Circulating Soluble Receptor for Advanced Glycation End Product Identifies Patients With Bicuspid Aortic Valve and Associated Aortopathies

Objective—A total of 30% to 50% of patients with bicuspid aortic valve (BAV) require surgery for aortic valve replacement (AVR), ascending aortic replacement (AA), or both. To prevent adverse aortic events, they are risk stratified using imperfect criteria based on imaging modalities. As a result, a significant number of dissections occur outside of the parameters suggested by the guidelines. Advanced glycation end products (AGEs) are associated with valve and vascular remodeling and trigger the release of a soluble receptor (soluble receptor for advanced glycation end product [sRAGE]). This study aims to characterize sRAGE as a diagnostic and risk-stratification tool for patients with BAV referred for surgery.

Approach and Results—sRAGE was measured in 135 patients (BAV, n=74; tricuspid aortic valve, n=61) meeting inclusion criteria from 338 enrolled patients undergoing AVR and AA. Univariate and multivariate analyses were performed. sRAGE level was significantly associated with the presence of BAV, independent of age, sex, and common risk factors for vascular disease (P<0.001). Within the BAV cohort, patients referred for AA and AVR had higher sRAGE values than patients undergoing AVR only (P=0.002). Patients with BAV <60 years of age, presenting with both valve and aortic diseases (fast progressors), had higher sRAGE than older patients who only needed AVR (slow progressors). Histological analysis showed that sRAGE correlates with dysfunctional aortic microstructure and does not correlate with aortic diameter (R²=0.007; P=0.51) or diameter/body surface area (R²=0.011; P=0.42).

Conclusions—These results show that elevated level of circulating sRAGE is associated with the presence of BAV and associated aortopathies, independent of aortic diameter. (Arterioscler Thromb Vasc Biol. 2014;34:2349-2357.)

Key Words: advanced glycosylation end-product receptor • aortic aneurysm, thoracic • bicuspid aortic valve

It is estimated that 1 in 50 people is born with a bicuspid aortic valve (BAV), making BAV the most common congenital heart defect in the United States.1–16 The presence of a BAV is associated with frequent and premature valve dysfunction, such as aortic stenosis (AS) and aortic insufficiency (AI).1–16 In patients <50 years of age having aortic valve replacement (AVR) for severe AS, virtually all of them have BA V. Until the age of 70 years, patients with BAV outnumber those with tricuspid aortic valve (TAV) having AVR for AS and not until the age of >80 years do patients with TAV predominate.1,2,4,8,10,16

In addition, the presence of a bicuspid valve is a strong indicator of adverse aortic events as these patients have higher occurrence of life-threatening cardiac events, such as ascending aortic aneurysm (thoracic aortic aneurysm) and dissection (thoracic aortic dissection). The current American College of Cardiology/American Heart Association guidelines recommend replacing the ascending aorta in patients with both BAV and TAV undergoing AVR if the ascending aortic diameter is >4.5 cm. However, the optimal timing of aortic surgery in thoracic aortic aneurysm patients remains uncertain for patients with both BAV and TAV.1,2,4,8,10,12–14,16 In a recent study, we showed that >60% of patients with acute aortic dissection presented with aortic diameters smaller than those indicated for surgery.1,2,5,8,10,12–14,16–19 Therefore, the current indications for elective surgical intervention are imperfect predictors of aortic dissection and rupture, especially for patients with BAV.1,2,4,8,10,12,16,20 Also, of concern is the common development of subsequent ascending aortopathies in patients who have had previous AVR for BAV in the near or remote past. The early and accurate diagnosis of a BAV has therefore important implications for both clinical care and surgical intervention.

A congenital BAV is diagnosed accurately when short axis 2- or 3-dimensional images show 2 leaflets in systole; diastolic images are unreliable as a bicuspid valve with raphe in 1 leaflet may be mistaken for a TAV and vice versa. When images are adequate echocardiography can reach 92% sensitivity and 96% specificity.2,5,8,10,12–14,16–19 In the presence of AV calcification, sensitivity and specificity could drop...
to 67% and 69%, respectively. Higher diagnostic accuracy has been reported in a relatively small sample population using color Doppler transesophageal echocardiography, a method that may be poorly tolerated in frail patients. Because of these limitations, cardiac MRI and computed tomography need to be implemented to improve the diagnostic process. Because of the natural history of BAV leading to premature calcified AV, the use of echocardiography can be limited in patients referred to surgery. BAV is therefore identified via routine echocardiography only in a subgroup of patients with BAV; in addition, echocardiographic identification can be challenging after cusp fusion secondary to inflammation. Moreover, common imaging techniques do not generally provide information on the risk of aortopathies.

Recent studies have also demonstrated that aneurysms associated with BAV exhibit cellular and extracellular matrix differences when compared with TAV aneurysms. These considerations suggest a differential regulation of vascular smooth muscle cells (VSMC) phenotype in BAV and TAV aortas, as well as difference response to oxidative damage, which could affect the microregional structure of the proximal aorta. An association between valve and vascular dysfunctions and advanced glycation end products (AGEs) has been described recently. These products seem to play an important role for the development and progression of cardiovascular disease mainly through induction of oxidative stress and inflammation. Recent studies have shown that s100A12, a proinflammatory protein and a ligand of RAGE, is highly expressed in thoracic aortic aneurysm and dissection. Based on these data, we hypothesized a direct correlation between circulating soluble RAGE (sRAGE) level and the presence of BAV and BAV-associated aortopathies. A predictive, plasma-based, low-cost tool for the identification of patients with BAV who are at high risk for aortic complications would therefore improve management, surgical planning, and long-term results.

