moreover, Tregs inhibited the expression of inflammatory cytokines and the matrix metalloproteinase-2 and matrix metalloproteinase-9 and enhanced P4Hα1 expression in atherosclerotic lesions.

Treg Effects on Cholesterol Metabolism

Overexpression of IL-10, a hallmark cytokine of Tregs, reduces very LDL and LDL levels in serum of LDLr knockout mice. Recent studies have revealed a direct role for Tregs in cholesterol metabolism because depletion of Tregs using DREG mice significantly increases atherosclerosis associated with a 1.7-fold increase in plasma cholesterol levels. More specifically, very LDL levels were increased because the clearance of very LDL and chylomicron remnants was inhibited in the absence of Tregs. They found reduced expression of sortilin-1 in the liver and increased plasma enzyme activity of lipoprotein lipase, hepatic lipase, and phospholipid transfer protein in Treg-depleted mice. In addition, Treg expansion in a regression model of atherosclerosis significantly reduced cholesterol levels when compared with control mice.

Suppression of Endothelial Activation

Interestingly, adaptive Foxp3 Tregs have also been shown to suppress tumor necrosis factor-α and IL-1β–mediated endothelial selectin expression and subsequently reduced leukocyte adhesiveness. In vivo, these adaptive Tregs inhibit acute inflammation in a peritonitis model via adherence to inflamed endothelium and secretion of inhibitory cytokines.

Treg Cell–Based Therapy

The usage of Tregs as a therapeutic agent shows great potential in the treatment of atherosclerosis. An early study showed that an adoptive transfer of CD4+CD25+ T cells in mice causes a reduction in atherosclerotic lesion development, and research is nowadays focused on the development of Foxp3+ T cells, either ex vivo or via expansion in vivo.

Adaptive Transfer of Tregs

A possible strategy to use Tregs for therapy is an adoptive transfer of ex vivo expanded Tregs. This procedure will require substantial numbers of Tregs, which can be achieved by in vivo isolation of naive or Foxp3+CD4+ T cells from peripheral blood and subsequent ex vivo Treg induction and expansion to obtain large numbers for therapy using appropriate cytokine mixtures. Trials on adoptive Treg therapy for Graft Versus Host Disease, transplantation, and autoimmunity have used varying numbers of Tregs, ranging from 5×10^6 to 2.6×10^8, injected once or twice. Treg-based therapy has proven to be effective, and no significant adverse effects have been reported. Most studies used polyclonal autologous Treg preparations although alloantigen-stimulated preparations have been used for allograft tolerance. There are insufficient data to assess how long the effects of transferred Tregs last. More data from these ongoing trials will be needed to inform the design of trials for atherosclerotic disease.

Induction of Tregs In Vivo

Alternatively, Tregs can be expanded in vivo. This can be achieved by targeting Treg via administration of an IL-2/anti–IL-2 immune complex. Administration of IL-2/anti–IL-2 complex to Western-type diet fed LDLr−/− mice significantly expanded IL-10 producing Tregs ≤10-fold in the circulation and several (lymphoid) organs. This expansion of Tregs potently suppressed effector T cells and reduced initial atherosclerotic lesion formation, whereas in combination with a vigorous lowering of blood lipid levels, it enhanced lesion stability in LDLr−/− mice with pre-existing lesions. Future research should reveal whether administration of this IL-2 complex would also be beneficial in patients with cardiovascular disease. Another frequently used method to induce Tregs is administration of antigens via a tolerogenic route. Administration of atherosclerosis relevant antigens, such as oxLDL, HSP60, β2-glycoprotein I, and ApoB100 peptide, via oral, nasal, and subcutaneous routes has been shown to suppress atherosclerosis in mice by increasing antigen-specific Tregs through the induction of tolerogenic DCs. Recent approaches also combine several peptide antigens derived from ApoB100 and HSP60 to induce a variety of antigen-specific Tregs. The induction of Tregs may be further improved by combining a relevant antigen with the cholera toxin B, as shown by the atheroprotective effect of a construct consisting of an apoB100 peptide combined with CTB. One may speculate that these approaches will in the near future form the basis for First-In-Humans clinical trials.

Induction of Tolerogenic DCs

A final approach to enhance the function and induction of Tregs may be to enhance the tolerogenic function of DCs. Oral and nasal routes of administration of antigens rely on the interaction of these antigens with tolerogenic DCs and subsequent induction of Tregs. This approach can be mimicked in vitro by incubating DCs with atherosclerosis-related antigens in the presence of IL-10 to induce a tolerogenic DC phenotype. Subsequent adoptive transfer of these antigen-loaded
DCs induces an atheroprotective effect via the induction of Tregs. Various other methods for inducing a tolerogenic DC have been described and are being applied to atherosclerosis studies in mice.

Polyclonal Tregs Versus Antigen-Specific Tregs

For potential Treg therapies based on adoptive transfers of Tregs, 3 kinds of Tregs can be used; general Tregs expanded ex vivo, antigen-specific Tregs expanded ex vivo, or induced Tregs differentiated from naïve CD4+ T cells in the presence of IL-2, αCD3/CD28, TGF-β both with or without retinoic acid (possibly antigen specific). The obvious advantage of induced Tregs is that a large number of cells can be produced with relative ease. However, maintaining stability of induced Tregs is a major complicating factor, and Blazar argued that induced Tregs have disappeared 14 days after infusion, which limits long-term effects. Nonspecific Tregs can be isolated from peripheral blood of patients and ex vivo expanded for maximally 3 rounds before they also lose their phenotype. The use of antigen-specific Tregs could be extremely effective in treating atherosclerosis. In addition to studies using oral or nasal administration of HSP60, Yang et al showed that adoptive transfer of HSP60-specific CD4+CD25hi T cells via in vitro induction through HSP60-loaded DCs inhibits atherosclerosis formation. Although several candidates of atherosclerosis-specific antigens, such as oxLDL, HSP60, and ApoB100, have been investigated, to date the dominant relevant antigens that are recognized by proatherogenic T cells are not known. This complicates the approach of using atheroantigen-specific Tregs. Moreover, antigen-specific Tregs studied in autoimmune diseases have a low frequency and, therefore, treatment with antigen-specific Tregs would also require repeated rounds of in vitro expansion to achieve a sufficient amount of cells and this often results in phenotype loss. Possibly Treg antigen-specificity can be achieved in vivo by, for example, combining oral tolerance induction against, eg, oxLDL with administration of low-dose IL-2 or an IL-2/anti–IL-2 receptor-beta-secreting Th3 regulatory cells. Tor-beta-secreting Th3 regulatory cells.

