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Vitamin D deficiency and hyperparathyroidism are associ-
ated with cardiovascular disease (CVD) risk.1–9 Low cir-

culating concentrations of 25-hydroxyvitamin D (25[OH]D) 
and elevated parathyroid hormone (PTH) have been linked to 
hypertension, insulin resistance, metabolic syndrome, coronary 
heart disease, congestive heart failure, CVD, and death.1,7–14

Increased arterial stiffness is associated with aging, fragmen-
tation of elastin fibers, and a decrease in the  elastin-to-collagen 
ratio in arterial walls.15 This process may underlie the devel-
opment of hypertension, CVD, cerebral dysfunction, and 
stroke16–20 because a rigid arterial tree is less able to accom-
modate the large pulsatile output from the heart. Increased 
vascular stiffness accelerates atherogenesis and is associated 
with an increase in cardiac morbidity and mortality.21 Vitamin 
D and PTH are closely linked and may affect vascular smooth 
muscle tone through the renin–angiotensin–aldosterone 
axis22 and may promote vascular endothelial growth factor.23 

Additionally, lymphocyte and monocyte/phagocyte differ-
entiations are modulated by vitamin D, thereby affecting the 
release of inflammatory cytokines that promote arterial plaque 
formation24 because heightened vascular smooth muscle tone, 
endothelial dysfunction, and plaque formation are directly 
linked to hypertension, coronary artery disease, and stroke. 
Increased vascular stiffness is a plausible mechanism through 
which 25(OH)D and PTH may affect CVD risk.2,16,17,21,25,26

Structural and functional alterations in the arterial bed, 
such as circumferential widening of large arteries and wall 
thickening, lead to changes in carotid artery distensibility 
and elasticity, measured with distensibility coefficient (DC) 
and Young’s elastic modulus (YEM), respectively. These are 
validated, noninvasive measures of arterial function, which 
characterize arterial stiffness15,27 and can identify individu-
als at increased CVD risk.21 Both measure the ability of an 
artery to expand and contract with each cardiac pulsation; 
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however, the major difference between these stiffness param-
eters is that YEM accounts for carotid artery wall thickness 
in an attempt to separate whether arterial stiffening is solely 
related to pressure differences or intrinsic changes in the 
arterial wall.15,18,27

A limited number of studies have evaluated the associa-
tions of elevated PTH and low 25(OH)D with increased 
arterial stiffness; however, these studies are limited by their 
small sample size and their cross-sectional design.2,28–30 The 
aim of this study was to explore the relationship between 
markers of bone-mineral metabolism and changes in arterial 
stiffness in an ethnically diverse cohort without clinically 
evident CVD.

Materials and Methods
Materials and Methods are available in the online-only Supplement.

Results
Baseline Characteristics
Baseline characteristics are shown in Table 1. Participants 
were a mean (SD) of 60.1 (9.4) years old, 54% were female, 
39.5% were white, 25.5% were black, 20.5% were Hispanic, 
and 14.5% were Chinese. The mean annualized 25(OH)
D was 26.3 (11.5) ng/mL and was <20 ng/dL in 816 (30%) 
participants and 20 to 30 ng/mL in 973 (36%) participants. 
The mean PTH was 43.5 (18.8) pg/dL and was >65 pg/dL in 
285 (11%) participants; 86% of subjects graduated from high 
school and 44% earned <$40000. The average physical activ-
ity score was 1665 MET-min/wk. At baseline, the mean DC 
was 3.1 (1.3)×10–3 mm Hg−1, and the mean YEM was 1591 
(938) mm Hg.

Cross-Sectional Associations With 
Arterial Stiffness Measurements
In cross-sectional analyses, continuous 25(OH)D was not 
associated with stiffness parameters before or after adjustment 
for CVD risk factors (P>0.1; Tables 2 and 3). When grouped 
by category of 25(OH)D concentrations, no significant trend 
toward increasing stiffness with lower 25(OH)D was observed 
after adjustment for traditional CVD risk factors (P>0.3; 
Figure). The strongest association with increased stiffness at 
examination 1 was seen in participants with 25(OH)D con-
centrations <20 ng/mL (lower DC, β=−1.6×10−4 mm Hg−1, 
P=0.01; higher YEM, β=107.2 mm Hg, P=0.03); however, 
these associations disappeared after adjustment for traditional 
CVD risk factors (P>0.4). As a continuous variable, 25(OH)
D concentration was not associated with arterial stiffness (DC, 
β=−2.4×10−7 mm Hg−1, P=0.91; YEM, β=0.2 mm Hg, P=0.92; 
Tables 2 and 3, cross-sectional model 3).