Materials and Methods

Materials and Methods are available in the online-only Supplement.

Results

Circulating Plasma Levels of sRAGE Identify Patients With BAV in a Surgical Patient Population Independently of Age, Sex, and Common Cardiovascular Comorbidities

A total of 135 surgical patients (Tables 1 and 2) matching the inclusion criteria were analyzed (Figure 1). We first examined plasma levels of sRAGE in all patients with BAV (n=74) and TAV (n=61). As shown in Figure 2A, sRAGE mean values are significantly higher in patients with BAV (1765±142.9 pg/mL) than in patients with TAV (733.9±49.26 pg/mL; \(P<0.0001 \)). Receiver operator characteristic curve was performed to determine whether plasma levels of sRAGE could discriminate patients with BAV and TAV. As shown in Figure 2B and 2C, a cutoff of sRAGE plasma level equal to 996 pg/mL maximized area under the curve values to 0.80 and identifies BAV with 63.5% sensitivity and 79% specificity (Figure 2C). These patients have concomitant occurrence of aortic valve stenosis/insufficiency and ascending aortic dilatation: because the current American College of Cardiology/American Heart Association guidelines suggest ascending aortic replacement (AA) for patients with BAV and TAV undergoing AVR if the aortic diameter is >4.5 cm, we measured plasma level of sRAGE in the BAV and TAV subgroups of patients with diameter lower than the parameter suggested by the guidelines. In this subanalysis of patients with 27 TAV and 40 BAV, a cutoff of 766 pg/mL maximized area under the curve values to 0.81 and identified BAV with 81.5% sensitivity and 72.5% specificity (likelihood ratio of 3.9; Figure 1C–1E).

Table 1. Patient Enrollment

<table>
<thead>
<tr>
<th>Enrolment (n=338)</th>
<th>TAV (178)</th>
<th>BAV (160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sydromic TAA/connective tissue diseases</td>
<td>7 (3.9%)</td>
<td>0</td>
</tr>
<tr>
<td>Other heart defect</td>
<td>0</td>
<td>4 (2.5%)</td>
</tr>
<tr>
<td>Thoracic aortic dissection</td>
<td>10 (5.6%)</td>
<td>0</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>0</td>
<td>6 (3.75%)</td>
</tr>
<tr>
<td>Chronic disease</td>
<td>25 (14.0%)</td>
<td>14 (8.75%)</td>
</tr>
<tr>
<td>Inflammatory disease</td>
<td>19 (10.7%)</td>
<td>12 (7.5%)</td>
</tr>
<tr>
<td>Previous MI</td>
<td>13 (7.3%)</td>
<td>11 (6.9%)</td>
</tr>
<tr>
<td>Heart failure (NYHA III+/IV)</td>
<td>18 (10.1%)</td>
<td>14 (8.8%)</td>
</tr>
<tr>
<td>History of cancer</td>
<td>34 (19.1%)</td>
<td>25 (15.6%)</td>
</tr>
<tr>
<td>Included (n=135)</td>
<td>61 (34.3%)</td>
<td>74 (46.3%)</td>
</tr>
</tbody>
</table>

BAV indicates bicuspid aortic valve; MI, myocardial infarction; NYHA, New York Heart Association; TAA, thoracic aortic aneurysm; and TAV, tricuspid aortic valve.
Diagnosis and type of surgery
TAV, tricuspid aortic valve; sRAGE, soluble receptor for advanced glycation end product; and ascending aortic replacement; AVR, aortic valve replacement; BAV, bicuspid aortic valve.

Table 2. Patient Demographics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>TAV (n=61)</th>
<th>BAV (n=74)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>64.4±11</td>
<td>55.5±13</td>
<td><0.001</td>
</tr>
<tr>
<td>Male subjects</td>
<td>71%</td>
<td>64.4%</td>
<td>0.164</td>
</tr>
<tr>
<td>Smokers</td>
<td>19.4%</td>
<td>43%</td>
<td>0.004</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>13.2%</td>
<td>5.3%</td>
<td>0.312</td>
</tr>
<tr>
<td>Hypertension</td>
<td>43.40%</td>
<td>31.6%</td>
<td>0.024</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>22.6%</td>
<td>5.4%</td>
<td>0.003</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>43.4%</td>
<td>27.7%</td>
<td>0.024</td>
</tr>
<tr>
<td>Baseline sRAGE</td>
<td>733.9±49.3</td>
<td>1765±142.9</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Diagnosis and type of surgery
Aortic valve insufficiency 68.9% 70.3% 0.351
Aortic valve stenosis 34.4% 74.3% 0.002
Aortic valve repair/replacement 55.73% 43.24% 0.025
AVR and AA repair/replacement 44.3% 56.8% 0.080

