Perivascular Adipose Tissue and Coronary Vascular Disease

Meredith Kohr Owen, Jillian N. Noblet, Daniel J. Sassoon, Abass M. Conteh, Adam G. Goodwill, Johnathan D. Tune

Abstract—Coronary perivascular adipose tissue is a naturally occurring adipose tissue depot that normally surrounds the major coronary arteries on the surface of the heart. Although originally thought to promote vascular health and integrity, there is a growing body of evidence to support that coronary perivascular adipose tissue displays a distinct phenotype relative to other adipose depots and is capable of producing local factors with the potential to augment coronary vascular tone, inflammation, and the initiation and progression of coronary artery disease. The purpose of the present review is to outline previous findings about the cardiovascular effects of coronary perivascular adipose tissue and the potential mechanisms by which adipose-derived factors may influence coronary vascular function and the progression of atherogenesis. (Arterioscler Thromb Vasc Biol. 2014;34:1643-1649.)

Key Words: adipokines ■ adipose tissue ■ obesity

Coronary perivascular adipose tissue (PVAT) is a visceral adipose tissue of mesothelial origin that normally surrounds the major coronary arteries on the surface of the heart.1,2 Coronary PVAT is functionally distinct from the adipose tissue found on the surface of the myocardium, which is defined as myocardial epicardial adipose tissue.3,4 In addition to adipocytes and preadipocytes, coronary PVAT contains fibroblasts, macrophages, leukocytes, as well as blood vessels and autonomic nerves. With no fascia separating PVAT from the coronary circulation and myocardium, these essential components of the heart share the same microcirculation.1 Originally perceived as a relatively ubiquitous and benign tissue that largely provides structural support and insulation,5,6 it is becoming clear that factors derived from PVAT (adipokines) are capable of influencing a variety of key (patho)physiological parameters. In particular, recent data support that cardiac adiposity expands with obesity,7 that atherosclerotic plaques occur predominately in coronary arteries that are encased in PVAT,7–10 and that coronary PVAT volume is positively associated with underlying plaque burden.11 Patients with high myocardial epicardial adipose tissue volume have also been shown to have a higher incidence of atrial fibrillation, independent of left atrium enlargement.12–14 As such, cardiac adiposity has been identified as an independent risk factor for coronary artery disease5,15,16 and a predictor of future coronary events.17 Although specific adipokines can serve to promote vascular health and integrity,5,18,19 evidence is mounting in support of marked upregulation of proatherogenic mRNA and protein expression profiles in coronary PVAT and myocardial epicardial adipose tissue in the setting of obesity.20–25 This aberrant regulation of coronary PVAT also correlates with underlying vascular dysfunction and disease in obesity.20–25 Thus, there is growing evidence

Vascular Effects of Peripheral Versus Coronary PVAT
Initial studies into the vascular effects of peripheral (noncardiac) PVAT demonstrated significant reductions in contractile responses to a variety of agonists in aorta,21,22 mesenteric,23–25 and human internal thoracic arteries.26,27 This anticontractile (or adipose-derived relaxing factor) vasodilator effect has been attributed to PVAT-derived adiponectin,28 hydrogen sulfide,29 hydrogen peroxide,30 and angiotensin-(1–7)31–33–mediated vasodilation via the opening of voltage-dependent K(V)7 (voltage-dependent K) channels,33 BK(Ca) (large conductance calcium-activated K) channels,34 and Kir (inward-rectifying K) channels.35 In contrast, the presence of peripheral PVAT has also been shown to potentiate contraction of mesenteric arteries to electric field stimulation via increased production of angiotensin II and superoxide.36,37 Recent data from Watts et al38 implicate chemerin as a PVAT-derived constricting factor in aortic and mesenteric vascular beds. Thus, noncardiac
PVAT is capable of producing factors that illicit both vasodilation and vasoconstriction.