At baseline, higher PTH concentrations were associated 
with greater stiffness demonstrated by lower DC (β=−2.5×10−6 
mm Hg−1, P=0.04) and higher YEM (β=1.98 mm Hg, P=0.06; 
Figure). This relationship seemed to be nonlinear, with 
overtly elevated PTH concentrations (≥65 pg/mL) being 
most strongly associated with differences in DC and YEM. 
Adjusting for CVD risk factors other than blood pressure, 
PTH >65 pg/mL was associated with lower DC (β=−2.4×10−4 
mm Hg−1, P=0.003) and higher YEM (β=166 mm Hg, P=0.01; 
Tables 4 and 5). However, these associations no longer were 
statistically significant when baseline systolic blood pressure 
(SBP) was included in the model (DC: β=−1.4×10−4 mm Hg−1, 
P=0.08; YEM: β=118 mm Hg, P=0.07).

Within race/ethnicity groups, there were no significant 
associations between baseline 25(OH)D and YEM or DC 
(all P>0.05). The associations of PTH with DC and YEM 
seemed strongest for Hispanic participants (DC: β=−3.6×10−4 
mm Hg−1, P=0.02; YEM: β=275 mm Hg, P=0.04), but the P 
values for the interaction of race/ethnicity with PTH were not 
statistically significant for DC (P=0.15) or YEM (P=0.08).

Longitudinal Associations With 
Arterial Stiffness Measurements
DC decreased from 3.1 (1.3)×10–3 mm Hg−1 at examination 
1 to 2.7 (1.2)×10–3 mm Hg−1 at examination 5, and YEM 
increased from 1591 (938) mm Hg at examination 1 to 1754 
(1340) mm Hg at examination 5, both indicating progression 
of arterial stiffness during the follow-up period. Longitudinal 
changes in DC and YEM were associated with older age 
(DC: β=−2.0×10−5 mm Hg−1, per year, P<0.0001; YEM: 
β=13.4 mm Hg, per year, P<0.0001) and higher SBP (DC: 
β=−2.9×10−6 mm Hg,1 P=0.007) and use of antihypertensive 
medication (YEM: β=157.4 mm Hg, P=0.006). No associa-
tions or even trends were observed between baseline 25(OH)
D or PTH and carotid stiffness (all P>0.3) with or without 
adjustment for baseline DC and YEM. Additionally, those 
with baseline PTH >65 pg/mL or 25(OH)D <20 also were not 
associated with a significant change in DC or change in YEM 
after nearly 10 years of follow-up (Tables 2 and 3) compared 
with the reference groups.

Within race/ethnicity groups, no significant associations 
between 25(OH)D and PTH with longitudinal changes in 
YEM or DC were observed (all P>0.05), and the P values for 
the interaction of race/ethnicity with PTH were not statistically 
significant for changes in DC (P=0.15) or YEM (P=0.96).

Discussion
In the current analysis, we observed a cross-sectional associa-
tion of higher PTH concentrations with increased arterial stiff-
ness that was independent of CVD risk factors except baseline 
SBP. No associations were present for 25-OHD. After nearly 
a decade of aging, neither baseline PTH nor 25-OHD con-
centrations were associated with changes in arterial stiffening.

Potentially deleterious effects of vitamin D deficiency on 
CVD risk have been described and have even led some cli-
nicians to promote vitamin D supplementation for CVD risk 
reduction.1,5–7,31 A relationship between low vitamin D concen-
trations and increased arterial stiffness has been described in 

Nonstandard Abbreviations and Acronyms

CVD cardiovascular disease

DC distensibility coefficient

PTH parathyroid hormone

SBP systolic blood pressure

YEM Young’s elastic modulus
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cross-sectional observational studies2,25,29; however, the effects 
of vitamin D status on longitudinal changes in arterial stiff-
ness are less clear. Our results are in accordance with small 
randomized controlled trials of vitamin D supplementation, 
which failed to demonstrate improvements in arterial stiffness 
with vitamin D supplementation,28,32 although the longest of 

these trials only followed subjects for 3 years.28 Relationships 
between vitamin D concentrations and CVD end points have 
been mixed. For example, low vitamin D concentrations have 
been associated with increased risk of incident coronary 
heart disease33 and presence of coronary artery calcium,34,35 
but not with congestive heart failure or carotid intima-media 

Table 1. Baseline Participant Characteristics

All Subjects

Annualized 25(OH) Vitamin D, ng/mL Parathyroid Hormone, pg/mL

<20.0 20.0–29.9 ≥30.0
Tertile 1
<32.8

Tertile 2
32.8–43.7

Tertile 3
43.8–65.0 >65.0

Number of subjects 2707 816 973 918 806 808 808 285

Age, y 60.1 (9.4) 58.6 (9.2) 60.3 (9.4) 61.3 (9.3) 58.8 (9.2) 59.6 (9.5) 61.3 (9.3) 61.9 (9.2)

Female sex, % 1449 (53.5) 459 (56.3) 481 (49.4) 509 (55.5) 429 (53.2) 415 (51.4) 429 (53.1) 176 (61.8)