As shown in Tables 3 and 4, multivariate general linear model ANOVA was performed to evaluate whether sRAGE was a significant and independent predictor of BAV in the data set. In addition to the sRAGE values, factors entered into the model were age, sex, coronary artery disease, hypertension, hyperlipidemia, diabetes mellitus, history of smoking/tobacco use, body surface area (BSA), AI, and AS. The model for the overall group showed that the presence of BAV is significantly and independently related to higher levels of sRAGE. Table 4 demonstrates that this relationship is even more pronounced in patients who have an ascending aortic artery measurement of <4.5 cm. In addition, regression analysis was used to test whether BAV status is predicted by level of sRAGE. A univariate regression model demonstrated sRAGE level was a predictor of BAV status with $R^2=0.151$, $F(1, 134)=23.9$, $P<0.0001$. Multivariate regression was used to evaluate this relationship considering the effect of age, BSA, AA diameter, sex, presence of coronary artery disease, smoking, hypertension, diabetes mellitus, hypercholesterolemia, and presence of aortic valve stenosis of insufficiency. The R^2 for the overall model was 0.21, $F(1, 123)=8.4$, $P=0.002$. It was found that sRAGE significantly predicted BAV status ($\beta=0.309$; $P=0.005$; unstandardized $\beta=692.8$ with 95% confidence interval, 218.1–1167.5). No other factors were significant in the model. A multiple regression model was also created for patients with AA diameter <4.5 cm. The R^2 for the overall model was 0.42, $F(1, 53)=8.9$, $P=0.004$. It was again found that sRAGE was the only factor that significantly predicted BAV status ($\beta=0.453$; $P=0.004$; unstandardized $\beta=747.2$ with 95% confidence interval, 243.9–1250.5).

Patients Requiring AA Have Higher sRAGE Level Than Patients Requiring AVR Only
Patients with BAV were then divided in 2 subgroups: those who underwent only aortic valve repair/replacement (AVR) because of severe AS or AI (n=30) but no ascending aortic dilatation (diameter <4.5 cm) and those who presented ascending aortic dilatation (ascending aneurysm >4.5 cm) concomitantly to AS or AI (n=30). As shown in Figure 3A, patients with BAV with only valve pathology (mean ascending aortic diameter, 3.7 cm) presented sRAGE plasma values of 1365±150.4 pg/mL, whereas patients who presented aortic valve pathology and aortic dilatation (mean ascending aortic diameter, 4.9 cm) show sRAGE levels equal to 2209±278.8 pg/mL ($P=0.02$). Logistic regression was then performed to test whether sRAGE values were correlated with ascending aortic diameter or the ratio between ascending aortic diameter and BSA. As shown in Figure 3B there is no correlation between sRAGE levels and ascending aortic diameter ($R^2=0.007$; $P=0.51$) or the ratio between ascending aortic diameter/BSA ($R^2=0.011$; $P=0.42$).

Furthermore, we divided our patients with BAV population into 4 groups using the age of 60 years as an arbitrary cutoff: those aged <60 years undergoing AVR only, those aged <60 years requiring both AVR and AA, those aged >60 years undergoing AVR only, and those aged >60 years requiring both AVR and AA (Figure 4). In the setting of AA development, we considered those patients who required AVR and AA before the age of 60 as fast progressors, whereas those requiring AA and AVR or just AVR above the age of 60 years as slow progressors ($P<0.05$; Figure 4A). Interestingly, plasma levels of sRAGE in the fast progressors group were significantly higher when compared with any of the other group, independently of aortic diameter (Figure 4B).

Plasma Levels of sRAGE Ligands, s100A12 and HMGB-1, Are Not Significantly Different in Patients With BAV When Compared With TAV
It is known that one of the mechanisms associated with the release of sRAGE in the circulation is related to the shedding of cellular RAGE on activation from its ligands. A subgroup of patients with BAV and TAV was then analyzed for the absence of s100A12 and HMGB-1 in 38 patients (TAV, 18; BAV, 20). As shown in Table 4, patients with BAV have higher plasma levels of sRAGE than patients with TAV (mean sRAGE levels, 1010±370 pg/mL vs. 533±49 pg/mL, respectively; $P=0.003$).

As shown in Tables 3 and 4, multivariate general linear model ANOVA was performed to evaluate whether sRAGE was a significant and independent predictor of BAV in the data set. In addition to the sRAGE values, factors entered into the model were age, sex, coronary artery disease, hypertension, hyperlipidemia, diabetes mellitus, history of smoking/tobacco use, body surface area (BSA), AI, and AS. The model for the overall group showed that the presence of BAV is significantly and independently related to higher levels of sRAGE. Table 4 demonstrates that this relationship is even more pronounced in patients who have an ascending aortic artery measurement of <4.5 cm. In addition, regression analysis was used to test whether BAV status is predicted by level of sRAGE. A univariate regression model demonstrated sRAGE level was a predictor of BAV status with $R^2=0.151$, $F(1, 134)=23.9$, $P<0.0001$. Multivariate regression was used to evaluate this relationship considering the effect of age, BSA, AA diameter, sex, presence of coronary artery disease, smoking, hypertension, diabetes mellitus, hypercholesterolemia, and presence of aortic valve stenosis of insufficiency. The R^2 for the overall model was 0.21, $F(1, 123)=8.4$, $P=0.002$. It was found that sRAGE significantly predicted BAV status ($\beta=0.309$; $P=0.005$; unstandardized $\beta=692.8$ with 95% confidence interval, 218.1–1167.5). No other factors were significant in the model. A multiple regression model was also created for patients with AA diameter <4.5 cm. The R^2 for the overall model was 0.42, $F(1, 53)=8.9$, $P=0.004$. It was again found that sRAGE was the only factor that significantly predicted BAV status ($\beta=0.453$; $P=0.004$; unstandardized $\beta=747.2$ with 95% confidence interval, 243.9–1250.5).

