Perivascular Adipose Tissue in Vascular Function and Disease

A Review of Current Research and Animal Models

Nicholas K. Brown, Zhou Zhou, Jifeng Zhang, Rong Zeng, Jiarui Wu, Daniel T. Eitzman, Y. Eugene Chen, Lin Chang

Abstract—Perivascular adipose tissue (PVAT), long assumed to be nothing more than vessel-supporting connective tissue, is now understood to be an important, active component of the vasculature, with integral roles in vascular health and disease. PVAT is an adipose tissue with similarities to both brown and white adipose tissue, although recent evidence suggests that PVAT develops from its own precursors. Like other adipose tissue depots, PVAT secretes numerous biologically active substances that can act in both autocrine and paracrine fashion. PVAT has also been shown to be involved in vascular inflammation. Although PVAT can support inflammation during atherosclerosis via macrophage accumulation, emerging evidence suggests that PVAT also has antiatherosclerotic properties related to its abilities to induce nonshivering thermogenesis and metabolize fatty acids. We here discuss the accumulated knowledge of PVAT biology and related research on models of hypertension and atherosclerosis.

Key Words: adipose tissue • atherosclerosis • hypertension

Adipose tissue is a complex set of cell types, including adipocytes, macrophages, T cells, collagen fibers, nerves, and capillaries, spread throughout the body. Traditionally, adipose tissue was classified into 2 types: white adipose tissue (WAT), which comprises the visceral and subcutaneous fat tissues, and brown adipose tissue (BAT), which is found in the interscapular region in both rodents and human infants, with recent reports of BAT in adults.1 WAT is composed of adipocytes with a large, single fat droplet and is presumed to be the main depot for lipid storage, whereas BAT contains several smaller fat droplets and numerous mitochondria and is involved in heat production. BAT is defined by the expression of uncoupling protein-1 (UCP-1), a long-chain fatty acid/H+ symporter that produces heat by uncoupling fuel oxidation from adenosine triphosphate (ATP) synthesis.2 More recently, beige adipocytes have been characterized. These cells were first reported in rodents and express UCP-1, like BAT cells, but also express unique cell surface markers, including CD137 and Tmem26.3 Beige adipocytes seem to be programmed to be flexible, with the ability to store lipids and produce heat under different circumstances.4 The presence of brown and beige fat in humans is still under debate, with reports of human adipose tissues that display similarity to both brown and beige fat of rodents.4–8 Interestingly, it is being revealed that both white and beige cells have the ability to upregulate thermoregulation in response to reduced temperature,9 a process known as browning. In addition to cold, several other signals have been reported to induce browning of white and beige adipocytes, including cardiac hormones10 and exercise-induced irisin.11 Irisin has gained significant attention recently because it browns adipocytes via the p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal–related kinase (ERK) signaling pathways12 and is responsible for the cold-induced browning signal in rodents and humans.13 WAT displays significant variability as well, with visceral adipose tissue now understood to be more harmful because it is associated with insulin resistance and cardiovascular events due to its greater inflammatory characteristics. Conversely, subcutaneous WAT has been shown to have a higher expression of UCP-1, indicating its greater ability to be cooled.14 These results underscore the plasticity and adaptability of adipocytes.

Please see http://atvb.ahajournals.org/site/misc/ATVB_in_Focus.xhtml for all articles published in this series

Historically, adipose tissue was thought to be simply lipid-rich connective tissue.15 Similarly, the sheath of adipose tissue surrounding most blood vessels, known as perivascular adipose tissue (PVAT), was long assumed to provide mechanical protection to the vessels during contraction of neighboring

From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor (N.K.B., Z.Z., J.Z., D.T.E., Y.E.C., L.C.); Center for Cancer and Immunology Research, Children’s National Medical Center, Washington, DC (N.K.B.); and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China (R.Z., J.W.).

Correspondence to Lin Chang, MD, PhD, or Y. Eugene Chen, MD, PhD, Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109. E-mail lincha@umich.edu or echenum@umich.edu

© 2014 American Heart Association, Inc.

Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org

DOI: 10.1161/ATVBAHA.114.303029
tissues. However, with an increased understanding of the differentiation and function of adipose tissue in health and disease, PVAT research is undergoing its own renaissance. In addition to the structural role of PVAT, it is increasingly being appreciated that this tissue plays many other roles in vascular function. These include the secretion of metabolically active adipokines, chemokines, and hormone-like factors, such as leptin, adiponectin, and resistin, free fatty acids, and vasoactive substances. With complex endocrine and paracrine functions, PVAT regulates vascular tone in both rodents and humans. In addition, PVAT appears to be altered in obesity and diabetes mellitus, expanding and accumulating inflammatory cells and altering the production of various adipokines and inflammatory cytokines. This dysfunctional PVAT has been suggested as a mechanistic link between metabolic syndrome and atherosclerosis and may contribute to or modulate hypertension, although a causal role has not yet been established.

Clinical Association of PVAT With Vascular Diseases

The role of PVAT in human vascular disease is becoming increasingly apparent. For example, a recent study measured higher levels of adipokines secreted by PVAT biopsies taken from stenotic coronary artery segments versus nonstenotic segments. Similarly the Framingham Heart Study is providing insights to the role PVAT plays in cardiovascular disease (CVD) risk. In a recent report from this study, thoracic PVAT was measured via multidetector computed tomography. High thoracic PVAT was found to be significantly associated with a higher prevalence of CVD, even in individuals without high visceral adipose tissue. In addition, other CVD risk factors have been demonstrated to have links with PVAT. For example, smoking has been reported to increase the inflammation of PVAT by enhancing the expression and activity of the P2X7R–inflammasome complex, and systemic lupus erythematosus, a known CVD risk factor for women, is associated with greater aortic PVAT and calcification of vascular beds. Clearly, the emerging data from the clinic compels us to develop models to better understand the effects of PVAT in vascular (patho)physiology.

PVAT: White, Beige, Brown, or Something Else?

PVAT differs between species and anatomic location. The mesenteric artery, the coronary artery, and the aorta are 3 distinct vessels particularly associated with CVD complications. In rodents, the mesenteric artery is surrounded by WAT (traditionally categorized as visceral WAT), whereas the thoracic aorta is surrounded by BAT-like tissue, and the abdominal aorta is surrounded by adipose tissue with a mixture of white and brown adipocytes (Figure 1). Although there is no fat tissue surrounding the murine coronary artery, adipose tissue surrounds all these vessels in humans and other large experimental animals, including rabbits and pigs, although the morphological status of PVAT in these other species is not as well defined as murine PVAT. However, indirect evidence suggests that human PVAT shares characteristics of both WAT and BAT. WAT acts as an endocrine organ, secreting circulating adipokines that mediate cross talk between visceral and subcutaneous WAT and cardiovascular tissues. Many of these adipokines, including adiponectin, leptin, and inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α (TNF-α), are also produced by PVAT. Furthermore, because PVAT is an integral part of...
the vasculature, it may have more immediate and direct effects on the vessels it envelops, as compared with visceral or subcutaneous WAT, which would require long-distance transport of messengers. The close proximity of PVAT and the underlying fibroblasts, vascular smooth muscle cells (VSMCs), or endothelial cells (ECs) also suggests the possibility of paracrine signaling between these tissues. However, although PVAT is involved in adipokine secretion, several studies have uncovered that PVAT shares several important features with BAT. These include morphological characteristics, including several small, multilocular lipid droplets and abundant mitochondria. The similarities extend to the transcriptional profile as well, with nearly overlapping gene expression profiles between BAT and PVAT in a rodent model, including high expression of UCP-1, Cidea, and other genes known to be expressed by BAT.24 Our own study also found a similar proteomic profile between thoracic PVAT and BAT.25 Moreover, in accordance with published reports of BAT’s role in clearing lipids under extreme low temperature stimulation,26 we also found that PVAT-free mice were impaired in their ability to regulate triglyceride levels and intravascular temperature.25 It is now accepted that white (and beige) adipocytes do not share a common lineage with brown adipocytes. White and beige adipocytes derive from a Pdgfr-α+ precursor.27 Furthermore, there is a possibility that mature white adipocytes may be capable of directly differentiating into beige adipocytes under appropriate conditions. A recent study demonstrated that beige adipocytes may derive from smooth muscle–like precursors.28 On the contrary, brown adipocytes share a lineage with skeletal muscle cells15,27 (Figure 2). Unexpectedly, our study suggested that the origin of PVAT adipocytes may yet be distinct from either white or brown adipocytes. Using peroxisome proliferator–activated receptor-γ (PPARγ)-floxed mice crossed to SM22α-Cre knock-in mice, we were able to generate mice completely devoid of PVAT with brown adipocytes. White and beige adipocytes share a common precursor.27 Aortic and mesenteric perivascular adipose tissue (PVAT) adipocytes are derived from SM22α+ progenitors. Interscapular brown adipocytes differentiate from Myf5+ precursors common to skeletal muscle cells;15,27 Subcutaneous and visceral white and beige adipocytes derive from Pdgfr-α+ progenitors.27 Aortic and mesenteric perivascular adipose tissue (PVAT) adipocytes are derived from SM22α+ progenitors.15,27 Although it is unclear whether preadipocytes of PVAT share common precursors with vascular smooth muscle cells (VSMCs) and whether VSMCs can transdifferentiate into PVAT adipocytes. Additionally, with ectopic expression of Prdm1–BF-1–RIZ1 homologous domain–containing protein-16 (PRDM16), skeletal myocytes transdifferentiate into brown adipocytes28 and VSMCs into beige adipocytes.28 White adipocytes can be browned by stimulation with cold temperature or certain factors such as irisin.29,31 (Solid arrows indicate direct differentiation, and dashed arrows indicate transdifferentiation.)