Ethnicity, %

  White 1070 (39.5) 145 (17.8) 388 (39.9) 537 (58.5) 395 (49.0) 328 (40.6) 276 (34.2) 71 (24.9)

  Black 691 (25.5) 406 (49.8) 194 (19.9) 91 (9.9) 127 (15.8) 189 (23.4) 259 (32.1) 116 (40.7)

  Chinese 392 (14.5) 93 (11.4) 176 (18.1) 123 (13.4) 155 (19.2) 138 (17.1) 86 (10.6) 13 (4.6)

  Hispanic 554 (20.5) 172 (21.1) 215 (22.1) 167 (18.2) 129 (16.0) 153 (18.9) 187 (23.1) 85 (29.8)

Blood pressure parameters, mm Hg

  SBP 123.7 (20.1) 125.8 (20.9) 123.5 (20.0) 122.0 (19.4) 119.6 (19.0) 121.7 (18.9) 127.0 (20.5) 131.3 (22.0)

  DBP 71.7 (10.1) 73.1 (10.2) 71.7 (10.0) 70.5 (9.9) 70.6 (9.6) 71.3 (10.0) 72.7 (10.2) 73.3 (10.8)

  Hypertension, % 1160 (42.9) 376 (46.1) 426 (43.8) 358 (39.0) 277 (34.4) 323 (40.0) 398 (49.3) 162 (56.8)

  HTN meds, % 896 (33.1) 295 (36.2) 330 (33.9) 271 (29.5) 212 (26.3) 258 (31.9) 304 (37.7) 122 (42.8)

Diabetes mellitus status, %

  IFG 329 (12.2) 120 (14.7) 122 (12.6) 87 (9.5) 86 (10.7) 95 (11.8) 109 (13.5) 39 (13.7)

  Untreated 43 (1.6) 14 (1.7) 25 (2.6) 4 (0.4) 12 (1.5) 8 (1.0) 18 (2.2) 5 (1.8)

  Treated 200 (7.4) 76 (9.3) 83 (8.5) 41 (4.5) 68 (8.5) 53 (6.6) 54 (6.7) 25 (8.8)

Lipid levels, mg/dL

  Total cholesterol 194.1 (34.8) 193.4 (36.6) 192.8 (34.3) 196.0 (33.6) 195.1 (34.9) 193.1 (34.7) 195.2 (34.4) 190.5 (35.7)

  LDL-C 117.1 (30.4) 118.7 (32.5) 116.5 (29.9) 116.3 (29.1) 117.3 (29.3) 116.8 (30.8) 118.3 (30.5) 114.1 (32.4)

  HDL-C 51.6 (15.3) 50.3 (14.7) 50.1 (14.7) 54.3 (16.0) 51.8 (14.6) 50.8 (15.0) 51.7 (15.9) 52.8 (16.1)

  Triglycerides 127.7 (81.2) 122.3 (88.9) 132.0 (78.0) 128.1 (77.2) 130.1 (78.7) 128.3 (90.2) 128.6 (79.7) 117.1 (63.3)

  Lipid-lowering meds, % 421 (15.6) 109 (13.4) 157 (16.1) 155 (16.9) 112 (13.9) 118 (14.6) 135 (16.7) 56 (19.7)

BMI, kg/m2 27.8 (5.0) 29.2 (5.3) 27.7 (4.8) 26.5 (4.4) 26.5 (4.5) 27.6 (4.8) 28.5 (5.0) 29.7 (5.7)

Waist, cm 96.4 (13.7) 99.4 (14.0) 96.7 (13.7) 93.3 (12.6) 93.0 (12.9) 95.8 (13.4) 98.5 (13.1) 101.5 (15.4)

Smoking status, %

  Former 965 (35.7) 283 (34.7) 343 (35.3) 339 (36.9) 289 (35.9) 280 (34.7) 295 (36.5) 101 (35.4)

  Current 312 (11.5) 121 (14.9) 105 (10.8) 86 (9.4) 103 (12.8) 100 (12.4) 84 (10.4) 25 (8.8)

Creatinine, mg/dL 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 1.0 (0.3)

Calcium, mg/dL 9.6 (0.4) 9.6 (0.4) 9.6 (0.4) 9.7 (0.4) 9.6 (0.4) 9.7 (0.4) 9.6 (0.4) 9.6 (0.4)

Phosphorous, mg/dL 3.7 (0.5) 3.7 (0.5) 3.6 (0.5) 3.7 (0.5) 3.8 (0.5) 3.7 (0.5) 3.6 (0.5) 3.5 (0.5)

CRP, mg/L 3.3 (4.9) 3.8 (4.8) 3.1 (4.9) 3.1 (5.0) 2.7 (4.0) 3.3 (5.0) 3.6 (4.7) 4.3 (6.9)

