Role of Biomechanical Forces in Stem Cell Vascular Lineage Differentiation

Claire M.F. Potter, Ka Hou Lao, Lingfang Zeng, Qingbo Xu

Abstract—Mechanical forces have long been known to play a role in the maintenance of vascular homeostasis in the mature animal and in developmental regulation in the fetus. More recently, it has been shown that stem cells play a role in vascular repair and remodeling in response to biomechanical stress. Laminar shear stress can directly activate growth factor receptors on stem/progenitor cells, initiating signaling pathways leading toward endothelial cell differentiation. Cyclic strain can stimulate stem cell differentiation toward smooth muscle lineages through different mechanisms. In vivo, blood flow in the coronary artery is significantly altered after stenting, leading to changes in biomechanical forces on the vessel wall. This disruption may activate stem cell differentiation into a variety of cells and cause delayed re-endothelialization. Based on progress in the research field, the present review aims to explore the role of mechanical forces in stem cell differentiation both in vivo and in vitro and to examine what this means for the application of stem cells in the clinic, in tissue engineering, and for the management of aberrant stem cell contribution to disease. (Arterioscler Thromb Vasc Biol, 2014;34:2184-2190.)

Key Words: adventitia ■ atherosclerosis ■ cell differentiation ■ stem cells

The term stem cell was initially used to describe a distinct embryoid cell with the capability to differentiate into any more specialized cell. Since the discovery that white blood cells were derived from common hematopoietic precursors, the usage of the term has expanded to include cells capable of infinite self-renewal and differentiation into any tissue at any stage of development. In recent years it has become increasingly apparent that such cells are present in almost all tissues throughout the body, although whether they have an active functional role in many cases remains unclear. The related term progenitor cell is usually used to describe a cell capable of differentiation into a small number of specific cell types with the capacity for self-renewal, albeit over a more limited time span.

Please see http://atvb.ahajournals.org/site/misc/ATVB_in_Focus.xhtml for all articles published in this series.

Embryonic stem cells (ESCs), adult stem cells, and vascular progenitor cells have all been put forward as potentially useful candidates for vascular repair and generation of tissue engineered vessels for patients with heart disease. It is possible to culture vascular cells directly from vessel samples, but stem/progenitor cells have the advantage of rapid replication and population expansion, allowing for the culture of the large number of cells that may be required for transplant, as well as a decreased immunogenicity. To generate healthy tissues and to ensure a strong commitment of cells to vascular lineages, it has been suggested that the differentiation process may benefit from replication of the different physical forces generated by blood flow during the cardiac cycle. These forces include shear stress, the friction exerted by the blood flow in parallel to the cell surface, and cyclic strain, the stretch as the blood vessel dilates in response to increased flow. These forces may also be involved in the differentiation of in situ progenitor cells, which may contribute to repairing the injured vascular wall, but could also become dysregulated in disease states and contribute to vessel remodeling. Shear stress has been studied extensively in relation to changes in endothelial homeostasis. Endothelial dysfunction is an early hallmark of vascular disease, including atherosclerosis, the development of which is thought to be related to reduced levels of shear stress. The role of cyclic strain is not as well characterized but is thought to play a role in the maintenance of smooth muscle cell integrity. An increased understanding of the role that physical forces have in shaping vascular lineage commitment will aid in harnessing the therapeutic potential of these cells.

Stem Cells With Potential for Vascular Repair

Embryonic Stem Cells

ESCs, pluripotent cells derived from the fetal blastula, showed early promise for potential therapeutic use and study of vessel development, because of their comparatively easy isolation from embryos and their rapid expansion. Because these cells can potentially commit to any cell line in order for them to be
used therapeutically and to increase our understanding of vascular development, it is important that we elucidate the pathways through which they are primed for differentiation into vascular cell lineages in response to blood flow (Figure 1).

