Residential Proximity to Major Roadways Is Associated With Increased Levels of AC133+ Circulating Angiogenic Cells

Objectives—Previous studies have shown that residential proximity to a roadway is associated with increased cardiovascular disease risk. Yet, the nature of this association remains unclear, and its effect on individual cardiovascular disease risk factors has not been assessed. The objective of this study was to determine whether residential proximity to roadways influences systemic inflammation and the levels of circulating angiogenic cells.

Approach and Results—In a cross-sectional study, cardiovascular disease risk factors, blood levels of C-reactive protein, and 15 antigenically defined circulating angiogenic cell populations were measured in participants (n=316) with moderate-to-high cardiovascular disease risk. Attributes of roadways surrounding residential locations were assessed using geographic information systems. Associations between road proximity and cardiovascular indices were analyzed using generalized linear models. Close proximity (<50 m) to a major roadway was associated with lower income and higher rates of smoking but not C-reactive protein levels. After adjustment for potential confounders, the levels of circulating angiogenic cells in peripheral blood were significantly elevated in people living in close proximity to a major roadway (CD31+/AC133+, AC133+, CD34+/AC133+, and CD34+/45dim/AC133+ cells) and positively associated with road segment distance (CD31+/AC133+, AC133+, and CD34+/AC133+ cells), traffic intensity (CD31+/AC133+ and AC133+ cells), and distance-weighted traffic intensity (CD31+/34+/45+/AC133+ cells).

Conclusions—Living close to a major roadway is associated with elevated levels of circulating cells positive for the early stem marker AC133+. This may reflect an increased need for vascular repair. Levels of these cells in peripheral blood may be a sensitive index of cardiovascular injury because of residential proximity to roadways. (Arterioscler Thromb Vasc Biol. 2015;35:2468-2477. DOI: 10.1161/ATVBAHA.115.305724.)

Key Words: air pollution ■ cardiovascular diseases ■ endothelial progenitor cells ■ epidemiology ■ risk factors

Several studies suggest that exposure to environmental pollutants increases the risk of developing cardiovascular disease (CVD).1,2 Chronic exposure to polluted environments is associated with metabolic and inflammatory changes, increased progression of subclinical measures of CVD, and acceleration of atherogenesis.3 Acute exposure to high levels of ambient pollutants has also been linked to the precipitation of acute cardiovascular events.4 Although specific pollutants that contribute to cardiovascular risk and injury have not been identified with certainty, cardiovascular injury has been found to be most closely associated with the levels of fine particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) in the ambient air.7,8 Specific source apportionment studies suggest that the cardiovascular effects of ambient air pollutants

See accompanying editorial on page 2266

Received on: July 8, 2014; final version accepted on: August 4, 2015.
From the Diabetes and Obesity Center (N.D., R.Y., D.J.C., J.L., T.E.O., J.M., W.A., S.S., D.W.R., A.C., A.D., T.C., B.W., S.N.R., J.S., N.Z., S.S.K., A.B.), Department of Environmental and Occupational Health Sciences (N.D., R.Y., D.J.T.), Institute of Molecular Cardiology (N.D., D.J.C., J.L., T.E.O., J.M., W.A., S.S., D.W.R., S.W., A.C., A.D., T.C., B.W., C.B., D.H., J.S., S.D.P., A.B.), Department of Pediatrics (J.A.M.), Department of Bioinformatics and Biostatics (S.N.R.), Biostatistics Shared Facility, JG Brown Cancer Center (S.N.R.), Division of Endocrinology, Metabolism and Diabetes, Department of Medicine (S.S.K.), and Department of Biochemistry and Molecular Biology (K.S.R., A.B.), University of Louisville, KY; Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX (I.H.); Department of Medicine, Johns Hopkins University, Baltimore, MD (A.D.); and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (S.D.P.)
The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBAHA.115.305724/-/DC1.
Correspondence to Aruni Bhatnagar, PhD, Diabetes and Obesity Center, Delia Baxter Bldg, 380 S Preston St, Room 421F, Louisville, KY 40202. E-mail aruni@louisville.edu

© 2015 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.115.305724
The concept that chronic exposure to traffic-generated pollutants could contribute to CVD is supported by epidemiological studies, showing that living in close proximity to a major roadway is associated with increased CVD risk and CVD mortality. Close proximity to roadways has been associated with increased coronary artery disease mortality.10-12 Myocardial infarction,13,14 heart failure,15 deep vein thrombosis,6 and stroke mortality.17 C-reactive protein, a clinical CVD risk indicator and marker of inflammation, has also been positively associated with traffic density.18 In addition, inverse associations have been identified between roadway proximity and subclinical risk predictors, including coronary artery calcification19 and oxidized low-density lipoprotein.20 Nevertheless, the mechanisms by which residential proximity to roadways increases CVD risk remain unclear.

This study was designed to investigate how residential proximity to roadways affects systemic inflammation and circulating levels of angiogenic cells. Circulating angiogenic cells have been shown to participate in vascular repair and regeneration.21-24 These cells are mobilized from the bone marrow into the circulation by cytokines, growth factors, and hormones and have been found to play an important role in maintaining vascular health. Several observational studies show a robust inverse association between circulating angiogenic cell levels and CVD risk25-27 and severity.28-31 In a prospective analysis, the levels of these cells were found to be predictive of CVD mortality.32 We have previously reported that acute exposure to elevated levels of ambient PM2.5 decreases the levels of these cells in circulation.33 However, the effect of exposure to traffic pollution on the levels of circulating angiogenic cells has not been assessed. Thus, the main objective of our study was to determine whether residential proximity to a roadway affects the levels of angiogenic cells in peripheral blood as a measure of CVD risk and whether this effect is related to changes in systemic inflammation because of roadway proximity.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.

Results

Geographic Distribution

Participant addresses were geocoded using data obtained from the Louisville/Jefferson County Information Consortium composite locator via ArcMap 9.3+ geographic information system software. The geographic distribution of the participants is shown in the Figure (the residences presented are geographically masked). Study participants were concentrated in the northwestern region of Jefferson County also known as West Louisville. The Louisville Metro Department of Public Health and Wellness reports that this area has disproportionately high rates of CVD and high levels of air pollution.34,35 This area also has a higher concentration of major roadways than other geographic locations in Jefferson County, aside from the central business district.