25(OH)D, ng/mL 26.3 (11.5) 14.3 (3.8) 25.0 (2.9) 38.4 (9.7) 30.2 (11.1) 27.5 (11.8) 23.6 (10.6) 19.8 (9.4)

Parathyroid hormone, pg/mL 43.5 (18.8) 51.4 (22.7) 42.7 (16.7) 37.2 (14.0) 26.1 (4.8) 38.0 (3.3) 52.6 (5.9) 82.2 (22.2)

Carotid wall thickness, cm 0.148 (0.031) 0.150 (0.032) 0.148 (0.031) 0.147 (0.030) 0.142 (0.029) 0.147 (0.030) 0.153 (0.033) 0.153 (0.032)

PSI diameter, cm 0.628 (0.075) 0.630 (0.075) 0.631 (0.074) 0.623 (0.075) 0.620 (0.072) 0.628 (0.074) 0.633 (0.074) 0.636 (0.081)

EDI diameter, cm 0.582 (0.071) 0.584 (0.071) 0.584 (0.070) 0.576 (0.071) 0.573 (0.068) 0.582 (0.070) 0.586 (0.071) 0.591 (0.076)

YEM, mm Hg 1591 (938) 1652 (1011) 1599 (904) 1528 (902) 1493 (799) 1574 (915) 1626 (1044) 1815 (1006)

DC, 10–3 mm Hg−1 3.1 (1.3) 3.0 (1.2) 3.1 (1.3) 3.2 (1.2) 3.3 (1.3) 3.2 (1.3) 3.0 (1.2) 2.7 (1.1)

All values are mean (SD) unless noted otherwise. 25(OH)D indicates serum 25-hyroxyvitamin D; BMI, body mass index; CRP, c-reactive protein; DBP, diastolic blood 
pressure; DC, distensibility coefficient; EDI, end-diastolic internal; HDL-C, high-density lipoprotein–cholesterol; HTN, hypertension; IFG, impaired fasting glucose; LDL-C, 
low-density lipoprotein–cholesterol; meds, medication; NA, not applicable; PSI, peak systolic internal; SBP, systolic blood pressure; and YEM, Young’s elastic modulus.
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thickness.36 Associations between low circulating vitamin D 
concentration and CVD risk may also be partly confounded 
by CVD risk factors such as obesity and inactivity.37 The only 
large, long-term randomized controlled trial of vitamin D 
supplementation showed no change in CVD events during a 
7-year period.38

High PTH concentrations have been associated with poor 
CVD outcomes9 in observational studies.29,30 In previous 
cross-sectional analysis among the Multi-Ethnic Study of 
Atherosclerosis (MESA) participants, higher PTH concentra-
tions were associated with increased blood pressure, higher 
central aortic pressure, and lower large artery elasticity.39 PTH 

levels seem to be more strongly associated with congestive 
heart failure events than coronary heart disease events.9 The 
results of the present study agree with previously reported 
studies describing cross-sectional associations between ele-
vated PTH and increased carotid stiffness measures; however, 
the results were blunted when SBP was included in the model. 
This suggests that the cross-sectional associations between 
arterial stiffness and PTH may be mediated through blood 
pressure. It also is possible that the baseline SBP is more col-
linear with DC and YEM because pulse pressure, which takes 
blood pressure into account, is a part of the formulae used to 
calculate these outcome measures.

Table 3. Cross-Sectional and Longitudinal Associations of Serum 25(OH)D Concentrations and Young’s Elastic Modulus

Cross-Sectional Analyses Longitudinal Analyses*

Baseline Young’s Elastic Modulus, mm Hg
(95% Confidence Interval)

Change in Young’s Elastic Modulus, mm Hg†
(95% Confidence Interval)

25(OH)D, ng/mL

n

Beta Parameter

n

Beta Parameter

Model 1‡ Model 2‡ Model 3§ Model 4§ Model 1║ Model 2║ Model 3¶ Model 4¶

≥30.0 918 ref Ref ref Ref 872 ref ref ref ref

20.0–29.9 973 50.2
(−34.1, 134.6)

24.0
(−60.7, 108.7)

13.1
(−72.0, 98.2)

12.3
(−71.8, 96.3)

935 −75.6
(−188.3, 37.2)

−92.7
(−206.4, 21.1)

−91.0
(−205.4, 23.4)

−91.2
(−205.5, 23.2)

<20 816 107.2#
(11.0, 203.3)

59.5
(−38.5, 157.5)

53.5
(−45.1, 152.2)

42.2
(−55.1, 139.6)

773 −87.5
(−216.1, 41.2)

−109.5
(−241.1, 22.1)

−100.3
(−232.6, 32.1)

−102.2
(−234.6, 30.1)

P trend - 0.03 0.24 0.32 0.42 - 0.15 0.08 0.11 0.10

Model 1 was adjusted for age, sex, race, study field center, education, and income. Model 2 was Model 1 plus physical activity, waist circumference, smoking status, 
and body mass index. Model 3 was Model 2 plus diabetes mellitus status, antihypertensive medication use, log[c-reactive protein], total cholesterol, high-density 
lipoprotein–cholesterol, lipid-lowering therapy, and creatinine. Model 4 was Model 3 plus systolic blood pressure.