Figure 2. Origin of different types of adipocytes. Even though all types of adipocytes differentiate from mesenchymal/mesodermal stem cells,30 brown, white, and beige adipocytes arise from different progenitors. Interscapular brown adipocytes differentiate from Myf5+ precursors common to skeletal muscle cells;15,27 Subcutaneous and visceral white and beige adipocytes derive from Pdgfr-α+ progenitors.27 Aortic and mesenteric perivascular adipose tissue (PVAT) adipocytes are derived from SM22α+ progenitors.15,27 Although it is unclear whether preadipocytes of PVAT share common precursors with vascular smooth muscle cells (VSMCs) and whether VSMCs can transdifferentiate into PVAT adipocytes. Additionally, with ectopic expression of Prdm1–BF-1–RIZ1 homologous domain–containing protein-16 (PRDM16), skeletal myocytes transdifferentiate into brown adipocytes28 and VSMCs into beige adipocytes.28 White adipocytes can be browned by stimulation with cold temperature or certain factors such as irisin.29,31 (Solid arrows indicate direct differentiation, and dashed arrows indicate transdifferentiation.)

Methods of PVAT
Mechanical Protection
The classical understanding of blood vessel anatomy includes the intima, media, and adventitia. These layers are formed by strong networks of collagen and elastic fibers, whereas the perivascular area is filled by thin lamellae of PVAT.30 The amount of PVAT surrounding the vessels varies based on anatomic location and caliber of the vessel; PVAT is very abundant on the aorta and absent from cerebral vasculature and microvasculature.31 It has long been accepted that PVAT offers mechanical protection of the vessels against neighboring tissue during contraction.16 Indeed, methods for preparing blood vessels for experimental manipulation ex vivo routinely begin by cleaning the vessel, essentially removing the PVAT. Although these mechanical protective functions are undoubtedly important to large vessels, such as the aorta, it is becoming increasingly clear that there is considerably more to PVAT biology.