Participant Characteristics

Adult participants with moderate-to-high CVD risk were recruited between October 2009 and May 2013 from the University of Louisville Hospital and affiliated clinic system. Participants from this cohort were middle aged (50±10 years), with a slightly higher proportion of men (n=162; 51%) and whites (n=179; 58%; Table 1). A high percentage of the population was comprised of current (n=109; 35%) or former (n=91; 29%) smokers. A majority of the cohort was diagnosed with hypertension (n=220; 71%), hyperlipidemia (n=187; 60%), and obesity (body mass index, ≥30; n=183; 59%). Several participants were being treated with angiotensin-converting enzyme inhibitors (n=155; 50%), β-blockers (n=157; 50%), or statins (n=149; 48%). Of the 345 subjects, 316 (92%) were successfully geocoded. Patients without a valid address could not be geocoded and were not included in the study.

Demographic Comparison

Demographic characteristics of study participants living within 50 m of a major roadway (roadway carrying a mean of at least 5000 vehicles per day) or >50 m from a major roadway are shown in Table 1. These two groups do not differ in age, sex, ethnicity, hypertension, hyperlipidemia, diabetes mellitus, obesity, environmental tobacco smoke exposure, empirical smoke exposure (cotinine), medical history, medication

<table>
<thead>
<tr>
<th>Nonstandard Abbreviations and Acronyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
</tr>
<tr>
<td>PM2.5</td>
</tr>
</tbody>
</table>
Table 1. Demographics and Medical History of the Study Population Stratified by Major Roadway Proximity

<table>
<thead>
<tr>
<th></th>
<th>Total, n=316</th>
<th><50 m, n=57 (%)</th>
<th>≥50 m, n=259 (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical variable, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>154 (49)</td>
<td>26 (46)</td>
<td>128 (49)</td>
<td>0.662</td>
</tr>
<tr>
<td>Male</td>
<td>162 (51)</td>
<td>31 (54)</td>
<td>131 (51)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>179 (58)</td>
<td>27 (51)</td>
<td>152 (60)</td>
<td>0.168</td>
</tr>
<tr>
<td>Black</td>
<td>121 (40)</td>
<td>26 (49)</td>
<td>95 (37)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>7 (2)</td>
<td>0 (0)</td>
<td>7 (3)</td>
<td></td>
</tr>
<tr>
<td>CVD risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>220 (71)</td>
<td>36 (63)</td>
<td>184 (72)</td>
<td>0.199</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>187 (60)</td>
<td>33 (58)</td>
<td>154 (61)</td>
<td>0.765</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>99 (32)</td>
<td>17 (30)</td>
<td>82 (32)</td>
<td>0.875</td>
</tr>
<tr>
<td>Obese (BMI, ≥30)</td>
<td>183 (59)</td>
<td>34 (61)</td>
<td>149 (59)</td>
<td>0.881</td>
</tr>
<tr>
<td>Current smoker (self-report)</td>
<td>109 (35)</td>
<td>27 (47)</td>
<td>82 (32)</td>
<td>0.031</td>
</tr>
<tr>
<td>Never smoked (self-report)</td>
<td>114 (36)</td>
<td>14 (25)</td>
<td>100 (39)</td>
<td>0.048</td>
</tr>
<tr>
<td>Former smoker (self-report)</td>
<td>91 (29)</td>
<td>16 (28)</td>
<td>75 (29)</td>
<td>1.000</td>
</tr>
<tr>
<td>High CVD risk category*</td>
<td>191 (63)</td>
<td>32 (57)</td>
<td>159 (64)</td>
<td>0.360</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>88 (28)</td>
<td>16 (28)</td>
<td>72 (28)</td>
<td>1.000</td>
</tr>
<tr>
<td>Stroke</td>
<td>26 (8)</td>
<td>7 (12)</td>
<td>19 (7)</td>
<td>0.284</td>
</tr>
<tr>
<td>CABG/PCI/stents</td>
<td>70 (22)</td>
<td>13 (23)</td>
<td>57 (22)</td>
<td>1.000</td>
</tr>
<tr>
<td>Heart failure</td>
<td>46 (15)</td>
<td>6 (11)</td>
<td>40 (16)</td>
<td>0.529</td>
</tr>
<tr>
<td>Cancer</td>
<td>6 (2)</td>
<td>2 (4)</td>
<td>4 (2)</td>
<td>0.296</td>
</tr>
<tr>
<td>Medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin-converting enzyme inhibitor</td>
<td>155 (50)</td>
<td>30 (53)</td>
<td>125 (49)</td>
<td>0.662</td>
</tr>
<tr>
<td>Angiotensin-receptor blockers</td>
<td>18 (6)</td>
<td>2 (4)</td>
<td>16 (6)</td>
<td>0.544</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>157 (50)</td>
<td>29 (51)</td>
<td>128 (50)</td>
<td>1.000</td>
</tr>
<tr>
<td>Calcium-channel blockers</td>
<td>65 (21)</td>
<td>12 (21)</td>
<td>53 (21)</td>
<td>1.000</td>
</tr>
<tr>
<td>Diuretics</td>
<td>118 (38)</td>
<td>21 (37)</td>
<td>97 (38)</td>
<td>1.000</td>
</tr>
<tr>
<td>Statins</td>
<td>149 (48)</td>
<td>24 (42)</td>
<td>125 (49)</td>
<td>0.381</td>
</tr>
<tr>
<td>Aspirin</td>
<td>157 (50)</td>
<td>30 (53)</td>
<td>127 (50)</td>
<td>0.770</td>
</tr>
<tr>
<td>Continuous variable, mean±SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>50±10</td>
<td>49±9</td>
<td>50±11</td>
<td>0.652</td>
</tr>
<tr>
<td>Cotinine, µg/g of creatinine</td>
<td>520±1133</td>
<td>555±985</td>
<td>512±1163</td>
<td>0.374</td>
</tr>
<tr>
<td>Creatinine, mg/dL</td>
<td>138±94</td>
<td>137±73</td>
<td>139±99</td>
<td>0.534</td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsCRP, mg/L</td>
<td>4.6±4.7</td>
<td>4.9±5.0</td>
<td>4.5±4.6</td>
<td>0.429</td>
</tr>
<tr>
<td>CVD risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham Risk Score</td>
<td>6.6±7.6</td>
<td>6.8±11.6</td>
<td>6.5±5.6</td>
<td>0.150</td>
</tr>
<tr>
<td>Sum of CVD risk factors†</td>
<td>3.3±1.4</td>
<td>3.5±1.5</td>
<td>3.3±1.3</td>
<td>0.332</td>
</tr>
<tr>
<td>Median household income,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡×10³</td>
<td>33±19</td>
<td>23±14</td>
<td>35±20</td>
<td><0.001</td>
</tr>
<tr>
<td>PM₁₀₂μg/m³</td>
<td>13.1±5.6</td>
<td>13.2±5.5</td>
<td>13.0±5.6</td>
<td>0.756</td>
</tr>
</tbody>
</table>