Circulating Stem/Progenitor Cells

It was initially thought that stem cells were only active during early development. In recent years, however, it has become increasingly clear that there exist a great number of cells in adult tissues with the ability to differentiate into different cell types when exposed to a particular stimulus within a specific environment, for example, laminar blood flow against the intima. Mesenchymal stem cells, also known as mesenchymal stromal cells, were first identified in the bone marrow stroma but are also suggested to be present in other tissues including adipose tissue, peripheral blood, and the synovial membrane. Many studies have shown that these cells have the potential for tripartite differentiation into the mesodermal lineages including osteoblasts, chondrocytes, and adipocytes, but a smaller number of studies have suggested their additional potential for differentiation into nonmesodermal lineages such as neurons, cardiomyocytes, which is very much controversial, and endothelial cells. Quiescent cells residing in the bone marrow are thought to be released into the circulation and home to the site of vascular injury where they can attach and sense blood flow–induced shear stress. Here, they may contribute to vessel repair, formation of atherosclerotic lesions, or destabilization of the plaque, largely depending on the flow patterns sensed. The mechanisms behind the activation of these dormant cells and the signals through which they sense different types of biomechanical stresses are subjects to be further investigated.

Another circulating cell type, which may contribute to vascular regeneration, is a rare population of endothelial cells with colony-forming ability (endothelial colony-forming cells). These cells can be isolated from peripheral blood mononuclear cells and possess characteristics of true endothelial progenitors, express endothelial but not hematopoietic markers; have the ability to independently form de novo tubular network in vitro; structurally contribute to neovessels and inosculate with nearby vessels in subcutaneous gels implanted in immunodeficient mice; and exhibit high clonogenic and proliferative potential. Recent advances in their roles in neovascularization and tissue engineering may permit a strategy for patterning vascular beds for tissue and organ regenerations. Because these cells can be isolated from a relatively small volume of blood, their isolation also presents an opportunity to study a patient-specific population of endothelial cells minimally invasively. Their origin remains elusive, however, partially because of the lack of consensus regarding their isolation and culture. It is proposed that they are either bone marrow–derived or migratory cells from the vessel wall. These cells experience different types of biomechanical forces in circulation that could mediate their functions in vessel repair or vascular remodeling.

Vascular Wall Resident Stem/Progenitor Cells

It is well known that endothelial cell turnover in the vessel wall is uneven, that is, faster in the branching area where disturbed blood flow occurs. Dead endothelial cells can be replaced by replication of mature endothelial cells. However, recent evidence supports the role of stem/progenitor cells in repairing damaged vessels. It has been demonstrated that intimal resident/stem/progenitor cells can contribute to endothelium formation. These endothelial progenitor/stem-like populations in the intima have potential to form neovessels and are able to produce large numbers of endothelial cells both in vitro and in vivo. Because they are localized to the inner surface, they can sense shear stress induced by blood flow. They may also have a great potential for endothelial repair after damage associated with turbulent shear stress in vivo.

As well as in the tunica media, populations of vascular progenitors have also been found to be resident in the tunica adventitia. Our group identified a Sca-1+, c-Kit+, lin- subpopulation of cells in the adventitia of the mouse aortic root (Figure 2). These cells formed ≤20% of the adventitial population of the aortic root and were confirmed to differentiate to smooth muscle cells in vivo. Clear evidence that these cells can contribute to atherosclerotic lesions was seen in the fact that when applied to the outer surface of a decellularized vein graft these cells migrated through the wall, making up one third of the cells of the neointima. Other groups have since established similar cell populations that can be isolated from the mouse mesenteric and femoral arteries. Zengin et al have also identified a population of CD34+ cells in human arteries that may play a similar role. Using a Wnt1-cre lineage marker that identifies cells of neural crest origin, Passman et al found that neither the adventitia nor Sca1+ cells were labeled in arteries composed of neural crest-derived smooth muscle cells. Development of the adventitia and maintenance of a resident population of Sca1+ vascular progenitor cells in the artery wall are correlated with activation of sonic hedgehog.
signaling. In adults, a chimeric model of mouse bone mar-
row transplantation did not support the bone marrow origin of
vascular Sca-1+ progenitor cells. However, lineage-specific
tracing data are still lacking at present.