Patients Requiring AA Have Higher sRAGE Level Than Patients Requiring AVR Only
Patients with BAV were then divided in 2 subgroups: those who underwent only aortic valve repair/replacement (AVR) because of severe AS or AI (n=30) but no ascending aortic dilatation (diameter <4.5 cm) and those who presented ascending aortic dilatation (ascending aneurysm >4.5 cm) concomitantly to AS or AI (n=30). As shown in Figure 3A, patients with BAV with only valve pathology (mean ascending aortic diameter, 3.7 cm) presented sRAGE plasma values of 1365±150.4 pg/mL, whereas patients who presented aortic valve pathology and aortic dilatation (mean ascending aortic diameter, 4.9 cm) show sRAGE levels equal to 2209±278.8 pg/mL ($P=0.02$). Logistic regression was then performed to test whether sRAGE values were correlated with ascending aortic diameter or the ratio between ascending aortic diameter and BSA. As shown in Figure 3B there is no correlation between sRAGE levels and ascending aortic diameter ($R^2=0.007$; $P=0.51$) or the ratio between ascending aortic diameter/BSA ($R^2=0.011$; $P=0.42$).

Furthermore, we divided our patients with BAV population into 4 groups using the age of 60 years as an arbitrary cutoff: those aged <60 years undergoing AVR only, those aged <60 years requiring both AVR and AA, those aged >60 years undergoing AVR only, and those aged >60 years requiring both AVR and AA (Figure 4). In the setting of AA development, we considered those patients who required AVR and AA before the age of 60 as fast progressors, whereas those requiring AA and AVR or just AVR above the age of 60 years as slow progressors ($P<0.05$; Figure 4A). Interestingly, plasma levels of sRAGE in the fast progressors group were significantly higher when compared with any of the other group, independently of aortic diameter (Figure 4B).

Plasma Levels of sRAGE Ligands, s100A12 and HMGB-1, Are Not Significantly Different in Patients With BAV When Compared With TAV
It is known that one of the mechanisms associated with the release of sRAGE in the circulation is related to the shedding of cellular RAGE on activation from its ligands. A subgroup of patients with BAV and TAV was then analyzed for the presence of s100A12 and HMGB-1 in the circulation. s100A12 was measured in a total of 30 patients (TAV, 10; BAV, 20) and HMGB-1 in 38 patients (TAV, 18; BAV, 20). As shown in Figure IA in the online-only Data Supplement plasma s100A12 was
not significantly different in patients with BAV when compared with those with TAV ($P=0.078$) and was not significantly different in patients with BAV and TAV with ascending aortic diameter <4.5 cm ($P=0.9828$; Figure IB in the online-only Data Supplement). Similarly, the analysis of circulating levels of HMGB-1 shows no differences in patients with BAV versus TAV ($P=0.8218$; $P=0.4982$; Figure IIA and IIB in the online-only Data Supplement). Linear regression was performed to test whether s100A12 or HMGB-1 values would correlate with ascending aortic diameter. As shown in Figures IC and IIC in the online-only Data Supplement, neither s100A12 nor HMGB-1 values correlate with ascending aortic diameter. In addition, no significant correlation was found between these markers and circulating sRAGE values (Figure IIIA and IIIB in the online-only Data Supplement). Furthermore, none of these circulating markers are significantly different in fast and slow progressor patients with BAV (Figure IIIC and IIID).

Plasma Levels of sRAGE Correlate With Altered Ascending Aortic Microstructures

Ascending aortic tissues were then analyzed for patients with BAV using sRAGE values. A subgroup of 6 patients with BAV expressing either high or low sRAGE levels were selected and analyzed by a pathologist based on modified Movat Pentachrome staining. Age, maximum aortic diameter, and sRAGE are indicated in Figure 5A. Quantification of elastin degradation and proteoglycans deposition show that sRAGE correlate with dysfunctional ascending aortic microstructures (Figure 5B and 5C). Control TAV level shows, as expected, low level of sRAGE, normal elastin fiber alignment, and limited proteoglycan deposition. Patients with BAV with low levels of sRAGE show, despite great variation in the individual

Table 3. Multivariate General Linear Model ANOVA Analyzing the Relationship Between Soluble Receptor for Advanced Glycation End Product Level and Study Variables in Patients With 134 BAV and TAV