Major roadways were defined as roads carrying an annual mean of ≥5000 vehicles per day. Major roadway proximity was calculated as a straight line distance from the residential address of the subject to the nearest major roadway using geographic information system technology. Cotinine was measured in the urine by gas chromatography-mass spectrometry analysis, urinary creatinine was measured using a Cobas Mira Autoanalyzer, and hsCRP was measured using the VITROS kit as described before.58 BMI indicates body mass index; CABG, coronary artery bypass graft; CVD, cardiovascular disease; hsCRP, high sensitivity C-reactive protein; PCI, percutaneous coronary intervention; and PM₁₀₂μg/m³ fine particulate matter with an aerodynamic diameter ≤2.5 µm.

†The sum of CVD risk factors includes the following Framingham risk factors: age ≥ 40 y, male sex, current smoker, hypertension, hyperlipidemia, and diabetes mellitus.

‡Median household income is reported in USD at the US Census block group level.
DeJarnett et al Roadway Proximity and Circulating Angiogenic Cells 2471

te use, lymphocyte count, inflammation, or the Framingham Risk Score. Participants living within 50 m of a major roadway were more likely to self-report being a current smoker (47% versus 32%; \(P = 0.031 \)) and less likely to report having never smoked (25% versus 39%; \(P = 0.048 \)) than those living >50 m from a major roadway. People living closer to roadways also lived in areas with significantly lower median household incomes ($23,204 versus $35,494; \(P < 0.001 \)). These income levels were substantially lower than the median household income of $46,298 for the entire Jefferson County, KY, from 2007 to 2011.36 There was no significant association between ambient PM2.5 levels and roadway proximity.

Association Between Circulating Angiogenic Cells and Distance to Roadway

To examine the influence of roadway proximity on circulating angiogenic cells, we first compared the levels of these cells in the peripheral blood of individuals living within 50 m of a major roadway with the levels of these cells in the peripheral blood of those living >50 m from a major roadway estimated using the straight line distance to the nearest major roadway. The results of these unadjusted \(t \) test analyses are shown in Table 2. Of the 15 types of circulating angiogenic cell subpopulations examined, the levels of cell type 5 (CD31+/AC133+; \(P = 0.002 \)), cell type 11 (AC133+; \(P = 0.006 \)), and cell type 13 (CD34+/AC133+; \(P = 0.049 \)) were significantly and inversely associated with distance to roadway, that is, the levels of these circulating angiogenic cells were higher in people living closer to a major roadway. Cell types 5 and 11 remained significantly associated after adjustment for multiple comparisons (\(P = 0.026 \) and \(P = 0.039 \), respectively). No associations were observed with other circulating angiogenic cell subpopulations.

To examine the influence of potential confounders, adjusted regression analyses were completed using generalized linear models. These regressions describe the association between circulating angiogenic cell levels and roadway proximity and were adjusted for potential confounders: age, sex, ethnicity, body mass index, cigarette smoking, median household income, diabetes mellitus, myocardial infarction, and \(PM_{2.5} \). CI indicates confidence interval; and \(PM_{2.5} \), fine particulate matter with an aerodynamic diameter \(\leq 2.5 \mu m \). * \(P < 0.05 \).
sex, ethnicity, body mass index, cigarette smoking, median household income, socioeconomic status, cigarette smoking, diabetes mellitus, myocardial infarction, and 24-hour PM$_{2.5}$. Patients with cancer (n=6) were excluded from all adjusted regression analyses. After adjustment, the levels of cell type 5 ($P=0.008$), cell type 11 ($P=0.028$), and cell type 15 (CD34+/45dim/AC133+; $P=0.046$) were significantly associated with distance to roadway (Table 3). The levels of these cells in peripheral blood were higher in individuals living within 50 m of a major roadway. Specifically, the levels of cell types 5, 11, 13, and 15 were greater by 40%, 41%, 34%, and 32%, respectively, in the population living closer to a major roadway.

Association of Circulating Angiogenic Cell Levels and Cumulative Major Road Segments

Although living within 50 m of the nearest major roadway showed significant association with specific angiogenic cell populations, the total exposure to roadways could be affected by the presence of other major roadways in close proximity to the residence. Hence, we examined how exposure to all surrounding major roads near the residence would influence circulating angiogenic cell levels. For this, all major road segments within a circular 50-m radius buffer zone were combined to obtain cumulative road segments within the buffer zone. The results from the adjusted generalized linear model of the relationship between circulating angiogenic cells and cumulative major road segments are shown in Table 4. After adjustment, cell type 5 ($P=0.013$), cell type 11 ($P=0.019$), and cell type 13 ($P=0.049$) were significantly associated with the cumulative distance of each roadway segment within 50 m of the residence. These results indicate that as the total distance of major road segments increases within a 50-m buffer, the levels of these specific circulating angiogenic cells also increase. Each meter of major roadway within the 50-m buffer was associated with a 0.6% increase in cell types 5 and 11 and a 0.5% increase in cell type 13. Importantly, when expanded to all road segments within a 50-m buffer, none of these cell populations remained associated with cumulative road segment distances. These data support the notion that the levels of specific circulating angiogenic cells are associated with residential distance from a major roadway and not background exposures.

