New Targets for Atherothrombosis

Nigel Mackman

Atherothrombotic plaques contain a variety of highly thrombogenic material, such as the platelet activator collagen and the procoagulant protein tissue factor. Atherothrombosis describes the formation of a thrombus after rupture or erosion of an atherothrombotic plaque. An occlusive thrombus in coronary and carotid arteries induces myocardial infarction and stroke, respectively. Arterial clots are platelet rich, so patients with cardiovascular disease are treated prophylactically with antiplatelets drugs, such as aspirin and clopidogrel. Importantly, the recent clinical trial (ATLAS ACS 2-TIMI 51 [The Anti-Xa Therapy to Lower Cardiovascular Events in Addition to Standard Therapy in Subjects with Acute Coronary Syndrome]) showed that addition of low doses of the direct oral antifactor Xa drug rivaroxaban to standard antiplatelet therapy in patients with recent acute coronary syndrome reduced death from cardiovascular causes, myocardial infarction, or stroke. However, the addition of the anticoagulant was associated with increased rates of major bleeding and intracranial hemorrhage. An earlier trial (APPRAISE-2 [The Apixaban for Prevention of Acute Ischemic Events 2]) with the factor Xa inhibitor apixaban was terminated prematurely because of an increase in major bleeding events. Therefore, there is a need for a safer anticoagulant that reduces atherothrombosis without increasing bleeding.

See accompanying articles on pages 1668 and 1674

Anticoagulant drugs that are used to treat or prevent thrombosis target the common pathway of coagulation that is also required for hemostasis. However, there is a growing interest in developing safer anticoagulant drugs that target the intrinsic pathway of coagulation (factor Xla, factor Xla, and factor IXa). This pathway amplifies the clotting cascade but unlike the extrinsic (tissue factor and factor VIIa) and common pathways (factor Xa and thrombin; Figure) is not essential for hemostasis. Interestingly, 2 articles in this issue of Arteriosclerosis, Thrombosis and Vascular Biology show that either inhibition of factor Xla or a reduction in factor XI reduced atherothrombosis in a mouse model. These findings are significant because thrombosis is reduced without an increase in bleeding, and they study thrombosis in atherosclerotic carotid arteries.

Numerous studies have analyzed the role of different clotting factors in models of arterial thrombosis. The most popular is the ferric chloride carotid artery thrombosis model. Topical application of ferric chloride induces oxidative damage of the vessel wall and formation of an occlusive thrombus that is monitored using a flow probe. Components of the extrinsic (tissue factor) and the intrinsic (factor XI and factor XII) coagulation pathways contribute to clot formation. The extrinsic and intrinsic pathways also play a role in thrombosis in other mouse models. However, the major limitation of these studies is that healthy vessels in young, healthy mice are injured rather than diseased vessels.

Feeding Apoe−/− mice a Western-type diet for 18 to 20 weeks induces atherosclerotic lesions in the aortic arch and carotid arteries. One study showed increased thrombosis in atherosclerotic carotid arteries of Apoe−/− mice, indicating that these carotid arteries are more thrombotic compared with healthy carotid arteries. However, it is rare for these lesions to rupture spontaneously. Importantly, the Heemskerk group recently developed a mouse model of acute atherothrombosis. Localized rupture of atherosclerotic plaques in carotid arteries is induced in vivo by ultrasound. Subsequent formation of thrombi is visualized by 2-photon laser scanning microscopy.

The 2 new studies used different approaches to analyze the role of the intrinsic coagulation pathway in atherothrombosis. Kuipers et al compared the effect of inhibition of factor Xla (intrinsic pathway) with inhibition of factor VIIa (extrinsic pathway) on atherothrombosis. Interestingly, inhibition of the factor VIIa in an active site inhibited factor VIIa (factor VIIai) reduced early thrombosis formation (0.5 minutes after plaque rupture) without affecting stability as measured by embolization. In contrast, inhibition of factor Xla with either corn trypsin inhibitor or r-1-antiplasmin did not affect the initial formation of the thrombus but reduced the size of the thrombus at a later time (2 and 10 minutes after plaque rupture), and increased embolization suggesting that this reduced the stability of the thrombus. Similarly, van Montfoort et al showed that lowering factor X level using an antisense oligonucleotide did not reduce thrombus formation at 1 and 3 minutes after plaque rupture but did reduce thrombus formation at 5 and 10 minutes. Furthermore, the number of fluorescent platelets shed from the thrombus was increased in mice with a lower level of factor X. Finally, administration of the factor X antisense oligonucleotide did not affect the tail bleeding time. An earlier study found no role of factor Xla in an in vitro model of atherothrombosis that used human atheromatous plaque material. However, this model may not accurately reproduce the complexity of thrombus formation in vivo. Taken together, these 2 studies indicate that both tissue factor/factor VIIa and factor Xla triggered coagulation contribute to atherothrombosis in this mouse model (Figure).

How do the tissue factor/factor VIIa and factor XII pathways interact during atherothrombosis? Interestingly, factor XII and
factor XI have been shown to play a role in tissue factor–induced thrombosis models in baboons and a tissue factor–induced pulmonary embolization in mice. These results suggest that after plaque rupture, tissue factor is the initial trigger that rapidly activates the coagulation cascade. This is followed by factor XIIa-dependent amplification of the clotting cascade. The delayed activation of factor XII is likely mediated by constituents of the plaque, such as collagen, nucleic acids, and polyphosphates. Importantly, inhibition of factor XIIa should be safer than anticoagulants that target factor Xa or thrombin because factor XIIa deficiency is not associated with major bleeding and would be a relatively safe target. Further studies are needed to compare directly the effect of inhibiting factor XIIa versus factor Xa.

Acknowledgments
I thank A. Phil Owens III for helpful comments and funding from the National Institutes of Health (HL006350).

Disclosures
None.

References

Key Words: anticoagulation, atherosclerosis, thrombosis
New Targets for Atherothrombosis
Nigel Mackman

Arterioscler Thromb Vasc Biol. 2014;34:1607-1608
doi: 10.1161/ATVBAHA.114.304005

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/34/8/1607

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/