<table>
<thead>
<tr>
<th>Factors in the Model</th>
<th>df</th>
<th>F-Statistic</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>1</td>
<td>1.941</td>
<td>0.166</td>
</tr>
<tr>
<td>AA diameter</td>
<td>1</td>
<td>2.822</td>
<td>0.096</td>
</tr>
<tr>
<td>Body surface area</td>
<td>1</td>
<td>2.355</td>
<td>0.128</td>
</tr>
<tr>
<td>Combined covariates</td>
<td>3</td>
<td>2.028</td>
<td>0.114</td>
</tr>
<tr>
<td>Main effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAV vs TAV group</td>
<td>1*</td>
<td>7.330*</td>
<td>0.008*</td>
</tr>
<tr>
<td>AVS</td>
<td>1</td>
<td>1.295</td>
<td>0.257</td>
</tr>
<tr>
<td>Sex</td>
<td>1</td>
<td>0.065</td>
<td>0.800</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>1</td>
<td>0.009</td>
<td>0.080</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1</td>
<td>0.664</td>
<td>0.417</td>
</tr>
<tr>
<td>Smoking</td>
<td>1</td>
<td>0.093</td>
<td>0.761</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>1</td>
<td>0.364</td>
<td>0.548</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
<td>0.488</td>
<td>0.486</td>
</tr>
<tr>
<td>AVI</td>
<td>4</td>
<td>0.471</td>
<td>0.757</td>
</tr>
<tr>
<td>Combined model</td>
<td>15</td>
<td>2.254</td>
<td>0.008*</td>
</tr>
</tbody>
</table>

AA indicates ascending aortic replacement; AVI, aortic valve insufficiency; AVS, aortic valve stenosis; BAV, bicuspid aortic valve; and TAV, tricuspid aortic valve. * indicates significance.
ascending aortic diameters, similar elastin and proteoglycan value comparable with the TA V reference. Interestingly, patients with BA V with high level of soluble sRAGE show dysfunctional aortic microstructure with elastin fragmentation and proteoglycan deposition regardless of the aortic diameter.

RAGE Expression in the Ascending Aorta Linearly Correlates With Circulating sRAGE in Patients With BA V

The expression of RAGE and its ligands (HMGB-1 and s100A12) was tested by Western blotting using whole tissue extracts of ascending aortic tissues excised from n=7 patients already tested for sRAGE (Figure 5). As shown in Figure 6A to 6C, both RAGE and HMGB-1 expression is increased in aortic tissue obtained from patients with high levels of sRAGE and dysfunctional aortic structure. Densitometry analysis and linear regression revealed that RAGE expression (but not HMGB-1) linearly correlates with circulating sRAGE levels ($R^2=0.7229$ and $R^2=0.2594$ respectively; Figure 6B and 6C). s100A12 expression was not detected by Western blotting. Immunohistochemistry and immunofluorescence were performed to test which cell types in the aorta are expressing RAGE and its ligands. As shown in Figure 5D, RAGE and HMGB-1 expression is significantly increased in dysfunctional aortic tissue of patients with BA V with high levels of circulating sRAGE when compared with those with a conserved aortic structure and low levels of sRAGE. Both RAGE and HMGB-1 expression is evenly distributed through all the aortic layers, suggesting that resident endothelial cells as well as VSMCs and fibroblasts express these proteins. Similar results have been obtained by immunofluorescence analysis (Figure IV in the online-only Data Supplement). No significant inflammation has been detected in patients with low or high levels of sRAGE (Figure V in the online-only Data Supplement). Morphological analysis revealed few HMGB-1 and RAGE-positive inflammatory cells (mostly lymphocytes) in the adventitial layer. On the contrary, s100A12 was not detected in the aorta of patients with low levels of sRAGE and was minimally detected in adventitial inflammatory infiltrates in the aorta of patients with high levels of circulating sRAGE (Figure 6).

Discussion

Patients with BAV have frequent and premature occurrence of valvular diseases, as well as ascending thoracic aortopathies. Although aortic diameter, expansion rate, and ratio of aortic area/diameter to body weight/surface are the current indications for elective surgical intervention of the proximal aorta, they are imperfect predictors of adverse aortic events. Current guidelines for ascending aortic aneurysm repair would fail to prevent the majority of acute aortic dissections even with the more aggressive guidelines adopted for patients

![Figure 3](http://atvb.ahajournals.org/)

Figure 3. Patients requiring ascending aortic replacement (AA) have higher soluble receptor for advanced glycation end product (sRAGE) level than patients requiring aortic valve replacement (AVR) only. A, sRAGE quantification in plasma samples of patients with BAV undergoing AVR/repair only (BAV AVR, n=30) and patients with BAV undergoing AVR combined with an ascending aortic procedure (aortoplasty or replacement, BAVAVRAA, n=30). B and C, Linear correlation between sRAGE plasma quantification and patient’s ascending aortic diameter ($P=0.51; R^2=0.007$) or ratio between ascending aortic diameter/BSA ($P=0.42; R^2=0.011$).
with BAV. Therefore, the identification of patients with BAV and the ability to risk stratify those at high risk of aortopathies, independently of aortic diameters, is of paramount importance both clinically and socially. Given the role of AGE and its soluble receptor in controlling tissue homeostasis and vascular remodeling, we aimed to characterize sRAGE as a diagnostic and risk-stratification tool for patients with BAV referred for surgery. Several important innovative concepts for the diagnosis and risk stratification of patients with BAV are reported in this article.