Association of Circulating Angiogenic Cell Levels and Major Road Segment Intensity

To build on the notion that the sum of road segments in close residential proximity is associated with circulating angiogenic cell levels, we investigated whether traffic concentration on

<table>
<thead>
<tr>
<th>Circulating Angiogenic Cell Type</th>
<th>Change (%)</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type 4 (CD31+/34+/45+/AC133+)</td>
<td>2.04</td>
<td>-4.16 to 8.28</td>
<td>0.519</td>
</tr>
<tr>
<td>Cell type 5 (CD31+/AC133+)</td>
<td>5.82</td>
<td>1.25 to 10.4</td>
<td>0.013*</td>
</tr>
<tr>
<td>Cell type 11 (AC133+)</td>
<td>5.86</td>
<td>0.96 to 10.8</td>
<td>0.019*</td>
</tr>
<tr>
<td>Cell type 13 (CD34+/AC133+)</td>
<td>4.60</td>
<td>0.01 to 9.20</td>
<td>0.049*</td>
</tr>
<tr>
<td>Cell type 14 (CD34+/45+/AC133+)</td>
<td>2.31</td>
<td>-5.00 to 9.67</td>
<td>0.537</td>
</tr>
<tr>
<td>Cell type 15 (CD34+/45dim/AC133+)</td>
<td>4.25</td>
<td>-0.50 to 9.00</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Percent change in cell populations per 10-m increase in major road distance within a 50-m radius of an individual’s residence. Associations are adjusted for age, sex, ethnicity, body mass index, socioeconomic status, cigarette smoking, diabetes mellitus, myocardial infarction, and PM$_{2.5}$. CI indicates confidence interval; and PM$_{2.5}$, fine particulate matter with an aerodynamic diameter ≤2.5 μm.

*P<0.05.
†P<0.05 for the population with 6-month residential duration.
these road segments influences this association. For this, we calculated roadway traffic intensity as the daily sum of vehicle distance travelled on the major road segments within 50 m of the participant’s address. We found that cell type 5 ($P=0.032$) and cell type 11 ($P=0.023$) were positively associated with traffic intensity. These results suggest that as the traffic intensity increases within a 50-m buffer, there is an increase in the levels of cell types 5 and 11 (Table 5). Quantitatively, this analysis indicates that for each kilometer traveled within the buffer, there was a 0.04% increase in cell type 5 and a 0.05% increase in cell type 11.

Association of Circulating Angiogenic Cell Levels and Distance-Weighted Traffic Intensity

To examine exposure measures in greater detail, we calculated major roadway vehicle traffic intensity weighted for distance to those roadways. These values were generated on a continuous raster surface at 10-m resolution and extracted by address points. A cutoff value of 300 m from major roads was selected because it is the distance at which most pollutants reach background levels.37 After adjustment, cell type 4 (CD31+/34+/45+/AC133$^+$; $P=0.040$) was significantly associated with distance-weighted roadway traffic intensity. For each 10-m increase in the value of weighted roadway intensity, there was a 4% increase in cell type 4 (Table 6). This association remained consistent within the population with 6-month residential duration ($P=0.011$), corresponding to a 0.6% increase in cell type 4 for each unit increase in roadway density.

Adjusted Association of Circulating Angiogenic Cell Levels and PM$_{2.5}$

Ambient levels of PM$_{2.5}$ were estimated by calculating the 24-hour average of all regional environmental protection agency–validated monitoring stations within 30 km of Jefferson County, KY, that report daily PM$_{2.5}$ levels.36 Our analysis identified a significant association between circulating angiogenic cells and ambient PM$_{2.5}$ in the 24-hour proceeding enrollment in the total population, where the levels of cell type 3 (CD31+/34+/45$^{\text{dim}}$/AC133$^+$; $P=0.037$), cell type 4 ($P=0.001$), cell type 14 (CD34+/45$^+$/AC133$^+$; $P=0.001$), and cell type 15 ($P=0.032$) were inversely associated with ambient PM$_{2.5}$ after adjusting for age, sex, ethnicity, body mass index, cigarette smoking, median household income, myocardial infarction, and diabetes mellitus (Table 7). Cell types 4 and 14 remained significantly associated after adjustment for multiple comparisons in the total population ($P=0.007$ and $P=0.002$, respectively). These observations indicate that circulating angiogenic cell levels are inversely related to the levels of ambient 24-hour PM$_{2.5}$ levels and that each 10-μg/m3 increase of PM$_{2.5}$ was associated with a 62% decrease in cell type 4 and an 81% decrease in cell type 14. The levels of cell types 5, 11, and 13, however, were not associated with PM$_{2.5}$ levels. Similar associations were observed when the dichotomous distance to major roadway variable was included in the model (data not shown). No significant association was observed between PM$_{2.5}$ levels and roadway proximity. Cell types 4 and 14 also remained significantly associated in the population with 6-month residential duration ($P=0.007$ and $P<0.001$, respectively) and after adjustment for multiple comparisons within that population ($P=0.049$ and $P=0.005$, respectively). Collectively, these data suggest that exposure to increased ambient PM$_{2.5}$ is associated with a decrease in the levels of circulating angiogenic cell levels. Although roadway proximity and PM$_{2.5}$ affect similar circulating angiogenic cell subpopulations, their effects are opposite to one another.

Discussion

The major finding of this study is that residential proximity to major roadways is associated with a selective increase in the levels of circulating angiogenic cells that are positive for AC133, an antigen that indicates an immature cell, early in the process of differentiation. The results obtained were similar when exposure was estimated using either as a straight line distance to major roadway, the sum of roadways in a 50-m buffer, traffic intensity within a 50-m buffer, or the distance-weighted roadway traffic density within a 300-m buffer. However, no association was observed between residential proximity to major roadways and the inflammatory marker high-sensitivity C-reactive protein, suggesting that changes in circulating angiogenic cell levels are unlikely to be driven

Table 6. Association Between Circulating Angiogenic Cell Levels and Distance-Weighted Roadway Traffic Intensity