Vasodilator Effects
Because PVAT was thought to only have a mechanical role as a connective tissue, its removal was deemed to have little effect on the contractile function of blood vessels. The first hint of an expanded function for PVAT came in 1991 with a report of PVAT-mediated contractile regulation in rat aorta.32 Still, more than a decade passed before PVAT function was studied in...
earnest. Like other adipose tissues, PVAT acts as an endocrine organ, secreting a wide range of bioactive molecules that influence VSMC contraction, proliferation, and migration. PVAT-derived factors may also directly influence endothelial function to relax vessels. In addition, the entire perivascular tissue is involved in the inflammatory response to vascular injury. This suggests that communication flows bidirectionally between PVAT and cells of the vessel wall. In support of this, there is accumulating evidence that PVAT has vasodilator effects (also termed anticontractile effects) in various vascular beds, and this function has been shown to be impaired in hypertension and metabolic syndrome. Substantial evidence exists that adipose-derived factors, such as leptin, resistin, and TNF-α, secreted under conditions of inflammation, can attenuate vasodilatation, and such factors may be produced by PVAT. Indeed, a recent study demonstrated the importance of inflammation in PVAT-mediated regulation of vascular tone. Mice were generated to lack rickter, an essential mammalian target of rapamycin complex 2 component, which acts to limit inflammation, specifically in adipose tissue, including PVAT. The resultant mice had increased markers of inflammation in PVAT, including interleukin-6, macrophage inflammatory protein 1 alpha (MIP-1α), and TNF-α, and decreased ability of PVAT to regulate vascular tone. Although it is clear that PVAT exerts a dynamic effect on vascular tone, no single factor responsible for this vasodilator effect has been identified. In the meantime, the term PVAT-derived relaxing factor (PVRF, originally adventitium-derived relaxing factor) has been coined.

Several compounds have been proposed to constitute PVRF, including adiponectin, H₂S, NO, angiotensin 1 to 7, and palmitic acid methyl ester. We have also reported that PVAT-derived prostacyclin may be a PVRF. Although prostacyclin is a potent vasodilator secreted by ECs, it is also readily detectable in PVAT. It is well established that aging and hypertensive subjects have vascular dysfunction characterized by acetycholine-induced vessel constriction. We demonstrated that incubation with PVAT completely blocked the acetycholine-induced constriction of vessel rings from aged mice, although this effect was blocked with a prostacyclin receptor antagonist, reinforcing that PVAT-derived prostacyclin acts on other vascular cells to reduce contractility and defining it as a putative PVRF. In support of our findings using a murine model, a recent study has found both prostacyclin and prostaglandin E2 from PVAT to induce relaxing effects in human saphenous vein graft preparations. However, the same study found prostanoids to be dispensable for the relaxing effects of PVAT on internal mammary arteries, suggesting that PVAT of different locations may use different PVRFs.

As for the downstream effects of PVRF, release of NO and subsequent K⁺ channel activation may be involved. Experimental evidence for this includes the relaxation of PVAT-stripped aortic rings ex vivo after transfer into an incubation solution containing PVAT. This PVAT-dependent effect was further blocked by EC removal, NO synthase inhibition, scavenging of NO, high extracellular K⁺, or blockade of calcium-dependent K⁺ channels. Additionally, PVRF may act through endothelium-independent mechanisms involving H₂O₂ production and subsequent activation of guanylyl cyclase. However, these experiments have been performed on vessel rings isolated from rodents, in the presence or absence of the PVAT layer. Therefore, the applicability in vivo, especially in regard to human physiology, remains to be determined.