These examples show that many candidate cells exist that
could be of great therapeutic benefit if we could harness their
talent for vascular repair while suppressing their ability
to contribute to harmful vascular remodeling. To exploit the
benefits they offer, we must understand how these cells inter-
act with the physical cues of their environment, such as the
different biomechanical stimuli and the dynamic arterial and
venous system.

Biomechanical Forces in Development

In normal mouse fetal development the heart begins to con-
tract by 9.5 days, before the development of anything other
than a primitive vasculature. It is thought that this contra-
tion and its subsequent movement of hemangioblasts in the
developing cell mass is the primary driver of differentiation of
cells into the components of blood. Flow is also a driver in
the remodeling of endothelial lined channels that are formed
concurrently with the heart into the complex hierarchical net-
work of the vascular tree. Lucitti et al. showed that mature
blood vessels do not develop unless there is viscous blood
flow, and more recently, the same group has extended their
study by showing the reasoning behind this phenomenon. High
levels of blood flow from the heart toward the proximal
arterial and venous system lead to fusion of early ves-
sels to generate structures with a greater luminal area. In the
absence of smooth muscle cells, which develop at a later stage
of embryonic development, the endothelium has to be strong
enough to withstand the effects of this flow and to do so must
be able to form strong intracellular junctions. These junctions
can be strengthened by the increasing volume of cells directly
pushing on each other. This compressive force can affect local
cell tension influencing cytoskeletal distribution. Thus, bio-
mechanical force exerts its essential role in stem/progenitor
differentiation into endothelial cells in the development of the
vascular system.

Communication of Physical Forces

Flow Sensing Mechanisms

The precise mechanisms by which stem cells sense and trans-
late shear stress into chemical signals leading to vascular lineage
differentiation are not fully understood, but many models have
been proposed. Donald Ingber’s model of cellular tensegrity sug-
gests that the cell acts as a framework of cytoskeletal elements
and anchoring integrins, which invoke a coordinated response
to fluid flow communicated through a network of filaments.
Disruption of this network leads to mechanical deformation of
the nucleus, activating events leading to transcription factor
recruitment. Integrins, when bound to their extracellular matrix
substrates, act as mechanosensors to transduce physical force via
recruitment of focal adhesion proteins that are connected to
microfilaments, microtubules, and intermediate filaments and
activate downstream signaling cascades. The glycocalyx has
also been suggested as a sensory element, and it is proposed that
patterns of fluid flow disrupting protruding glycoprotein strands
may lead to dissipation of shear stress, which is then commu-
nicated through the cell to initiate signaling cascades. Flow-
responsive ion channels and G-protein–coupled receptors are
additional proposed means of shear responsiveness.

Signaling of Shear Stress–Induced
Endothelial Differentiation

Evidence of biomechanical stress–induced stem cell differen-
tiation has been widely reported. Shear stress is of particular
interest in vascular cell remodeling because of its key role in
endothelial activation and endothelial specification of stem
cells. Several key signaling pathways have been proposed for
stem/progenitor cell commitment to endothelial lineage. The
most reported mechanism is the activation of vascular endo-
thal growth factor receptor-2 (VEGFR-2; also known as
fetal liver kinase 1 [Flk-1] in mouse) by laminar shear stress in
a ligand-independent manner. In several previous studies, the
Flk-1 inhibitor, SU1498, has been reported to abolish shear
stress–induced endothelial marker appearance in differentiating
mouse ESCs. To further study the molecular mecha-
nisms, it was reported that shear stress could activate Flk-1 in
a ligand-independent manner. How VEGFR-2 can be acti-
vated by shear stress without VEGF involvement is at pres-
ent unknown. Further investigation on this issue is needed to
clarify the mechanisms of endothelial lineage differentiation.