<table>
<thead>
<tr>
<th>Circulating Angiogenic Cell Type</th>
<th>Change (%)</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type 4 (CD31+/34+/45+/AC133$^+$)</td>
<td>3.69</td>
<td>0.16 to 7.23</td>
<td>0.040*†</td>
</tr>
<tr>
<td>Cell type 5 (CD31+/AC133$^+$)</td>
<td>0.66</td>
<td>−2.49 to 3.81</td>
<td>0.682</td>
</tr>
<tr>
<td>Cell type 11 (AC133$^+$)</td>
<td>0.16</td>
<td>−3.24 to 3.57</td>
<td>0.927</td>
</tr>
<tr>
<td>Cell type 13 (CD34+/AC133$^+$)</td>
<td>0.63</td>
<td>−2.38 to 3.64</td>
<td>0.683</td>
</tr>
<tr>
<td>Cell type 14 (CD34+/45$^+$/AC133$^+$)</td>
<td>2.66</td>
<td>−1.18 to 6.52</td>
<td>0.175</td>
</tr>
<tr>
<td>Cell type 15 (CD34+/45$^{\text{dim}}$/AC133$^+$)</td>
<td>0.38</td>
<td>−2.71 to 3.49</td>
<td>0.808</td>
</tr>
</tbody>
</table>

Percent change in cell populations per 10-m (weighted by distance to roadway) increase in total vehicle distance travelled within a 300-m radius of individual’s residence. Associations are adjusted for age, sex, ethnicity, body mass index, cigarette smoking, median household income, diabetes mellitus, myocardial infarction, and PM$_{2.5}$. CI indicates confidence interval; and PM$_{2.5}$, fine particulate matter with an aerodynamic diameter ≤2.5 μm. *$P<0.05$. †$P<0.05$ for the population with 6-month residential duration.
significantly by an increase in systemic inflammation. Thus, regardless of other concurrent changes, our results suggest that the levels of angiogenic cells in peripheral blood may be useful biomarkers of cardiovascular injury associated with residential proximity to roadways or traffic exposure.

In the cohort examined, we found that the CVD risk in the individuals living closer than 50 m to major roadways was not higher than that in those living >50 m from a major roadway; therefore, the relationship between roadway proximity and circulating angiogenic cell levels could not be attributed to increased CVD risk. Moreover, it has been previously shown that higher CVD risk in individuals with stable CVD is associated with a decrease rather than an increase in circulating angiogenic cell levels. Thus, higher circulating angiogenic cell levels in individuals living next to major roadways seem to contribute to CVD risk not reflected by traditional CVD risk factors. Also, the effect of roadway proximity on circulating angiogenic cells could not be attributed to the effects of ambient PM$_{2.5}$ exposure because the relationship was not affected after adjusting for ambient PM$_{2.5}$ levels. That the effects of roadway proximity are distinct from those of ambient fine PM is further supported by the observation that, despite a decrease in circulating angiogenic cell levels related to ambient PM$_{2.5}$ exposure, residential roadway proximity was associated with an increase in AC133$^+$ progenitor cell levels. Moreover, the effects of PM$_{2.5}$ were predominant on cell types 4 and 14, whereas roadway proximity affected cell types 5, 11, 13, and 15. Although both these populations include CD34$^+$ and AC133$^+$ cells, cell populations affected by PM$_{2.5}$ were CD45$^+$, whereas roadway proximity affected the entire population of AC133$^+$ or CD34$^+$ cells that were either CD45$^+$ or CD45$^-$ or those that were CD45dim (cell type 15). These findings suggest that roadway proximity and ambient PM$_{2.5}$ levels affect different cell populations and that PM$_{2.5}$ selectively affects cells retaining hematopoietic characteristics, whereas roadway proximity has greater effects on immature AC133$^+$ progenitor cells.

Previous work has shown that the reduced number of circulating angiogenic cells is associated with increased CVD risk and that the lower levels of these cells in peripheral blood predict future cardiovascular events. Likewise, chronic exposures to environmental pollutants, such as PM$_{2.5}$, (Table 7) or tobacco smoke, are also associated with a decrease in the circulating levels of these cells. In contrast to these findings, we found higher levels of these cells in individuals living close to a major roadway. Reasons for the anomalous increase in the levels of these cells because of roadway exposure are not clear but may be related to the milder nature of the injury induced by roadway pollutants compared with other insults. Increased levels of angiogenic cells in response to roadway pollutant exposure may be reflective of continuous mobilization of these cells from the bone marrow to peripheral blood, without the suppressive effects of stronger insults. In our previous work, we have found that exposure to the highly toxic pollutant acrolein leads to a 3- to 4-fold increase in the population of angiogenic cells in the bone marrow in mice, but the levels of these cells in circulation are decreased (by 40%) because mobilization of these cells is prevented due to a concurrent defect in vascular endothelial growth factor-1 and stromal cell–derived factor-1 signaling. Our studies also show that exposure to concentrated PM$_{2.5}$ increases the bone marrow abundance of angiogenic cells in mice, although the circulating levels of these cells are decreased because of a selective defect in their mobilization by vascular endothelial growth factor and stromal cell–derived factor-1 but not stem cell factor. Indeed, in response to stem cell factor, more cells are recruited in the blood in PM$_{2.5}$-exposed mice than in mice exposed to filtered air. On the basis of these observations, we speculate that, like acrolein and PM$_{2.5}$, roadway pollutant exposure increases the production of angiogenic cells in the bone marrow, but because there are no additional suppressive effects on mobilization, the levels of these cells are increased in the peripheral blood as well. Although further studies are required to test this hypothesis, elevated levels of angiogenic cells in the blood of individuals living close to a major roadway are consistent with the presence of mild and persistent vascular injury in these individuals.