Contractile Effects

In addition to the vasodilator effects of PVAT, there is also considerable evidence of contractile functions of PVAT on the underlying vascular bed. Save for renin, all of the components of the renin–angiotensin system have been detected in PVAT, as well as angiotensin receptor 1 and b. Electrical stimulation-induced contraction of vessel rings was dependent on intact PVAT, and this effect was shown to involve angiotensin II. Furthermore, in vivo studies have also demonstrated that PVAT-derived angiotensin II is involved in electrically induced vessel contraction. Norepinephrine is found in PVAT, and we observed that α-adrenergic receptor antagonists block PVAT-induced constriction of vessel rings (Chang L et al, unpublished data, 2014). Furthermore, PVAT was shown to enhance the mesenteric arterial contractile response to perivascular nerve stimulation via superoxide production. During the last year, there has been a surge of reports on the contractile effects of PVAT, especially in the context of obesity. Meyer et al described the vasconstrictive effects of PVAT from obese mice and named the putative molecule(s) responsible for this effect adipose-derived contracting factor. This report found cyclooxygenase to be responsible for the contractile effects of PVAT during obesity, whereas an article from a different group reported chemerin to be responsible for vasoconstriction in obesity. A study using a porcine model uncovered that the procontractile effects of PVAT were enhanced in obese swine. Interestingly, although one report excluded superoxide anions, NO synthase, or endothelin receptors as vasoconstrictive agents in obesity, a separate study reported that superoxide production by PVAT was responsible for arterial stiffening in aged mice, indicating that PVAT may produce multiple adipose-derived contracting factors. However, the contractile effects of PVAT on vessels depend on the overall physiology of the organism and the anatomic location of the PVAT. Indeed, we have unpublished data suggesting that the hierarchies of PVAT contractile ability are as follows: thoracic PVAT>abdominal PVAT>mesenteric PVAT and PVAT of lean mice>PVAT of obese mice.

Thermoregulation

Although white adipocytes are involved in energy storage, brown and beige adipocytes are associated with dissipating energy during nonshivering thermogenesis. Both rodent and human thoracic PVAT comprise UCP-1-positive brown or beige adipocytes, indicating that PVAT is also capable of thermogenesis. This capability is physiologically and pathophysiologically significant. Our recent study using a mouse model lacking PVAT demonstrated that intravascular temperature was indeed regulated by PVAT. Similar to the ability of BAT to enhance clearance of plasma cholesterol, PVAT reduces plasma cholesterol in response to stimuli by moderate cold temperature (16°C). This function of PVAT is important for the biology of the vasculature because the development of atherosclerosis was reduced when the mice were housed...
in 16°C. Additionally, it is known that a blood temperature gradient exists in humans, with the vasculature closest to the heart having the highest temperatures, and it is likely that PVAT plays an essential role in maintaining this gradient. With a possible role for the metabolism of lipids and atherogenesis, PVAT-dependent thermoregulation is an area that requires further study, both in humans and animal models.

Autocrine/Paracrine Effects

PVAT produces many putative vasoactivators, including PVAT-derived contracting factors (PDCFs) and PVAT-derived relaxing factors (PDRFs). In addition, PVAT has been reported to produce several other molecules with possible autocrine or paracrine effects, which has recently been extensively reviewed. These include adipokines, such as leptin, adiponectin and resistin, visfatin, hepatic growth factor, and others. Adipose tissue is intimately associated with inflammation, and PVAT releases several cytokines, including TNF-α, interleukin-1, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 (MCP-1), reactive oxygen species (superoxide, NO, and H₂O₂), and H₂S. Hormones including prostaglandins and angiotensin 1 to 7 are also produced. Many of these molecules have effects on the development of atherosclerosis and will be discussed below. It is clear that PVAT is a complex, active organ with several functions beyond mechanical protection for the underlying vascular bed.

In summary, vascular beds are surrounded by PVAT that varies with anatomic location and developmental origin and which can be characterized as either WAT or BAT. Although all PVAT shares functions common with adipose tissue, including autocrine/paracrine effects, some specific differences are apparent. For example, thoracic PVAT is distinct from mesenteric PVAT because thoracic PVAT most closely resembles thermoactive BAT. These differences are illustrated in Figures 1 and 3. These distinct PVAT depots constitute an area ripe for study. Thus, it is currently unclear whether there are any differences on procontractile or anticontractile effects between thoracic PVAT and mesenteric PVAT. Additionally, the functional analysis of PVAT bioenergetics will help determine the impact of PVAT thermogenesis on systemic metabolism, highlighting possible avenues for future research.