Experiments to elucidate the vascular effects of coronary PVAT are rather limited and somewhat conflicting. Studies in isolated coronary arteries from lean or hypercholesterolemic swine show little to no effect of coronary PVAT on endothelial-dependent vasodilation or coronary contractile responses to endothelin-1, angiotensin II, or the thromboxane A2 mimetic U46619. Alternatively, coronary PVAT has been found to diminish endothelial-dependent dilation in dogs and to significantly exacerbate underlying coronary endothelial dysfunction in obese swine. Further studies in clean (PVAT free) conduit coronary arteries revealed that the addition of coronary PVAT from lean swine augments contractile responses to KCl-induced depolarization and to prostaglandin F2α in proportion to the amount of PVAT added to the bath. Interestingly, this effect was also observed in response to mesenteric PVAT but not subcutaneous PVAT. Furthermore, the constricting effect of coronary PVAT was markedly exaggerated in endothelium intact and denuded coronary arteries from obese swine. Additional findings support that these enhanced effects are associated with substantial alterations in the protein expression of obese coronary PVAT and with inherent differences in the phenotype of obese smooth muscle cells. Taken together, these findings indicate that factors derived from coronary PVAT can act to impair endothelial-dependent dilation and potentiate contractions of coronary vascular smooth muscle, especially in the setting of obesity. Potential mediators and mechanisms of these influences are discussed below.

In summary, the findings to date indicate that the vascular effects of PVAT are highly dependent on anatomic location of the artery/adipose tissue depot, the species being studied, the pharmacological agonist(s) used, and the underlying phenotype of the endothelium and smooth muscle in relation to the overall health status of the studied model. Generally, PVAT from peripheral beds exerts vasodilator anticontractive influences, whereas coronary PVAT tends to induce vasoconstrictor effects, which includes attenuation of endothelial-dependent dilation. It is important to recognize that the experimental evidence thus far derives from in vitro examination of isolated arteries. Thus, the functional (physiological) relevance of these vascular influences on the regulation of blood pressure, organ blood flow, and progression of disease remains a critical and experimentally difficult question to address moving forward. In addition, more careful examination of the precise cell types and mediators responsible for these effects is also warranted.

Expression Profiles in Coronary PVAT

Recent evidence supports that there are substantial differences in gene and protein expression in different adipose tissue depots (eg, subcutaneous versus coronary) and that these profiles are significantly altered in the setting of disease. Examination of PVAT surrounding the major coronary arteries suggests that this adipose depot is phenotypically consistent with both white and brown adipose tissue. Data from the Weintraub laboratory indicate that adipocytes from human coronary PVAT exhibit a reduced state of adipogenic differentiation compared with adipocytes from other depots from the same subjects (eg, subcutaneous or perirenal–visceral) and that expression of proinflammatory genes and secretion of cytokines such as interleukin-6, interleukin-8, and monocyte chemotactic protein are markedly elevated in coronary PVAT versus other adipose tissue depots and in the presence of coronary artery disease (Table). Furthermore, recent findings from our laboratory, as well as others, support that this heightened proinflammatory environment of coronary PVAT is markedly exacerbated by obesity and with the progression of coronary artery disease. In particular, increased expression of proatherogenic factors including leptin, resistin, tumor necrosis factor-α, interleukin-6, chemerin, and calpastatin have been documented to date. Diminished expression of potentially vasculoprotective proteins such as adiponectin, which has been associated with improvements in endothelial function, has also been demonstrated in human coronary PVAT in the setting of obesity and coronary artery disease (Figure). Interestingly, augmented expression of the osteogenic factors osteoprotegerin and osteoglycin was also recently identified in coronary PVAT. These factors have been previously linked with atherosclerosis and the severity of coronary artery disease. Accordingly, strong and growing evidence supports that coronary PVAT displays a distinct phenotype relative to other adipose tissue depots and is capable of locally producing factors with the potential to influence the initiation and progression of coronary vascular dysfunction and disease.

Within the context of coronary PVAT expression profiles, it is important to consider how factors produced in the coronary adventitia are able to traverse the arterial wall to influence the endothelium and vascular smooth muscle. The current hypothesis is that the vasa vasorum, a network of small vessels that supply blood to the walls of large blood vessels, is interspersed within the PVAT and thus is capable of delivering adventitial-derived factors to conduit coronary arteries. This hypothesis is supported by prior studies that have demonstrated that neovascularization of the coronary vasa vasorum precedes the development of overt endothelial dysfunction in swine fed a high-cholesterol diet and by experiments which found increases in blood flow through the vasa vasorum to the intima of atherosclerotic coronary arteries of monkeys. Neovascularization originating from the adventitia has also been associated with the extent of inflammation and coronary disease in humans. Although the temporal association between expansion of the coronary vasa vasorum and the development endothelial dysfunction and atherosclerosis is intriguing, further studies to examine directly this hypothesis for the transit of PVAT-derived factors across the coronary wall are needed.