Vascular injury secondary to burns or coronary artery bypass or myocardial infarction has been shown to be associated with an acute increase in circulating levels of angiogenic cells. Exposure to secondhand smoke is also associated with increased levels of angiogenic cells in the peripheral blood 24 hours post exposure. Thus, acute vascular injury seems to be a potent signal for the proliferation and mobilization of these cells particularly in individuals, such as those in our cohort with preexisting CVD and high CVD risk. In

Table 7: Association Between 24-h PM$_{2.5}$ and Circulating Angiogenic Cell Levels

<table>
<thead>
<tr>
<th>Circulating Angiogenic Cell Type</th>
<th>Change (%)</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type 3 (CD31$^+$/CD34$^+$/AC133$^+$)</td>
<td>-27.6</td>
<td>-52.1 to -1.68</td>
<td>0.037*</td>
</tr>
<tr>
<td>Cell type 4 (CD31$^+$/CD34$^+$/AC133$^+$)</td>
<td>-62.0</td>
<td>-95.5 to -26.5</td>
<td>0.001*†</td>
</tr>
<tr>
<td>Cell type 5 (CD31$^+$/AC133$^+$)</td>
<td>20.2</td>
<td>-4.91 to 45.5</td>
<td>0.117</td>
</tr>
<tr>
<td>Cell type 11 (AC133$^+$)</td>
<td>-2.00</td>
<td>-27.7 to 24.2</td>
<td>0.875</td>
</tr>
<tr>
<td>Cell type 13 (CD34$^+$/AC133$^+$)</td>
<td>-23.7</td>
<td>-48.1 to 0.84</td>
<td>0.058</td>
</tr>
<tr>
<td>Cell type 14 (CD34$^+$/AC133$^+$)</td>
<td>-81.5</td>
<td>-122 to -40.0</td>
<td><0.001*†</td>
</tr>
<tr>
<td>Cell type 15 (CD34$^+$/45dim/AC133$^+$)</td>
<td>-27.6</td>
<td>-52.8 to -2.44</td>
<td>0.032*</td>
</tr>
</tbody>
</table>

Percent change in cell populations per 10-µg/m3 increase in regional PM$_{2.5}$ on the day before enrollment. CI indicates confidence interval; and PM$_{2.5}$ fine particulate matter with an aerodynamic diameter ≤2.5 µm.

*P<0.05.
†P<0.05 for population with 6-month residential duration.
addition, chronic insults, such as persistent tissue hypoxia, inflammation, or demand for tissue repair, could also lead to a persistent increase in the circulating levels of these cells. Several clinical studies have shown that the levels of these cells are chronically elevated in patients with cancer and that higher levels of these cells correlate with angiogenesis, metastases, and reduced patient survival.47,48 Although all known cases of cancer were excluded from our analysis, chronically elevated levels of angiogenic cells in the blood of individuals living next to major roadways could be a symptom of incipient tumors, inflammation or tissue hypoxia, or ongoing vascular injury, conditions that lead to a persistent increase in the circulating levels of angiogenic cells, especially when the insult is mild and does not overwhelm mobilization. We found that in individuals living <50 m of a major roadway, the levels of these cells were 48% to 65% higher when compared with those living >50 m from a major roadway. In comparison, individuals exposed to secondhand smoke show a 100% to 310% increase in these cells, whereas myocardial infarction is associated with a 213% to 900%; and coronary artery bypass grafting with a 213% to 900%; and coronary artery bypass grafting with a 26- to 50-fold increase in the levels of circulating angiogenic cells.44,46,49 The levels of these cells are chronically elevated 2- to 16-fold in patients with cancer in comparison with healthy controls.48 Thus, in comparison with other insults, the effects of roadway pollutant seem to be less severe and are likely to be reflective of subclinical vascular injury resulting in increased angiogenic cell mobilization from the bone marrow.

When first mobilized from the bone marrow, the circulating angiogenic cells are mostly AC133+, an indicator of their immature, early state in the process of differentiation. As these cells mature and differentiate, however, these cells lose AC133+ expression.23,24 The early AC133+ cells also express the inhibitor of DNA binding, which is a robust indicator of the endothelial progenitor phenotype.50–52 Thus, the selective increase in AC133+ cells observed in our study cohort is consistent with a scenario wherein bone marrow activation leads to increased mobilization of immature angiogenic cells into peripheral blood to promote endothelial repair or regeneration. In contrast, we found no significant association between proximity to a major roadway and high-sensitivity C-reactive protein, suggesting that this was not because of generalized systemic inflammation in this cohort. Nevertheless, further work is required to assess any contribution of inflammation to cardiovascular injury induced by proximity to roadways and how this might be related to the overall increase in disease risk and mortality.

A major strength of our investigation is the relatively large study population combined with simultaneous measurements of conventional and novel CVD risk factors. Although, in comparison with environmental epidemiological studies, this size of the study population may seem small, most epidemiological studies use population level data, whereas our study is primarily based on individual level data. To the best of our knowledge, our study includes the largest number of circulating angiogenic cell phenotypes assessed to date. The range of CVD risk factors within our study population makes it a diverse group in which to investigate susceptibility to such roadway exposures, which may have had a lesser effect on a young healthy population. In addition, we measured a large number of phenotypically distinct circulating angiogenic cell populations to understand which specific populations were sensitive to residential roadway proximity. Accounting for potential major confounders, such as the levels of cotinine, a urine nicotine metabolite, in addition to collecting data on self-reported smoking status, did not alter the relationship with roadway proximity. Patients with cancer were excluded from the final regression analyses because circulating angiogenic cells are recruited in tumor angiogenesis,50–52 which may disproportionately increase circulating angiogenic cell levels. Multiple indices of roadway exposure were included in this analysis to obtain a better assessment of traffic-related exposure, including variables of dichotomous 50-m roadway proximity, continuous sum of road segments in a 50-m buffer, continuous traffic intensity, and continuous distance-weighted roadway intensity in a 300-m buffer. Although it is a strength that we adjusted for multiple comparisons, results from this adjustment, however, should be interpreted with caution because multiple correction adjustments are not recommended for highly correlated variables,83 as is the case with the circulating angiogenic cell populations in the current investigation.

Our study has several limitations. An important limitation is that we did not measure traffic noise, which has been associated with higher blood pressure54 and increased risk of adverse cardiovascular outcomes.55,56 Noise is associated with distance to roadway, and thus, it could be related to our outcomes. In addition, land use and tree cover, factors that can mediate or exacerbate the effects of traffic pollution exposure, were not measured in this study. Also, the use of road proximity as an indicator of exposure to traffic pollutants assumes that the study participants spend much of their time at home, and therefore, it does not account for the duration of time individuals spent outside their home, the proximity to roadways during other activities, or indoor exposures in the home. There was also no accounting for time spent in vehicles or in traffic, which has been associated with increased CVD risk.57 Because our cohort comprised of individuals with high CVD risk, results obtained from this cohort may not be readily extrapolated to a general population of healthy individuals. Finally, because of the cross-sectional design of the study, causality could not be established. Long-term prospective studies are required to examine how recurrent exposure to traffic pollution affects circulating angiogenic cell levels and whether changes in their levels correspond to greater progression of CVD in individuals who live near major roadways.