*Longitudinal analyses shown with adjustment for baseline stiffness measures.
†Between the 2 carotid ultrasounds (9.4 y).
‡Sixty-seven participants missing data on covariates.
§Eighty-three participants missing data on covariates.
║Sixty-two participants missing data on covariates.
¶Seventy-seven participants missing data on covariates.
#P<0.05.

Table 2. Cross-Sectional and Longitudinal Associations of Serum 25(OH)D Concentrations and Distensibility Coefficient

Cross-Sectional Analyses Longitudinal Analyses*

Baseline Distensibility Coefficient, mm Hg−1×10−4

(95% Confidence Interval)
Change in Distensibility Coefficient, mm Hg−1×10−4†

(95% Confidence Interval)

25(OH)D, ng/mL

n

Beta Parameter

n

Beta Parameter

Model 1‡ Model 2‡ Model 3§ Model 4§ Model 1║ Model 2║ Model 3¶ Model 4¶

≥30.0 918 Ref Ref ref ref 872 ref ref ref Ref

20.0–29.9 973 −0.5
(−1.5, 0.6)

0.1
(−1.0, 1.1)

0.2
(−0.8, 1.3)

0.3
(−0.7, 1.3)

935 −0.1
(−1.0, 0.8)

0.1
(−0.8, 1.0)

0.2
(−0.7, 1.1)

0.2
(−0.7, 1.1)

<20 816 −1.6#
(−2.8, −0.4)

−0.7
(−1.9, 0.5)

−0.6
(−1.8, 0.6)

−0.3
(−1.5, 0.8)

773 0.3
(−0.7, 1.3)

0.5
(−0.5, 1.6)

0.6
(−0.5, 1.6)

0.6
(−0.4, 1.6)

P trend - 0.01 0.33 0.46 0.69 - 0.66 0.35 0.30 0.28

Model 1 was adjusted for age, sex, race, study field center, education, and income. Model 2 was Model 1 plus physical activity, waist circumference, smoking status, 
and body mass index. Model 3 was Model 2 plus diabetes mellitus status, antihypertensive medication use, log[c-reactive protein], total cholesterol, high-density 
lipoprotein–cholesterol, lipid-lowering therapy, and creatinine. Model 4 was Model 3 plus systolic blood pressure.

*Longitudinal analyses shown with adjustment for baseline stiffness measures.
†Between the 2 carotid ultrasounds (9.4 y).
‡Sixty-seven participants missing data on covariates.
§Eighty-three participants missing data on covariates.
║Sixty-two participants missing data on covariates.
¶Seventy-seven participants missing data on covariates.
#P<0.01.
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It may be expected that higher PTH concentrations at base-
line would lead to more rapid progression of arterial stiffness 
during a decade of aging; however, we did not observe a longi-
tudinal association between baseline PTH concentrations and 
progressive arterial stiffening. Because those with the highest 
PTH levels also were found to have stiffer arteries at baseline, 
acceleration of stiffness over time may be blunted because 
there could be less physiological room for progression of the 
carotid stiffness parameters (ceiling effect). However, when 
baseline stiffness parameters were included in the models to 
attempt to account for this discrepancy, still no associations 
or even consistent trends were observed. Although PTH and 
vitamin D were not longitudinally associated with changes 
in YEM and DC, acceleration of stiffness parameters was 
observed as expected with traditional CVD risk factors, such 

as advancing age and hypertension.40 Alternatively, although 
25(OH)D has a relatively long circulating half-life (≈3 weeks) 
and is considered a good biomarker, a single measurement 
may not fully capture cumulative vitamin D exposure during a 
10-year period, resulting in misclassification. It is similar for 
PTH, which comparatively has a much shorter half-life (2–4 
minutes), making it even more subject to misclassification. A 
single measurement seems adequate for cross-sectional asso-
ciations but is less useful during a decade of follow-up.

Several limitations of the current study should be con-
sidered. First, we imaged the carotid arteries but measured 
brachial artery blood pressure. Brachial artery pressure is con-
sidered to be a surrogate for central aortic pressure, but may 
overestimate stiffness measurements because brachial mea-
surements can overestimate central pressures, although the 

Figure. A, Baseline distensibility coef-
ficient by 25-hydroxyvitamin D and 
parathyroid hormone concentrations. 
B, Baseline Young’s elastic modulus by 
 25-hydroxyvitamin D and parathyroid hor-
mone concentrations.
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2 measures are highly correlated, especially in older adults.41 
Vitamin D and PTH status were defined by baseline concen-
trations, and the absence of follow-up levels of either hormone 
poses a challenge to the interpretation of the longitudinal 
analyses. This potentially is more likely to be an issue with 

vitamin D because supplementation is common in the gen-
eral population, and we did not have information concerning 
vitamin D supplementation during the follow-up period. Also, 
the race/ethnicity subgroup analyses may be limited by small 
sample size. Because all participants had ultrasound studies at 