Pathways Influenced by Coronary PVAT

As outlined above, initial studies on the vascular effects of coronary PVAT have shown that factors produced by this depot can impair endothelium-dependent vasodilation and augment
coronary smooth muscle constriction, especially in the setting of obesity.23,24 At present, we are far from understanding the precise factors and signaling pathways responsible for the vascular effects of coronary PVAT. However, there are recent investigations that provide insight about potential mechanisms of PVAT-induced coronary vascular dysfunction.

Data from our laboratory support that coronary PVAT significantly attenuates endothelial-dependent dilation of isolated coronary arteries in the setting of obesity.48 This endothelial dysfunction was associated with elevated expression of the adipokine leptin, which we have demonstrated induces significant reductions in coronary endothelial nitric oxide production via a protein kinase C-β-dependent phosphorylation of endothelial nitric oxide synthase at the Thr176.65,88,89 Taken together, these findings suggest that an imbalance between proatherogenic versus anti-atherogenic PVAT-derived adipokines could serve to activate several key regulatory pathways to promote obesity-induced coronary artery disease at a local level. Alterations in these pathways, along with other adipokines such as resistin and tumor necrosis factor-α, that are known to negatively affect endothelial function and vascular remodeling,90–95 should be further explored.

Recently, Owen et al23 documented that administration of recombinant adiponectin successfully reversed PVAT-mediated increases in endothelial adhesion molecule expression (intercellular adhesion molecule-1) and adhesion of monocytic cells to human coronary artery endothelial cells. PVAT-derived adiponectin has also been shown to improve the bioavailability of nitric oxide in gluteal arteries obtained from healthy but not obese humans.41 Prior studies also demonstrate that adiponectin administration diminishes oxidative stress and inflammation and improves endothelial function via adenosine monophosphate–activated protein kinase–induced phosphorylation of endothelial nitric oxide synthase at Thr176.65,88,89 Taken together, these findings suggest that an imbalance between proatherogenic versus anti-atherogenic PVAT-derived adipokines could serve to activate several key regulatory pathways to promote obesity-induced coronary artery disease at a local level. Alterations in these pathways, along with other adipokines such as resistin and tumor necrosis factor-α, that are known to negatively affect endothelial function and vascular remodeling,90–95 should be further explored.

Table. Comparison of Coronary Perivascular and Subcutaneous Adipose Tissue Adipokine Expression

<table>
<thead>
<tr>
<th>Adipokine</th>
<th>Condition</th>
<th>Coronary PVAT Expression Relative to Subcutaneous</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptin</td>
<td>NCAD</td>
<td>↓ mRNA</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>NCAD</td>
<td>↓ mRNA, ↓ protein secretion</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ protein secretion</td>
<td>26</td>
</tr>
<tr>
<td>TNF-α</td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA, ↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓ protein secretion</td>
<td>26</td>
</tr>
<tr>
<td>IL-6</td>
<td>NCAD</td>
<td>↑ mRNA</td>
<td>60, 20</td>
</tr>
<tr>
<td></td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td>IL-1β</td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA, ↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td>MCP-1</td>
<td>NCAD</td>
<td>↑ protein secretion</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>NCAD+CAD</td>
<td>↑ mRNA</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>CAD</td>
<td>↑ mRNA, ↑ protein secretion</td>
<td>63</td>
</tr>
<tr>
<td>PAI-1</td>
<td>CAD</td>
<td>↓ mRNA</td>
<td>57</td>
</tr>
</tbody>
</table>