Summary and Outlook

Tregs are important regulators of immune responses and may hold great potential to be used as a therapeutic in atherosclerosis because enhanced Treg numbers are associated in experimental models for atherosclerosis and in clinical studies with a positive outcome of cardiovascular disease. Various experimental approaches suggest a differential role for Tregs in different stages of atherosclerosis because Tregs inhibit initial stages of atherosclerosis but are also important in the stabilization of well-established lesions during progression of disease.

Experimental therapies are based on the expansion of Tregs and by inducing tolerance induction against atherosclerosis-specific antigens leading to Tregs that inhibit atherosclerosis. It can be anticipated that improvement of these experimental therapies by enhancing the tolerogenic capacity of the antigen and enhancing the tolerogenic function of the DCs during tolerance induction will lead to a clinical application and a new therapy for atherosclerosis.

Acknowledgments

We acknowledge the support from the Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands Organisation for Health Research and Development and the Royal Netherlands Academy of Sciences, for the GENIUS project generating the best evidence-based pharmaceutical targets for atherosclerosis (CVON2011-19). A.H. Lichtman is supported by National Institutes of Health R01HL087282.

Disclosures

None.

References

1. van Boehmer H, Daniel C. Therapeutic opportunities for manipulat-
 ing T(Reg) cells in autoimmunity and cancer. *Nat Rev Drug Discov.*

 CD127 (low/-) T cells: a more specific Treg population in human peripheral

3. Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK, Helios+
 and Helios- cells coexist within the natural Foxp3+ T regulatory cell
 jimmunol.1201379.

4. van Boehmer H. Mechanisms of suppression by suppressor T cells. *Nat

5. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosupres-
 sion by CD4+CD25+ regulatory T cells is mediated by cell surface

6. Bacchetta R, Gregori S, Roncarolo MG. CD4+ regulatory T cells: mecha-
 nisms of induction and effector function. *Autoimmun Rev.* 2005;4:491–

 MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and

8. O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune sys-

9. Vieira PL, Christensen JR, Minaea S, O’Neill EJ, Barratt FJ, Boonstra A,
 Barthlott T, Stockinger B, Wraith DC, O’Garra A. IL-10-secreting regula-
 tory T cells do not express FoxP3 but have comparable regulat-
 ory function to naturally occurring CD4+CD25+ regulatory T cells. *J

10. Chen Y, Kuchroo VK, Inobe I, Hafler DA, Weiner HL. Regulatory T cell
 clones induced by oral tolerance: suppression of autoimmune encepha-

11. Weiner HL. Induction and mechanism of action of transforming growth fac-

 J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK,
 Katzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the
 10.1038/nm1343.

 Berkel TJ, Kuiper J. Vaccination against Foxp3 regulatory T cells aggra-
 atherosclerosis.2009.08.079.

 regulatory T cells promotes hypercholesterolemia and atherosclerosis. *J

15. de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal
 AC. Low numbers of Foxp3 positive regulatory T cells are present in all
 developmental stages of human atherosclerotic lesions. *PLoS ONE.*

16. Heijboer EA, Liu E, Tager AM, Yuan Q, Lin AY, Aylwalla N, Jones K,
 Koehn SL, Lok VM, Akaiwa E, Moore KJ, Luster AD, Gerszten RE, Gourdy P,
 GK, Katzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the
 10.1038/nm1343.

17. Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T,
 Keren G, George J. Role of naturally occurring CD4+CD25+ regulatory
 T cells in experimental atherosclerosis. *Arterioscler Thromb Vasc Biol.*
 2007;27:893–900. doi: 10.1161/01.ATV.0000259365.31469.89.

Significance

Regulatory T cells (Tregs) play an important role in atherosclerosis and impaired Treg numbers promote atherosclerosis, whereas their induction lowers the burden of atherosclerosis. Tregs are atheroprotective by inhibiting effector T cells, by inducing an anti-inflammatory phenotype in macrophages, by lowering foam cell formation and inducing a tolerogenic phenotype in dendritic cells. Tregs mainly induce these effects via the secretion of the inhibitory cytokines IL-10 and TGF-β and via inhibitory pathways. The induction of Tregs in experimental models for disease via the intranasal, oral or subcutaneous administration of atherosclerosis-related antigens such as oxidized LDL, apolipoprotein B and HSP60 leads to the induction of antigen specific Tregs that inhibit the initiation and progression of atherosclerosis, which may be superior to the induction of polyclonal T cells. It can be anticipated that these experimental therapies will lead to a clinical application and the development of a tolerogenic vaccine for atherosclerosis.
Treating Atherosclerosis With Regulatory T Cells
Amanda C. Foks, Andrew H. Lichtman and Johan Kuiper

Arterioscler Thromb Vasc Biol. 2015;35:280-287; originally published online November 20, 2014;
doi: 10.1161/ATVBAHA.114.303568
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/35/2/280

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/