Pathologies in Animal Models With Reduced or Absent PVAT

Regulation of Blood Pressure and Metabolism

There are now several published rodent models with reduced or absent PVAT. The A-ZIP/F mouse expresses the dominant-negative protein A-ZIP/F under the control of the adipose-specific aP2 promoter. These mice are free of WAT and have dramatically reduced BAT and PVAT throughout their lives. In these mice, free fatty acids and triglycerides remain high, and insulin resistance and glucose intolerance develop. In addition, there is evidence of increased inflammation and proinflammatory cytokines. These findings suggest that PVAT has an important role in regulating blood pressure and metabolism, and that its absence can lead to deleterious effects on these parameters.
The loss of WAT induces complex physiological phenotypes in these mice, including diabetes mellitus and hypertension. They also display altered vascular contractile functions, but ex vivo incubation of A-ZIP/F aortas with wild-type (WT) PVAT does not rescue these defects, indicating that the transgenic mice may have dysfunctional aortas unrelated to the absence of PVAT. This conclusion is supported by the finding that compared with WT aortas, A-ZIP/F aortas have higher expression of AT1, but not AT2, receptors.

Similar to the A-ZIP/F mouse, an innovative model of inducible adipose deletion has been generated. This transgenic mouse, dubbed fat apoptosis through targeted activation of caspase 8, makes use of a caspase 8-FKBPv (Phe36Val mutant FKBP) fusion protein under control of the adipocyte-specific Fabp4 promoter. Mice grow normally, including normal development of all adipose tissues, until fusion protein dimerization is induced by the FK1012 analog AP20187. Two weeks postinduction, adipose tissues are reduced to near-knockout levels. Induced fat apoptosis through targeted activation of caspase 8 mice develop phenotypes similar to A-ZIP/F mice, with glucose intolerance and reduced systemic inflammation. Notably, the fusion protein induces apoptosis and depletion of both WAT and BAT, although the effects on PVAT and blood pressure (BP) are unknown at this time.

Duan et al reported a mouse model that lacks interscapular BAT, as well as mesenteric, perirenal, subcutaneous, epididymal, and periovarian adipose tissue. This strain was generated to rescue the embryonic lethality of global PPARγ knockout by breeding Mox2-Cre (MORE) mice with floxed PPARγ MORE-PGKO mice to inactivate PPARγ in the embryo but not the trophoblast. These transgenic mice are hypotensive and have other phenotypes relevant to CVD, including insulin resistance and lipodystrophy. These mice have impaired contraction of the VSMCs in response to α-adrenergic agents, and the angiotensin–aldosterone system is mildly activated.

Vascular Remodeling Effects of PVAT
In addition to the effects on vascular tone, PVAT is involved in atherosclerosis, a vascular disease with a strong inflammatory component. Although the endothelium and media are the major players of the development of atherosclerotic lesion, there is increasing evidence of important roles played by other layers of the vessel. For example, the adventitia, comprising fibroblasts, has been implicated in vascular remodeling and constriction of the external lamina by the accumulation of smooth muscle-containing myofibroblasts in the area surrounding the injury site. Indeed, inhibition of myofibroblast proliferation and recruitment affects vascular remodeling and reduces vessel constriction. Similarly, the inflammatory response to arterial angioplasty includes the PVAT. These results suggest that PVAT is closely involved with vascular remodeling and underscores the idea that PVAT constitutes an integral layer of the vasculature. Regarding the roles of PVAT on development of atherosclerosis, current research indicates dual effects: proatherosclerotic and antiatherosclerotic.