Acknowledgments

We thank the phlebotomists at the UofL Ambulatory Care and University Medical Associates for biological sample collection and Duane Bolanowski, Dave Young, Melissa Peak, Jordan Finch, and Imtiaz Ismail for their technical assistance.

Sources of Funding

This work was supported by a grant provided by the WellPoint Foundation (GMB009410). This work was supported in part by grants provided by the National Institute of Environmental Health Sciences (ES11860 and ES019217).
Disclosures

None.

References

Significance

The results of this study show that residential proximity to major roadways is associated with an increase in the levels of AC133+ circulating angiogenic cell levels. This finding suggests that recurrent exposure to traffic could induce cardiac injury resulting in greater recruitment of premature angiogenic cells into the circulation. We found that the relationship between residential proximity to roadways and AC133+ cells was not confounded by smoking, sex, or socioeconomic status and was not associated with concurrent changes in thrombosis, fibrinogen, or the levels of the inflammatory marker high-sensitivity C-reactive protein. The observed increase in these cells likely reflects an important mechanism that imparts excessive cardiovascular disease risk (perhaps independent of traditional risk factors) in individuals repeatedly exposed to traffic pollutants (eg, volatile organic compounds, particulate matter, and noise).
Residential Proximity to Major Roadways Is Associated With Increased Levels of AC133+ Circulating Angiogenic Cells

Arterioscler Thromb Vasc Biol. 2015;35:2468-2477; originally published online August 20, 2015:
doi: 10.1161/ATVBAHA.115.305724

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/35/11/2468

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
MATERIALS AND METHODS

Study Population

Participants (n=345, >18 years of age) with moderate to high CVD risk were recruited between October 2009 and May 2013 from the University of Louisville Hospital and affiliated clinic system. These studies were approved by the Institutional Review Board at the University of Louisville (IRB 09.0174 and 10.0350), and all individuals gave written informed consent. Persons unwilling or unable to provide informed consent or with significant and/or severe comorbidities were excluded. Exclusion criteria included: significant chronic lung, liver, kidney, or hematological disease; chronic neurological or psychiatric illness; chronic infectious diseases such as HIV or hepatitis; severe coagulopathies; drug/substance abuse; and chronic cachexia. Pregnant women, prisoners, and other vulnerable populations were also excluded from the studies. Patients who met the enrollment criteria were consented and administered a questionnaire which included demographic information; residential address; smoking status and history; secondhand smoke exposure; alcohol consumption; physical activity status; medication usage; and CVD history including heart attack, heart failure, angina, hypertension, hypercholesterolemia, diabetes, stroke, revascularization, arrhythmia, peripheral artery disease, aortic aneurism, and bleeding disorders. Medical records were reviewed to verify data obtained from subject interviews.

We recruited participants through advertisements in the University of Louisville daily staff email newsletter and flyers posted at University of Louisville Health Sciences Campus buildings. In addition, participants were recruited at the University of Louisville cardiology, preventive cardiology, endocrinology, and outpatient clinics. All accessible patients visiting the respective clinic on the day of recruitment (up to 1600 individuals total) were pre-screened through medical records review prior to recruitment. The patients were screened prior to recruitment to exclude recruitment of anyone that did not meet the enrollment criteria. Therefore, there was minimal selection bias. Due to IRB constraints, we cannot account for the individuals that were screened and did not enroll. In total, there was 1 individual that withdrew from the study after successful enrollment and was subsequently excluded from the analyses. This information has been updated in the Materials and Methods Section.

Biological Sample Collection and Processing

Blood and urine were obtained from each participant. Urine collected at the time of the visit was used to measure the levels of cotinine and creatinine. The blood was used for measuring circulating angiogenic cell populations, and high-sensitivity C-reactive protein (VITROS kit).

Circulating Angiogenic Cell Quantification

Specific circulating angiogenic cell levels in blood were characterized using a 7-color flow cytometry procedure with established cell surface markers indicative of endothelial and stem/progenitor cells: CD31+, CD34+, CD45+/dim, and AC133+ as described before.¹,² A total of 15 circulating angiogenic cell populations were measured.

Within 24 h of the draw, blood was separated in a CPT mononuclear separator tube by centrifugation at 1700xg for 30 min. Mononuclear cells were separated from serum by centrifugation at 400xg for 10 min. The pelleted cells were washed twice with 2% FBS in PBS and then incubated with 2%FBS/PBS and FcR Blocking Reagent (Miltenyi Biotec) for 10 min. on
ice in the dark. The cells were incubated in the dark for 30 min. on ice with a panel of fluorescently-conjugated antibodies including: PE-labeled anti-CD34 (Becton Dickinson), APC-labeled anti-AC133 (Miltenyi Biotech), PE-Cy5.5-labeled anti-CD14 (Abcam), APC-AlexaFluor 750-labeled anti-CD45 (Invitrogen), PE-Cy7-labeled anti-CD16 (Becton Dickinson), FITC-labeled anti-CD31 (Becton Dickinson), anti-CD41a (Becton Dickinson) and anti-CD235a (Becton Dickinson), Pacific Blue (Pacific Blue monoclonal antibody labeling kit; Invitrogen), and a marker for dead cells (LIVE/DEAD fixable dead cell stain; Invitrogen). The cells were then pelleted and washed once in 2% FBS/PBS and resuspended in 1% FACS formaldehyde.¹

Following re-suspension, 500,000 events were collected using the LSR II flow cytometer (Becton Dickinson). Positive/negative boundaries for all gating were established using unstained controls. The lymphocyte population was selected in the initial gating scheme by measuring the population that was negative for CD235a, CD41a, and the dead cell marker (pacific blue staining). From that population, the CD14 and CD16 negative population was selected. Cells positive for both CD34⁺ (stem cells) and CD31⁺ (endothelial cells) were selected for the final population. This population was further subdivided into monocyctic/non-monocyctic (CD45⁺/dim) and early/mature progenitors (AC133⁻). FlowJo software was used to analyze the collected events and circulating angiogenic cell counts were normalized to the sample volume used in analysis.¹,² The gating scheme is shown in Supplemental Figure I.