Our results show that sRAGE levels are significantly higher in patients with BAV compared with TAV, and that a cutoff equal to 766 pg/mL is able to identify patients with BAV with 82% sensitivity and 69% specificity. The presence of BAV is identified via routine echocardiography only in a subgroup of patients: echocardiographic identification can be challenging in severe stenosis and after cusp fusion secondary to inflammation. Because of these limitations, cardiac MRI and computed tomography need to be used to augment the diagnostic process. Both computed tomography angiography and MR angiography also have relatively high associated costs as well as potential renal side effects related to the administration of contrast dye. In addition, although this is currently the gold standard, routine computed tomography angiography scanning is not recommended in women of child-bearing years because of the radiation exposure. Finally, in the pediatric or frail population, the stress associated with conventional screening may also be a deterrent. Here, it is concluded that circulating levels of sRAGE can identify patients with BAV with higher sensitivity and specificity and independently from the condition of the valve (insufficient, stenotic or heavily calcified; Figures 1–3).

Furthermore, sRAGE ability to identify patients with BAV and BAV-associated aortopathies is not affected by the presence of coronary artery disease and diabetes mellitus or by common risk factor for cardiovascular diseases (Tables 3 and 4). Regression analyses indicate that increasing levels of sRAGE are predictive of BAV status. The relationship of sRAGE levels was confirmed in both a single variable regression model and a model that included all of the patient characteristics available for analysis, reflecting the independent and unique relationship of sRAGE level to BAV status. In

Figure 4. Soluble receptor for advanced glycation end product (sRAGE) level distribution in slow and fast progressors. A, sRAGE distribution according to the morphology of the valve (tricuspid aortic valve [TAV], bicuspid aortic valve [BAV]), the type of surgery performed (aortic valve replacement [AVR] or AVR/ascending aortic replacement [AA]), and the patient’s age (< or ≥60, <60, and ≥60 years). B, Patients with BAV discrimination in slow progressors vs fast progressors based on sRAGE plasma values distribution.

Figure 5. Plasma levels of soluble receptor for advanced glycation end product (sRAGE) correlate with altered ascending aortic microstructures. A, Ascending aortic diameter measurement by computed tomographic scan (cm), age, and sRAGE concentration (pg/mL) detected in the plasma of the patient nos. 1 to 7. B, Graph representing sRAGE values (bars), proteoglycan deposition (scored from 0 to +3; triangles), and elastin fragmentation (scored from 0 to −3; squares). C, Representative images of modified Movat’s pentachrome staining performed on optimal cutting temperature compound section of ascending aortic tissues excised from patient nos. 1 to 7. Media layer (magnification, ×40). AA indicates ascending aortic replacement.
addition, this relationship was demonstrated to be even more pronounced for patients with AA diameter <4.5 cm.

These results could have significant diagnostic implications for patients with BAV. The availability of a blood-based test to identify BAV disease creates the possibility of routine screens for patients and family members, thus allowing early identification and surveillance with anticipated better compliance.

It should also be noted that commonly used imaging techniques to assess the presence of a BAV do not generally provide information on the risk of aortopathies (either proximal or distal). We reported that higher levels of sRAGE were detected in patients with BAV with aortic valve pathology and ascending aortopathies when compared with patients with BAV with only valvular pathologies. No linear correlation has been found between high levels of sRAGE and aortic valve dysfunction. These results suggest that higher levels of sRAGE may be a marker for the diagnosis of aortic complications in patients with BAV with no linear correlation with aortic diameter. In addition, we reported that patients requiring both AVR and AA <60 years of age (fast progressors) have higher sRAGE levels than any other groups in our surgical population (slow progressors; Figure 4).

On the contrary, circulating levels of 2 known sRAGE ligands, HMGB-1 and s100A12, are not significantly different in patients with BAV when compared with patients with TAV and did not show any correlation with sRAGE concentration or ascending aortic diameter (Figures I–III in the online-only Data Supplement).

Finally, we show in a subpopulation of patients with BAV that sRAGE level directly correlated with altered ascending aortic microstructures. Although patients with BAV with low sRAGE show an overall organized aortic microstructure, higher levels of sRAGE are associated with elastin degradation and proteoglycan deposition (Figure 5). RAGE and HMGB-1 are known to be expressed in endothelial cells, VSMCs, as well as inflammatory cells (monocytes and macrophages). s100A12 is mostly released by neutrophils and it is expressed in VSMC within atherosclerotic plaques or after endothelial cell wire injury. More recently, s100A12 has been found in VSMC of human aneurysmal and dissected aorta with variable degrees of expression. Interestingly, we found that RAGE tissue expression is increased in the aorta of patients with BAV with high levels of circulating sRAGE (Figure 6). Furthermore, the expression of RAGE in the tissue linearly correlates with the levels of sRAGE in the plasma of the same patients suggesting that RAGE activation in the tissue may be responsible for the shedding of the receptor and consequent release of sRAGE in the circulation. HMGB-1 expression is generally increased in patients with dysfunctional aortic structure and high level of circulating sRAGE but its expression in the tissue did not show a linear correlation with sRAGE levels (Figure 6). Immunohistochemistry analysis suggested that both RAGE and HMGB-1 expression is evenly distributed through all the aortic layers suggesting that resident endothelial cells as well as VSMCs and myofibroblasts express these proteins. Similar results have been obtained by immunofluorescence analysis (Figure IV in the online-only Data Supplement). It has been previously shown that the ascending aorta of aneurysmal patients with BAV do not present high levels of inflammatory cells as opposed to aneurysms of patients with TAV.22,33 Few inflammatory infiltrates, mostly present in the adventitial layer (Figure V in the online-only Data Supplement), were found in the aortic tissue of patients with low and high sRAGE levels and they also express both RAGE and HMGB-1. s100A12 was undetected in the ascending aortic tissue by Western blotting analysis and minimally detected by immunohistochemistry in
few adventitial inflammatory infiltrates. These findings are suggesting that HMGB-1 but not s100A12 may contribute to the activation of tissue RAGE that ultimately results in circulating sRAGE accumulation. Our results are in accordance with the 2-hit model for vascular perturbation mediated by RAGE and its ligands postulated by Schmidt et al. The 2-hit model hypothesizes that the first hit is increased expression of RAGE and its ligands within the vasculature. Various forms of stress (ischemic stress, immune/inflammatory stimuli, physical/hemodynamic stress, or modified lipoproteins) represent the second hit, which leads to exaggerated cellular response promoting development of vascular lesions.