CAD indicates coronary artery disease; IL-1β, interleukin-1β; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; NCAD, no coronary artery disease; NCAD+CAD, grouped population of NCAD and CAD; PAI-1, plasminogen activator inhibitor-1; PVAT, perivascular adipose tissue; and TNF-α, tumor necrosis factor-α. ↑ indicates significant (P<0.05) increase in expression; ↓ indicates significant (P<0.05) decrease in expression.
key regulatory pathways, including cellular growth and proliferation (51 molecules) and cellular movement (39 molecules). Of particular interest were increases in RhoA (2.9-fold) and calpastatin (1.6-fold) which are directly linked to smooth muscle contraction, Ca\(^{2+}\) sensitization, and the progression of hypertension.\(^96,97\) Further studies to examine the effects of calpastatin, a known endogenous calpain inhibitor,\(^97,98\) revealed that this protein dose dependently augments contractions of isolated coronary arteries similarly to that of coronary PVAT. Interestingly, interrogation of the Rho kinase pathway revealed that coronary contractions to lean PVAT are largely mediated via a Rho dependent pathway, whereas enhanced coronary contractions to obese coronary PVAT occurred independent of Rho kinase signaling (was unaffected by the inhibition of Rho kinase). These data, along with concurrent evidence that PVAT-derived factors significantly impair coronary arteries similarly to that of coronary PVAT. Interestingly, interrogation of the Rho kinase pathway revealed that coronary contractions to lean PVAT are largely mediated via a Rho dependent pathway, whereas enhanced coronary contractions to obese coronary PVAT occurred independent of Rho kinase signaling (was unaffected by the inhibition of Rho kinase). These data, along with concurrent evidence that PVAT-derived factors significantly impair coronary arteries similarly to that of coronary PVAT.

Figure. Schematic diagram outlining known alterations in coronary perivascular adipose tissue (PVAT)-derived adipokines and potential downstream effector mechanisms in endothelium and vascular smooth muscle. Leptin released from coronary PVAT diminishes endothelial nitric oxide synthase (eNOS) activity, preventing nitric oxide–mediated dilation of vascular smooth muscle via activation of K\(^{+}\) channels, and contributes to the recruitment of macrophages and retention of foam cells in the extravascular space. Calpastatin and an unknown adipose-derived constricting factors (ADCF) increase vasoconstriction via Ca\(_{\text{L}}\) channels and may function to increase RhoA activity in healthy coronary smooth muscle. Other adipokines implicated in other vascular beds may also play a role in promoting coronary vascular endothelial and smooth muscle dysfunction, including, but not limited to, increases in resistin, chemerin, osteoglycin, osteoprotegerin, and decreases in adiponectin production. H\(_2\)O\(_2\) indicates hydrogen peroxide; and TNF, tumor necrosis factor.

Implications and Conclusions

Taken together, there is a growing body of evidence to support that changes in the phenotypic expression patterns in coronary PVAT occur concomitantly with mechanistic alterations in endothelium and vascular smooth muscle. These changes seem to be dependent on the unique characteristics of the cell types involved and the underlying environment/milieu in which they reside. However, the extent to which PVAT-derived factors causally contribute to changes in vascular expression of K\(^{+}\) channels, Ca\(_{\text{L}}\) channels, Rho signaling, macrophage/foam cell formation, and regional heterogeneity of smooth muscle differentiation/proliferation and atheroma progression has not been determined. Future research to delineate the involvement of specific adipose tissue cell types, how adipose tissue–derived factors are delivered to the vascular wall and possibly systemic circulation (ie, vasa vasorum), identity of precise mediators, as well as signaling pathways and end-effector mechanisms influenced by coronary perivascular and epicardial adipose tissue beds, remain central questions moving forward.

Sources of Funding

This publication was made possible by funding from National Institutes of Health HL092245, HL117620, and by the Indiana University Health-Indiana University School of Medicine Strategic Research Initiative (J.D. Tune). Additional support was also provided by the American Heart Association 13POST1681001813 (A.G. Goodwill), HL117620-S1 (A.M. Conteh), and TL1 TR000162 (D.J. Sassoon).

Disclosures

None.
References

Kuwata T, Ogawa H, Tsuchiya G, Ishimitsu T, Fukuda H. Greater expres-
sion of patients with acute coronary syndrome.

regulator of adipogenic differentiation.

Cardiovasc Diabetol
genic profile of adipocytokines in patients with cardiovascular disease.

Vasc Biol
promotes inflammation in periaortic adipose tissue and angiotensin

Shibasaki
Mazurek
Knudson JD, Dincer UD, Dick GM, Shibata H,
disease induce atherogenic changes in monocytes and endothelial cells.

Rudich S, Weintraub NL. Proinflammatory phenotype of perivascular adi-

Chatterjee
Am J Physiol Heart Circ

Berwick ZC, Dick GM, O’Leary HA, Bender SB, Goodwill
Circ Physiol
dependent phosphorylation of nitric oxide synthase.