Proatherosclerotic Effects of PVAT
The inflammatory cells resident in and recruited by PVAT have been hypothesized to be responsible for myofibroblast recruitment or proliferation, contributing to vascular remodeling. Consistent with this, a recent study using a murine model of chronic inflammation via TNF-α injection found that PVAT inflammation led to matrix metalloproteinase (MMP)-mediated transforming growth factor-β production, resulting in neointima formation. In addition, vascular injury has been reported to upregulate proinflammatory adipokines and downregulate anti-inflammatory adiponectin in PVAT in both mice and rats. Furthermore, a high-fat diet in mice was found to induce a proinflammatory phenotype in the PVAT. This same study also analyzed depots of human adipose tissue. In comparison with subcutaneous and visceral adipose tissue, PVAT was found to have less-differentiated adipocytes and a more inflammatory signature, with lower expression of adiponectin and higher interleukin-6, interleukin-8, and MCP-1. More recently, a study highlighted the effect of leptin on neointima formation after vascular injury. Diet-induced obesity increased leptin levels in WT mice, leading to increased vascular remodeling after injury, although this effect was not observed in leptin-deficient ob/ob mice. Adenoviral vector-induced overexpression of leptin also led to increased neointima formation in this model. Interestingly, the authors also found leptin-independent effects of inflamed PVAT on vascular remodeling. These results suggest that PVAT is primed for inflammatory responses. Indeed, the accumulation
of macrophages and T cells at the PVAT-adventitia interface in human atherosclerotic aortas indicate that PVAT recruits proinflammatory cells in atherogenesis. The idea that PVAT can play such a significant role in the inflammatory response to atherosclerosis was experimentally tested by transplanting adipose tissue to the midperivascular area of the common carotid arteries, which do not normally develop atherosclerosis, in apolipoprotein-E-deficient mice. Transplant of proinflammatory visceral WAT resulted in atherosclerotic lesions and increased inflammatory markers, compared with transplantation of noninflammatory subcutaneous WAT. A postmortem study of atherosclerotic patients likewise found that the PVAT mass was positively correlated with atherosclerotic plaque size. Additionally, PVAT adipocytes release more angiogenic factors, including acidic fibroblast growth factor, thrombospondin-1, serpin-E1, MCP-1, insulin-like growth factor-binding protein-3, and hepatocyte growth factor, compared with other adipocyte cell types. PVAT was found to be the only adipose tissue that independently correlated with serum hepatocyte growth factor levels in patients. This implies that PVAT-derived hepatocyte growth factor, which stimulates endothelial cell growth and cytokine release from SMC, is a mediator of PVAT effects in vascular remodeling. In addition, chronic kidney disease is a risk factor for atherosclerosis, and a recent study demonstrated that PVAT plays a role in this effect. Uninephrectomized mice were found to have activation of the renin–angiotensin system in PVAT, which led to increased atherosclerosis.

Antiatherosclerotic Properties of PVAT

Aside from the role inflammation plays in atherosclerosis development, impaired energy metabolism in the blood vessels is associated with atherogenesis. Temperature has long been recognized to influence energy metabolism, and one of the main roles of BAT is to provide adaptive thermogenesis. As PVAT has a phenotype similar to BAT, including expression of UCP-1 which is necessary for nonshivering thermogenesis, it is possible that heat generation is involved in vascular physiology. Indeed, we recently reported that PVAT is thermogenic and critical to the maintenance of intravascular temperature. In mammals, the vasculature reacts to changes in temperature, which involve both endothelial and SMC function. In humans, an intravascular temperature gradient exists, with temperature increasing in large veins as blood approaches the heart. Human BP is also increased following exposure to either hot or cold stimulation, although it is not yet known whether this function is associated with PVAT. At the same time, it is not known whether intravascular temperature regulates vessel energy metabolism, thereby influencing atherogenesis. However, as local energy metabolism affects atherosclerosis development, as discussed above, it can be proposed that increased energy production in PVAT affects vessel biology under pathological conditions. Indeed, we were able to activate PVAT thermogenesis by housing mice at a reduced temperature (16°C), which was associated with reduced development of atherosclerosis. Importantly, plasma triglyceride levels were reduced under these conditions, suggesting that the increased metabolic activity of PVAT may result in lipid clearance from the vasculature, thereby reducing atherogenesis. PVAT-free mice housed in similar cold conditions did not have comparable reductions in atherosclerosis, underscoring the necessity of PVAT for this phenotype. Human studies have reported that individuals living in cold climates have active BAT in the periaortic region of adults and that activation of BAT and PVAT in rodents results in reduced plasma lipid levels. However, it is unclear whether cold exposure in humans activates PVAT thermogenesis leading to protection from atherosclerosis. Exposure to both heat and cold are associated with increased incidences of mortality from heart attacks in humans, although we need carefully controlled epidemiological studies to determine whether cold exposure is beneficial in preventing the development of atherosclerosis.