Although larger group size and further prospective studies are needed, our results provide evidence that testing sRAGE in the plasma may be an important step in the development of a blood-based tool for the diagnosis of BAV and BAV-associated aortopathies. The availability of such a diagnostic tool would have important outcomes for public health: first, it would provide a low cost tool for the identification of patients with BAV in addition to the current imaging techniques. Second, it would open the possibility to routinely screen BAV family members allowing an early identification and surveillance of this population. In addition, our study suggests that plasma levels of sRAGE could be used for the risk stratification of patients with BAV for adverse aortic events. Low-risk patients (low sRAGE plasma level) could be spared costly follow-up or surgical intervention, whereas high-risk patients (high sRAGE plasma level) could be followed up closely both clinically and surgically. This study opens a new direction in the risk stratification of BAV and aortic aneurysm patients; although aortic diameter and expansion rate remain key factors in the diagnosis and prognosis of adverse aortic event, our study highlights the need to link aortic wall microstructure—determined by the impact of AGEs on VSMCs and extracellular matrix components—to the risk of dissection/rupture independent of metric measurements.

Acknowledgments

We thank Dr Robert J. Levy (Children’s Hospital of Philadelphia) for his critical reading of the article and Dr Paolo Cotzia (Thomas Jefferson University Hospital, Philadelphia) for his contribution with histological and immunohistochemical studies. This work is dedicated to Mario A. Ferrari (1948–2011) and Emma R. Branchetti (1914-1987).

Sources of Funding

This project was supported by the Harrison Memorial Fund of the University of Pennsylvania, (GF) and by the Marjorie G Bunnell Charitable Fund of The Valley Hospital Foundation (Drs Grau and Ferrari).

Disclosures

None.

References

Bicuspid aortic valve disease is the most common congenital heart defect occurring in 2% of the general population. Fifty percent of patients with bicuspid aortic valve require surgery for either aortic valve calcification or ascending aortic aneurysm and dissection. The presence of a bicuspid aortic valve is currently diagnosed using imaging techniques, and surgical intervention is based on ascending aortic measurements. However, the majority of adverse aortic events occur outside of the suggested parameters of surgical intervention. This study opens a new direction in the risk stratification of bicuspid aortic valve and aortic aneurysm patients: although aortic diameter and expansion rate remain key factors in the diagnosis and prognosis of adverse aortic event, our study highlights the need to provide a link between aortic wall microstructure—determined by the impact of advanced glycation end products on vascular smooth muscle cells and extracellular matrix components—and the risk of dissection/rupture independent of metric measurements.
Circulating Soluble Receptor for Advanced Glycation End Product Identifies Patients With Bicuspid Aortic Valve and Associated Aortopathies

Arterioscler Thromb Vasc Biol. 2014;34:2349-2357; originally published online August 14, 2014; doi: 10.1161/ATVBAHA.114.303784
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/34/10/2349

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2014/08/14/ATVBAHA.114.303784.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
Material and methods

Study Population. A retrospective study was performed on a total of 338 patients enrolled at the University of Pennsylvania according to the approved IRB protocol #809349 (Figure 1). All patients included in this study have been followed for aortic valve diseases (stenosis or insufficiency) and/or enlargement of the ascending aorta and reached the criteria for surgical intervention. Blood was taken before surgery and all patients provided written informed consent. Surgical patients were divided in two groups, according to the morphology of the aortic valve assessed by transesophageal echocardiography (TTE), computed tomography (CT scan) or both, and confirmed by intra-operative observation. Exclusion criteria were: genetic disease associated with TAA, connective tissue disease, chronic inflammatory disease, previous myocardial infarction, severe heart failure (NYHAIII+, IV), endocarditis and active cancer. A total of 135 patients met the inclusion criteria, n=74 with BAV and n=61 with TAV. Among them 32 BAV and 33 TAV underwent aortic valve replacement without aortoplasty (BAVARV). 42 BAV and 29 TAV underwent aortic valve repair or replacement combined with an ascending aorta surgery (repair or replacement) (BAVARV/AA or TAVARV/AA). A detailed description the patients’ demographics is summarized in Table 1 and 2.