Table 4. Cross-Sectional and Longitudinal Associations Between Parathyroid Hormone and Distensibility Coefficient

Cross-Sectional Analyses Longitudinal Analyses*

Baseline Distensibility Coefficient, mm Hg−1×10−4 Change in Distensibility Coefficient, mm Hg−1×10−4†

(95% Confidence Interval) (95% Confidence Interval)

PTH, pg/mL n Beta Parameter n Beta Parameter

Model 1‡ Model 2‡ Model 3§ Model 4§ Model 1║ Model 2║ Model 3¶ Model 4¶

<32.8 806 Ref Ref ref ref 765 ref ref ref Ref

32.8–43.7 808 −0.6
(−1.7, 0.5)

−0.2
(−1.3, 1.0)

−0.2
(−1.3, 0.9)

−0.2
(−1.3, 0.9)

772 1.1#
(0.1, 2.0)

1.2#
(0.2, 2.1)

1.0
(0.0, 1.9)

1.0
(0.0, 1.9)

43.8–65.0 808 −1.2#
(−2.3, −0.0)

−0.4
(−1.6, 0.7)

−0.5
(−1.6, 0.7)

0.0
(−1.1, 1.1)

777 0.4
(−0.6, 1.4)

0.6
(−0.4, 1.5)

0.5
(−0.5, 1.4)

0.5
(−0.4, 1.5)

>65 285 −3.4**
(−5.0, −1.8)

−2.2**
(−3.8, −0.5)

−2.4**
(−4.0, −0.8)

−1.4
(−3.0, 0.1)

266 −0.3
(−1.6, 1.1)

0.0
(−1.4, 1.4)

−0.2
(−1.6, 1.2)

−0.1
(−1.4, 1.3)

P trend - <0.001 0.01 0.005 0.16 - 0.61 0.93 0.73 0.91

Model 1 was adjusted for age, sex, race, study field center, education, and income. Model 2 was Model 1 plus physical activity, waist circumference, smoking status, 
and body mass index. Model 3 was Model 2 plus diabetes mellitus status, antihypertensive medication use, log[c-reactive protein], total cholesterol, high-density 
lipoprotein–cholesterol, lipid-lowering therapy, and creatinine. Model 4 was Model 3 plus systolic blood pressure.

*Longitudinal analyses shown with adjustment for baseline stiffness measures.
†Between the 2 carotid ultrasounds (9.4 y).
‡Sixty-seven participants missing data on covariates.
§Eighty-three participants missing data on covariates.
║Sixty-two participants missing data on covariates.
¶Seventy-seven participants missing data on covariates.
#P<0.05.
**P<0.01.

Table 5. Cross-Sectional and Longitudinal Associations Between Parathyroid Hormone and Young’s Elastic Modulus

PTH, pg/mL

Cross-Sectional Analyses Longitudinal Analyses*

Baseline Young’s Elastic Modulus, mm Hg Change in Young’s Elastic Modulus, mm Hg†

(95% Confidence Interval) (95% Confidence Interval)

n Beta Parameter n Beta Parameter

Model 1‡ Model 2‡ Model 3§ Model 4§ Model 1║ Model 2║ Model 3¶ Model 4¶

<32.8 806 ref. ref. ref. ref. 765 ref. ref. ref. ref.

32.8–43.7 808 39.2
(−50.9, 129.4)

20.1
(−70.0, 110.1)

17.9
(−72.3, 108.1)

18.3
(−70.8, 107.3)

772 −63.5
(−184.3, 57.2)

−67.9
(−189.0, 53.2)

−56.8
−178.1, 64.5)

−56.5
(−177.8, 64.8)

43.8–65.0 808 63.4
(−28.7, 155.5)

28.4
(−64.2, 120.9)

28.6
(−64.2, 121.5)

5.6
(−86.2, 97.5)

777 −59.0
(−182.1. 64.2)

−73.2
(−197.6, 51.2)

−57.5
(−182.2, 67.3)

−62.7
(−187.7, 62.2)

>65 285 217.0#
(88.1, 345.9)

159.0**
(28.8, 289.2)

166.2**
(35.6, 296.7)

117.6
(−11.8, 247.0)

266 110.3
(−63.9, 284.5)

88.1
(−88.3, 264.6)

80.5
(−96.5, 257.5)

70.9
(−106.5, 
248.4)

P trend - 0.002 0.03 0.02 0.14 - 0.37 0.54 0.55 0.64

Model 1 was adjusted for age, sex, race, study field center, education, and income. Model 2 was Model 1 plus physical activity, waist circumference, smoking status, 
and body mass index. Model 3 was Model 2 plus diabetes mellitus status, antihypertensive medication use, log[c-reactive protein], total cholesterol, high-density 
lipoprotein–cholesterol, lipid-lowering therapy, and creatinine. Model 4 was Model 3 plus systolic blood pressure.