VEGFR-2/Flk-1 signals through 2 distinct signaling path-
ways in endothelial cells: the phosphoinositide 3-kinase–Akt
pathway and the PKC–MAPKK–ERK (protein kinase C–mito-
gen-activated protein kinase kinase–extracellular signal regu-
lated kinase) pathway. A handful of studies have reported that
the PI3K–Akt pathway is an important master regulator in shear
stress–induced endothelial differentiation of a variety of stem/
progenitor cells, including human cord blood–derived pro-
genitors, adipose-derived stem cells, and mouse ESCs. Interest-
ingly, when floating–circulating phenotype endothelial
progenitors derived from ex vivo expanded human cord blood were exposed to controlled levels of shear stress in a flow-loading device, the bioactivities of adhesion, migration, proliferation, tube formation, and differentiated type of endothelial cells increased. Several downstream effectors of PI3K–Akt have been suggested, of which histone deacetylases (HDACs) may play an important role. We and others have demonstrated that shear stress upregulates HDAC activity, and that HDAC inhibitors abolish flow-induced endothelial differentiation in adult progenitors and mouse ESCs. Rössig et al showed that this HDAC-mediated shear stress–induced endothelial differentiation may act by increasing expression and binding of transcription factor HoxA9 onto the endothelial nitric oxide synthase promoter. We have established HDAC regulation further by showing that laminar flow activates and stabilizes HDAC3, one of the class I HDACs, through the Fli-K–PI3K–Akt pathway and subsequently deacetylates p53 and activates p21 to induce mouse ESC-derived progenitor cell proliferation and differentiation into functional endothelial cells (Figure 2). Other factors such as sirtuin 1 (class III HDACs) and mammalian target of rapamycin have also been indicated as the downstream signal transducers of the PI3K–Akt pathway in the endothelial lineage commitment of human cord blood–derived progenitors. Recently, Dunn et al reported that flow can alter genome-wide methylation resulting in endothelial gene expression. Another school of thought is that shear stress induces the arterial endothelial cell commitment of stem/progenitor cells. Both VEGF downstream signaling pathways, PI3K–Akt and PKC–MAPKK–ERK, have been shown to be involved in the shear stress–induced upregulation of arterial endothelial marker ephrinB2 in stem/progenitor cells through the activation of Notch signaling and transcription factor Sp1. Additionally, an endothelial-selective transcription factor Hath6 was recently shown to be an important shear stress–responsive factor in shear stress–induced endothelial differentiation of human ESCs through targeting endothelial nitric oxide synthase expression.

Other mechanosensory mechanisms in flow-induced endothelial differentiation of stem/progenitor cells have also been suggested. Extracellular matrix–bound integrins are important mechanosensors that have been shown to mediate the laminar flow–induced endothelial commitment of rat bone marrow–derived endothelial colony-forming cells. The same research group has further suggested that cell cytoskeletal rearrangement, mediated by the activation of integrin β1, Ras, ERK1/2, paxillin and focal adhesion kinase cascade, is essential in regulating this process (Figure 3). Because integrin expression is upregulated by VEGF during angiogenesis in mature endothelial cells, it is plausible to suggest that VEGFR-2/Flik-1 might act as a master switch that transduces signals through multiple downstream pathways to induce endothelial differentiation of stem/progenitor cells on encountering laminar shear stress. The glyocalyx component heparin sulfate proteoglycan has also been implicated as an alternative mechanosensor mediating shear stress–induced endothelial differentiation. Modeled microgravity has additionally been suggested as another type of mechanical stress that induces endothelial differentiation of rat bone marrow–derived mesenchymal stromal cells. We are starting to get a glimpse into the mechanisms underlying this phenomenon, but further efforts are required to clarify the full picture of intricate interactions between the various mechanosensory molecules in this biomechanical stress–induced stem/progenitor cell commitment to the endothelial lineage.