Aortic tissue collection. Ascending aorta was excised from BAV patients undergoing aortic valve replacement combined with ascending aorta surgery. A small fragment of ascending aorta was also obtained from patients with TAV undergoing aortic valve replacement only.

Immunohistochemistry and Immunofluorescence of OCT sections. Fresh ascending aorta tissues were collected during surgery, fixed in formalin and embedded in OCT. Hematoxylin & Eosin and Modified Movat’s Pentachrome staining were performed on 6µm sections by the MCRC histology core at the University of Pennsylvania. Black stain indicates nuclei and elastic fibers; yellow stain indicates collagen fibers; blue stain indicates proteoglycans and glycosaminoglycans; red indicates muscular tissue. Immunohistochemistry and/or immunofluorescence for s100A12, HMGB-1, RAGE and CD45 were performed following standardized protocols.

sRAGE quantification. Blood was collected prior to surgery from the patients and processed to obtain serum and plasma then stored at -80°C until the assay was performed. Plasma analysis for sRAGE, s100A12 and HMGB-1 level was conducted using ELISA kits (R&D Systems and MBL International).

Western Blotting analysis of human ascending aorta. Whole tissue extract was obtained from frozen ascending aorta tissues. Protein expression was determined using antibodies against RAGE (ab3611), HMGB-1(ab18256) and GAPDH (ab9485) following standardized protocol1.

Study Design. sRAGE levels were analyzed in two ways: First, comparisons were made between all BAV and TAV patients; and second, comparisons were made between BAV and TAV patients with ascending aorta diameter ≤ 4.5 cm. Linear regression was used to determine the relationship between sRAGE values and age, gender, diagnosis of CAD and diabetes and presence of common risks factor for cardiovascular disease (hypertension, hyperlipidemia, smoking). Comparisons were then made within the BAV group, (and within the TAV group) between patients undergoing AVR surgery only and patients undergoing AVR and ascending aorta surgery (AVR/AA). Linear regression was used to examine the relationship between sRAGE values and ascending aorta diameter and ratio between ascending aorta diameter/body surface area (BSA). BSA was calculated using the Mosteller formula. HMGB-1 and s100A12
plasma levels were also tested in a subgroup of patients with known sRAGE values (n=30 and n=38 patients respectively).

Statistical Analysis. The data were analyzed using SPSS software (version 19.1; IBM/SPSS, Chicago, IL) and SAS (version 9.2). Continuous variables are expressed as mean ± standard error (SEM). Comparisons of continuous variables between groups were performed with the Student’s t test (in the case of patient age) or nonparametric (Mann-Whitney U test) tests to adjust for abnormalities in the distribution of other variables (sRAGE). Multivariate General Linear Model ANOVA was used to evaluate the relationship of factors and their interactions with the level of sRAGE. Univariate and multiple regression were used to evaluate the association of SRAGE as a predictive marker of BAV status. Differences were considered statistically significant at values of p<0.05. To determine the specificity and sensitivity of sRAGE quantification, area under the receiver operating characteristic curves (AUC of ROC curves) was calculated using statistical software GraphPad Prism 6. Regression analyses were performed using SAS (proc logistic) with goodness of fit testing according to the methods of Hosmer and Lemeshow.

Supplemental References

Circulating levels of s100A12 are not significantly different in BAV patients when compared to TAV. (A) sRAGE quantification of TAV (n=10) and BAV (n=20) patients. Dots represent values (pg/mL) from each patient ±SEM. (B) sRAGE values in TAV (n=6) and BAV (n=13) patients meeting the criteria for surgical intervention (ascending aorta diameter <4.5 cm). (C) Linear regression to test the correlation between s100A12 plasma concentration and ascending aorta diameter.
Supplemental Figure II

A

HMGB-1 plasma concentration is not significantly different in BAV patients when compared to TAV. (A) sRAGE quantification of TAV (n=18) and BAV (n=20) patients. Dots represent values (pg/mL) from each patient ±SEM. (B) sRAGE values in TAV (n=7) and BAV (n=12) patients meeting the criteria for surgical intervention (ascending aorta diameter <4.5 cm). (C) Linear regression to test the correlation between HMGB-1 plasma concentration and ascending aorta diameter.
Absence of linear correlation between s100A12 and/or HMGB-1 and sRAGE level and distribution of sRAGE ligands in slow and fast progressors. (A-B) Linear regression to test the correlation between s100A12 or HMGB-1 plasma concentration and sRAGE circulating levels. (C) S100A12 and HMGB-1 distribution in patients defined as fast and slow progressor by sRAGE analysis.
RAGE and HMGB-1 distribution in the ascending aorta of patients with low and high levels of circulating sRAGE. (A-B) Immunofluorescence analysis performed on ascending aorta sections obtained from patients #1-7. Red dots represents positive staining for either RAGE or HMGB-1. Confocal Images. Magnification 100X. (C) Graph representing RAGE and HMGB-1 positive staining quantification. Positive cells were counted in 4 field/section. Number of positive cells were averaged and plotted.
Few inflammatory infiltrates are detected in the aorta of patients with low and high levels of sRAGE. Representative images of immunohistochemistry analysis for CD45 performed on ascending aorta sections obtained from patients with low and high levels of sRAGE. Magnification 10X and 40X. I=Intima; M=Media; A=Adventitia.