Reifenber
Gao YJ, Takemori K, Su LY , An WS, Lu C, Sharma AM, Lee RM.
Perivascular adipose tissue promotes vasoconstriction: the role of super-

Watts SW, Dorrance AM, Penfold ME, Roukke JL, Sinal CJ, Seitz. B,
Sullivan TJ, Charvat TT, Thompson JM, Burnett R, Fink GD. Chemerin

Bunker AK, Laughlin MH. Influence of exercise and perivascular adi-
pose tissue on coronary artery vasomotor function in a familial hyper-

Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, Sturek M, Tune JD. Eparcular perivascular adipose-derived leptin exacerbates coronary

Reifenberger MS, Turk JR, Newcomer SC, Booth FW, Laughlin MH.
Perivascular fat alters reactivity of coronary artery: effects of diet and

Payne GA, Bohlen HG, Dincor UD, Borbouse L, Tune JD. Perivascularadipose tissue impairs coronary endothelial function via PKC-beta

Berwick ZC, Dick GM, O’Leary HA, Bender SB, Goodwill AG, Moberly
SP, Owen MK, Miller SJ, Obukahov AG, Tune JD. Contribution of electro-
mechanical coupling between Ks and Ca v1.2 channels to coronary dys-

Police SB, Thatcher SE, Charrigo R, Daugherty A, Cassis LA. Obesity
promotes inflammation in periaortic adipose tissue and angiotensin

Sacks HS, Fain JN, Holman JB, Cheema P, Chara P, Parks F, Karas J,
Optican R, Bahouth SW, Dorrance AM, Penfold ME, Rourke JL, Sinal CJ, Seitz B,
Kazumi T, Idelman G, Blanco V , Kazumi T, Stoll LL, Denning GM, Harrelson A, Blomkalns AL,

Eiras S, Teijeira-Fernández E, Shamasaj L, Fernandez AL, Vazquez-

Siprioglu SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in
periaortic and epicardial adipose tissue: differential expression and rela-

Ikeda T, Shirasawa T, Esaki Y, Yoshiki S, Hirokawa K. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atheroscle-

Tousoulis D, Siasos G, Maniatis K, Okonomou E, Koutsis S, Zaromitidou M,

Harrazian J, Lerman LO, Rodriguez-Porcel M, Holmes DR Jr, Richardson

Moreno PR, Pursuothaman RR, Sirol M, Levy AP, Fuster V. Neovas-

Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological signifi-

Bohlen HG. Mechanisms for early microvascular injury in obesity and

Tinsley JH, Hunter FA, Childs EW, PKC and MLCK-dependent, cytokine-

Gruen ML, Hao M, Piston D. Leptin and adiponectin and its chemotaxis.

Insley JH, Hunter FA, Childs EW. PKC and MLCK-dependent, cytokine-

Waters DL, Comazie AG, Vandenberg JL, Mahaney MC, Blangero J.
Serum leptin levels are independently correlated with two measures of
together with QTC interval, and insulin and leptin acutely regulate
cholesterol ester metabolism in macrophages by novel signaling path-

Rainwater DL, Comazie AG, VandeBerg JL, Mahaney MC, Blangero J.
Serum leptin levels are independently correlated with two measures of

Hergenç G, Schuille H, Assmann G, von Eckardstein A. Associations of

Porreca E, Di Febbo C, Moretta V, Angelini A, Guglielmì MD, Di Niso M, Cucurullo F. Circulating leptin is associated with oxidized LDL in

Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothe-
There is a growing body of evidence to support that changes in the phenotypic expression patterns in coronary perivascular adipose tissue occur concomitantly with mechanistic alterations in endothelium and vascular smooth muscle in the setting of cardiovascular disease. These changes seem to be dependent on the unique characteristics of the cell types involved and the underlying environment/milieu in which they reside. This review summarizes current findings on the cardiovascular effects of coronary perivascular adipose tissue and outlines potential mechanisms by which adipose-derived factors may influence coronary disease.
Perivascular Adipose Tissue and Coronary Vascular Disease
Meredith Kohr Owen, Jillian N. Noblet, Daniel J. Sassoon, Abass M. Conteh, Adam G. Goodwill and Johnathan D. Tune

Arterioscler Thromb Vasc Biol. 2014;34:1643-1649; originally published online May 1, 2014; doi: 10.1161/ATVBAHA.114.303033

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/34/8/1643

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/