As discussed above, vascular inflammation is proatherosclerotic, although we did not observe a decrease in PVAT inflammation in high-fat diet–fed mice housed in a cold environment, indicating that the antiatherogenic effects of cold stimulation on PVAT likely act through a different pathway. However, a study demonstrated that mice fed a high-fat diet had relatively less induction of inflammation in PVAT and BAT, compared with WAT, suggesting that PVAT may have a nominally anti-inflammatory effect on the vasculature. From these observations, it is clear that PVAT has a profound effect on the development of atherosclerosis. As extensively reviewed previously, PVAT inflammation occurs during high-fat diet challenge and is intimately linked to atherosclerosis development. However, the thermogenic properties of PVAT may reduce plasma triglyceride levels, leading to reduced atherosclerosis. These paradoxical effects nevertheless suggest that PVAT may be an attractive target for atherosclerosis interventions and warrants further study of the role of this tissue on vascular disease.

Perspective

PVAT is increasingly being accepted as an integral part of the vasculature, and it is clear that functional PVAT is necessary to maintain vascular physiology. Regarding the effects of PVAT on vascular diseases, it is still unclear whether dysfunctional PVAT leads to vascular disease or if vascular lesions lead to dysfunctional PVAT. Current evidence from experimental animals and the clinic does not adequately answer this question. There is an urgent need for animal models that modify genes or proteins solely in PVAT. Additionally, the anatomy of PVAT is complex: (1) although most vessels are surrounded by PVAT, some, including cerebral vasculature, are not; (2) PVAT of vessels in different locations exhibits different phenotypes, with characteristics resembling white, brown, beige, or perhaps a new type of adipose tissue; and (3) the type of PVAT differs between species.

Along with the investigation of the effects of PVAT on vascular diseases such as hypertension and atherosclerosis, it is essential to study the effects of PVAT on cardiovascular complications of other diseases, such as diabetes mellitus and systemic immune disease. Conversely, it is also important to study the effects of these diseases on PVAT biology. To date, there have been considerable data on factors released by
PVAT, including the PDRFs and PDCFs, although there is a dearth of information on the molecular targets of these factors and which cells they may target. It is important to delineate the receptors on fibroblasts, VSMCs, and ECs that receive the signals produced by PVAT to investigate the cross talk between all of the cell types of the vasculature. Finally, the possibility that PVAT-mediated thermogenesis and PVAT energy metabolism at large could play a protective role in vascular disease should be systematically addressed as a new potential target for intervention.

Acknowledgments
We thank Dr Minerva Garcia-Barrio at Morehouse School of Medicine for critical reading of the manuscript.

Sources of Funding
This work was supported by the National Institutes of Health grants HL068878, HL105114, and HL088391 (to Y.E. Chen) and by the American Heart Association National Scientist Development Grant (09SDG2230270 to L. Chang).

Disclosures
None.

References
Perivascular Adipose Tissue in Vascular Function and Disease: A Review of Current Research and Animal Models

Nicholas K. Brown, Zhou Zhou, Jifeng Zhang, Rong Zeng, Jiarui Wu, Daniel T. Eitzman, Y. Eugene Chen and Lin Chang

Arterioscler Thromb Vasc Biol, 2014;34:1621-1630; originally published online May 15, 2014; doi: 10.1161/ATVBAHA.114.303029

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/34/8/1621

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/