Residential Proximity to Major Roadway

Residential addresses of study participants were obtained during the patient interview questionnaire or through the review of medical records. Distance to roadway was determined using the Geographic Information System (GIS) ArcMap 9.3+ software. Addresses were geocoded using data obtained from the Louisville/Jefferson County Information Consortium (LOJIC) composite locator using the GIS software. Subject addresses were corrected for flaws including spelling errors, invalid characters, and invalid formats. Addresses that could not be automatically geocoded were cross-referenced with other known addresses and manually placed at the accurate location, when possible. Aerial imagery was used to identify geocoded points that did not match actual residential locations (e.g., mobile home communities) and were subsequently located when possible. Road vehicle counts were provided by the Kentucky Transportation Cabinet. A major roadway was defined as a road carrying an annual mean of 5,000 or more vehicles/day.

To measure proximity to major roadways, straight-line distance to the nearest major roadway was measured for each subject residential location. In addition, buffer areas of 50 and 300m from the residential locations of study subjects were created. Major roadways were overlaid on buffer areas, where the cumulative distance of major roadway segments within the buffer area was calculated. In addition, total roadway distance for all roads within a 50m residential buffer was measured and compared with total major roadway distance (Supplemental Figure II). Traffic intensity was calculated by multiplying the length of individual major roadway segments by the number of vehicles travelling on those segments. The sum of all segments within a 50m buffer of each individual subject was calculated to determine residential traffic intensity, or total distance traveled by all vehicles within the 50m buffer area. Vehicle traffic and distance-weighted roadway density at a maximum distance of 300m from major roadways was calculated using the ArcMap kernel density tool, with roadway traffic used as the weight field. Density values were generated on a raster surface at 10m resolution and extracted by address points for statistical analysis. The maximum distance of 300m was selected because it is the point at which most pollutants reach background levels,³ and it is a more distant major roadway exposure metric to investigate adverse cardiovascular outcomes.⁴
PM$_{2.5}$ Estimation

Ambient levels of fine particulate matter (particulate matter with an aerodynamic diameter < 2.5µm; PM$_{2.5}$) were obtained by calculating the daily average of all regional EPA-validated monitoring stations within 30 kilometers of Jefferson County, KY that report daily PM$_{2.5}$ levels. These values were determined for the 24 h period prior to the day of study visit for each study participant. Variations in PM$_{2.5}$ between monitors was limited and remained rather uniform over large distances. This was supported by the close correlation of data obtained from different monitors.

Statistical Analyses

Population demographics, CVD risk factors, and hsCRP were compared across roadway proximity strata using independent sample t-tests and Chi-squared analyses. Demographic variables that were not normally distributed were transformed to their natural logarithms. Roadway proximity was entered as a dichotomous variable indicating whether or not the individual was living within 50m of a major roadway. The factors significantly associated with distance to roadway in the bivariate analysis were later used in the adjusted regression model. Independent sample t-tests were used to test for bivariate associations between roadway proximity strata and circulating angiogenic cell levels before adjustment for potential confounders. Circulating angiogenic cell levels were normalized to the sample volume, transformed to their natural logarithm.

Generalized Linear Modeling (GLM) techniques were used to examine whether the circulating angiogenic cell levels were associated with distance to a major roadway, adjusting for age, gender, ethnicity, body mass index (BMI), cigarette smoking, median household income, and 24h PM$_{2.5}$ level. The variable “median household income” was used to approximate income level of the study participants and was designated at the U.S. Census Bureau block group geographic level. PM$_{2.5}$ was included as an adjustment factor in order to understand the association between proximity to a major roadway and circulating angiogenic cell levels independent of PM$_{2.5}$ exposure. Circulating angiogenic cell levels appeared to follow the gamma distribution; therefore, GLM models that assessed circulating angiogenic cells as the dependent variable utilized the gamma probability distribution and the log link function.

GLMs that assessed the sum of CVD risk factors (age, male gender, hypertension, hyperlipidemia, diabetes, and current smoking) as the dependent variable utilized the normal probability distribution and the identity link function. Roadway proximity was initially entered into the statistical model as dichotomous data indicating living within 50m of a major roadway. Major roadway density within the buffer areas was entered individually into the statistical model as a continuous variable. The more rigorous models only included the population that had a residential duration at their current home of at least 6 months, these results were only presented when significant associations were found. Percent change in cells presented in Tables 3-7 represents the interpreted β value where the original β coefficient is exponentiated, subtracted by 1, and multiplied by 100 to present a percent change in each cell population.
Traditional model-fit statistics (log-likelihood) were used to develop the most parsimonious model. In addition, we tested whether higher order modeling (e.g., exponential, cubic) improved model-fit using traditional model-fit statistics (AIC, log-likelihood, etc.). Data management and statistical analyses were performed using IBM SPSS Statistics version 21.0 for Windows (Armonk, NY, USA). Additionally, p-value adjustments for multiple comparisons were completed using the two-stage Benjamini and Hochberg (2006) step up FDR controlling method. The adjusted P-values were implemented using the R/Bioconductor package multtest.
REFERENCES

5. EPA. Download daily data. 2011-2013

Supplemental Figure I:
Gating Scheme for Circulating Angiogenic Cell Quantification. Circulating angiogenic cells were gated from the lymphocyte population to the CD14–/CD16– population. Cells identified as circulating angiogenic cells included CD31+ (endothelial), CD34+ (stem), CD45+dim (hematopoietic/non-hematopoietic), and AC133+ (early/late) populations.
Supplemental Figure II: Calculation of the Buffer Area Total Road Distance. Illustration of a buffer area surrounding a subject's residence. As shown, major roadway segments of 40m and 80m pass through the 50m radius buffer area, making the total calculated major roadway distance within the buffer 120m. The roadway segments of 40m (major roadway segment), 80m (major roadway segment), and 70m (non-major roadway segment) were combined to obtain a cumulative total of all roads in the buffer of 190m.