*Longitudinal analyses shown with adjustment for baseline stiffness measures.
†Between the 2 carotid ultrasounds (9.4 y).
‡Sixty-seven participants missing data on covariates.
§Eighty-three participants missing data on covariates.
║Sixty-two participants missing data on covariates.
¶Seventy-seven participants missing data on covariates.
#P<0.01.
**P<0.05.
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exams 1 and 5, there may be a survivorship bias. Participants 
who were followed up to examination 5 were healthier and 
less likely to have a nonfatal CVD event than the complete 
MESA cohort, which would likely result in a null bias.

Conclusions
In cross-sectional analyses, we did not observe any indepen-
dent associations between arterial stiffness measures and vita-
min D status. Carotid arterial stiffness was associated with 
PTH concentrations >65 mg/dL; however, the associations 
were attenuated by adjustment for SBP. In longitudinal analy-
ses, advancing age and hypertension were associated with pro-
gression of arterial stiffness; however, neither baseline PTH 
nor 25(OH)D was associated with changes in arterial stiffness 
measures after nearly a decade of follow-up. Elevated PTH is 
associated with carotid stiffness; however, the causal and tem-
poral inter-relationships of PTH, blood pressure, and carotid 
stiffness are not entirely clear and warrant further study.
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Low vitamin D and high parathyroid hormone concentrations have been associated with heart disease and hypertension, but much less is 
known about their long-term effects on arterial stiffening, which has been linked to the development of heart failure, strokes, and heart at-
tacks. In this study, carotid artery stiffness was associated with high parathyroid hormone levels, although this finding was attenuated by 
systolic blood pressure. Vitamin D concentration was not associated with baseline arterial stiffness. Neither baseline parathyroid hormone nor 
vitamin D concentrations were associated with changes in arterial stiffening during nearly a decade of follow-up. These findings suggest that 
parathyroid hormone may impact the development of arterial stiffness; however, the causal and temporal inter-relationships of parathyroid 
hormone, blood pressure, and carotid stiffness are not entirely clear and warrant further study.
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Materials and Methods  
 

Materials and Methods are available in the online-only Data Supplement. 

 
Study participants and design 
 The Multi-Ethnic Study of Atherosclerosis (MESA) is a longitudinal cohort study that is 
investigating the prevalence, correlates, and progression of subclinical cardiovascular disease 
in a population-based sample of 6,814 men and women aged 45 to 84 years who were free of 
known cardiovascular disease at its inception in 1999.  MESA recruited participants from 6 
United States communities (Baltimore, Maryland; Chicago, Illinois; Forsyth County, North 
Carolina; Los Angeles County, California; Northern Manhattan, New York; and St. Paul, 
Minnesota).  The study objectives and design have been published previously.1  All participants 
gave informed consent for the study protocol, which was approved by the institutional review 
boards of the University of Wisconsin ultrasound reading center and all MESA field centers.   

This analysis includes the subset of MESA participants with baseline serum 25(OH)D 
(n=6,473)2 and valid carotid artery distensibility measurements at exams 1 (n=2,707) and 5 
(n=2,580) which occurred, on average, 9.4 (0.5) years apart.3,4 
 
Measurement of 25-Hydroxyvitamin D and Parathyroid Hormone Concentrations 

Detailed methods for collection and measurement of concentrations of serum 25(OH)D 
has been previously described.2  Briefly, 25(OH)D concentrations were measured by mass 
spectrometry from frozen serum collected at Exam 1, calibrated to NIST standards (interassay 
CV <3.4%).5  Serum PTH was measured by two-site immunoassay on a Beckman DxC 
automated platform (inter-assay CV 6.1% at 30.1 pg/ml and 3.4% at 94.5 pg/ml).6  As season-
specific thresholds for 25-OHD may be most relevant,7 25-OHD was adjusted for seasonal 
variation using an algorithm derived and internally validated in MESA.2 
 
B-mode Ultrasound and Brachial Blood Pressure Measurements 

A detailed protocol has been published previously.3  At exam 1, B-mode ultrasound 
video loop recordings of a longitudinal section of the distal right common carotid artery were 
recorded on videotape using a Logiq 700 ultrasound system (General Electric Medical Systems, 
transducer frequency 13 MHz).  Video images were digitized at high resolution and frame rates 
using a Medical Digital Recording (MDR) device (PACSGEAR, Pleasanton, CA) and converted 
into DICOM compatible digital records.  At exam 5, a similar protocol was performed using the 
same ultrasound and digitizing equipment; however, the video output was directly digitized 
using the same MDR settings without use of videotape.  Centrally trained and certified 
sonographers from all 6 MESA sites used selected reference images from exam 1 to try to 
match the scanning conditions of the initial study, including common carotid artery display 
depth, angle of approach, surrounding tissues and internal landmarks, degree of jugular venous 
distension, and ultrasound system settings.  After 10 minutes of rest in the supine position and 
immediately before the ultrasound image acquisition, repeated measures of brachial blood 
pressures were obtained using a standardized protocol with an automated upper arm 
sphygmomanometer (DINAMAP, GE Medical Systems, Milwaukee, WI).  Ultrasound images 
were reviewed and interpreted by the MESA Carotid Ultrasound Reading Center (the University 
of Wisconsin Atherosclerosis Imaging Research Program, Madison, WI).  Systolic and diastolic 
diameters were determined as the largest and smallest diameters during the cardiac cycle.  All 
measurements were performed in triplicate from 2-3 consecutive cardiac cycles to derive mean 
internal diameter at peak systole and mean internal and external diameters at end-diastole 
using Access Point Web version 3.0 (Freeland Systems, LLC). 
 



Measurement of Carotid Distensibility and Young’s Elastic Modulus 
The carotid distensibility coefficient (DC) was calculated as: 

 
Where Ds represents the internal arterial diameter at peak systole, Dd represents the internal 
diameter at end-diastole, and Δp represents the difference between the brachial artery SBP and 
diastolic blood pressure measurements (pulse pressure).8  Young’s elastic Modulus (YEM), the 
ratio of stress and circumferential strain in the arterial wall, was calculated as: 

 
Where Dd is the internal arterial diameter at end-diastole, h is the arterial wall thickness at end-
diastole (external carotid artery diameter minus internal carotid artery diameter).8,9  YEM and 
DC are inversely related; thus, increased arterial stiffness corresponds to a lower DC and a 
higher YEM.   

Reproducibility measurements were performed by a single reader with 25 blinded, 
replicate images.  Reproducibility was excellent for internal end-diastolic diameter (mean [SD]: 
0.589 [0.070] cm, r=0.998, p<0.0001), peak systolic internal diameter (0.637 [0.074] cm, 
r=0.998, p<0.0001), end-diastolic external diameter (0.743 [0.081] cm, r=0.997, p<0.0001), 
change in diameter (0.048 [0.016] cm, r=0.925, p<0.0001) and wall thickness (0.154 [0.033] cm, 
r=0.989, p<0.0001).  Only rare outliers were seen on inspection of Bland-Altman plots. 
 
Covariates 

Demographic, medical history, and laboratory data were obtained from the first (July, 
2000 to August, 2002) and fifth (January, 2012 to February, 2012) examinations of the MESA 
cohort.  Prescription medications including antihypertensive, diabetic, and lipid-lowering agents 
were verified.  A diagnosis of hypertension was defined as SBP ≥140 mmHg, diastolic blood 
pressure ≥90 mmHg, or the use of antihypertensive medications.  Diabetes mellitus was defined 
as fasting blood glucose ≥126 mg/dL or the use of antiglycemic medications.  Impaired fasting 
glucose was defined as blood glucose from ≥100 but <126 mg/dL.  Total and high-density 
lipoprotein cholesterol (HDL-C) levels were measured from blood samples obtained after a 12-
hour fast.  Low-density lipoprotein cholesterol was calculated using the Friedewald equation.10 
 
Statistical Analysis 

Results are reported as mean (standard deviation) for continuous variables or 
percentages for categorical variables.  Serum 25(OH)D and PTH were assessed as a 
continuous and categorical variable with commonly used cut points (25[OH]D: < 20 ng/mL, 20-
30 ng/mL, and ≥30 ng/mL; PTH: 65pg/ml and tertiles).6,11,12  Categorical cut points were 
predefined, based on clinically relevant thresholds, as well as prior MESA publications.   

Cross-sectional analysis of associations between 25(OH)D and the outcome variables, 
carotid distensibility and YEM were assessed at Exam 1 using linear regression models.  
Differences between baseline and exam 5 measures were examined using analysis of 
covariance (ANCOVA), adjusted for risk factors, with and without adjustment for baseline 
stiffness measures.  All models were pre-specified and sequentially performed as 1) adjusted 
for sex, race, study field center, education, and income; 2) physical activity, waist 
circumference, smoking status, and BMI; 3) diabetes mellitus status, antihypertensive 
medication use, log[C-reactive protein], total cholesterol, HDL-C, lipid lowering therapy, and 
creatinine; and 4) adding in baseline systolic blood pressure.  Tests of trend over the 25(OH)D 
and PTH categories were done by assigning  the median value to each individual in a given 
category  and modeling this as a continuous variable.  Statistical significance was set at P<0.05.  
All analyses were carried out with the use of SAS (Version 9.3, Cary, NC: SAS. Institute Inc.).   
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