The downstream signal transducer for shear stress involves in transcription factor that mediate endothelial-specific gene expression. Recently, Fang et al reported the role of Hath6 in the endothelial specification of ESCs in response to shear stress. Hath6 (ATOH8), an endothelial-selective basic helix-loop-helix transcription factor, was first identified as a flow-responsive gene through a transcriptional profile analysis of human umbilical vein endothelial cells exposed to sustained laminar shear stress. In human ESC differentiation into endothelial cell models, Hath6 mRNA was upregulated synchronously with endothelial determinination. Hath6 also facilitated the maturation of endothelial cells, tubular structure formation, and cell migration. Another well-known element in the promoter regions of endothelial-specific genes, for example, endothelial nitric oxide synthase and platelet endothelial cell adhesion molecule-1, is shear stress–responsive elements. Fluid shear stress regulates binding of mechanosensitive transcription factors, such as nuclear factor κB and early growth response 1, to shear stress–responsive elements in endothelial cells, where they maintain blood vessel homeostasis. These findings suggest that the transcriptional regulation that is necessary for pluripotency can be maintained and modified by the local micromechanical environment in stem cells.

Signaling of Cyclic Stretch Induced Smooth Muscle Cell Differentiation

As described above, resident stem/progenitor cells exist across the vessel wall. These cells play an important role in vascular homeostasis that is largely driven by biomechanical forces and injury insults. In pathological conditions such as angioplasty and vessel bypass surgery, they are also found to be contributory to vascular remodeling events. There is evidence that the cyclic strain generated by the pulsatile nature of blow flow throughout 1 cardiac cycle may be responsible for maintaining smooth muscle cells within the wall in an active, contractile status rather than in a proliferating one, and it may play a similar role in ensuring the quiescence
of resident stem/progenitor cells. Strain within the vessel wall is heterogeneous. Circumferential strain is present where the vessel is straight, whereas at curvatures and branch points, areas known to be prone to the formation of atherosclerotic lesions, strain is more isotropic. It is possible that changes in strain may be responsible for the aberrant proliferation of smooth muscle cells associated with plaque formation. Related to this pathological phenomenon is the fact that mechanical stretch results in mesenchymal stromal cell differentiation into a smooth muscle phenotype. Such mechanical loading regulates smooth muscle marker gene expression, leading to differentiation into smooth muscle cells without the addition of growth factors. Using different dominant mechanical stimuli, Maul et al found that cyclic strain in the vasculature alters stem cell morphology, growth, and differentiation. They demonstrated that mesenchymal stromal cells are sensitive to different types of forces and will respond in a dose-dependent manner to both the magnitude or frequency of cyclic strain and shear stress, but display a relatively constant phenotype on exposure to other forces such as cyclic hydrostatic pressure. In a 3-dimensional model, progenitor cells can differentiate toward a smooth muscle cell-like lineage when exposed to biomechanical stimulation. Others have shown that the absence of appropriate stretch is also linked to the development of osteogenic features in smooth muscle cells, showing that the level of tensile loading is important. Thus, it seems that cyclic strain stimulates stem/progenitor cell preferential differentiation into smooth muscle lineages.

Precise mechanisms of sensing in stem/progenitor cells and the complete pathways relaying specific mechanical stimuli to stem cell fate remain to be elucidated. So far, no stem cell-specific stretch receptors have been identified. As discussed earlier, extracellular matrix–bound integrins are important in laminar flow–induced endothelial differentiation; however, they are also important in mediating cyclic strain–induced stem cell differentiation into smooth muscle cells. A second pathway initiated by mechanical stretch is platelet-derived growth factor receptor activation, which might initiate ESC differentiation into smooth muscle cells through the activation of Ras/ERK1/2 cascade. It was demonstrated that cyclic strain can directly stimulate platelet-derived growth factor receptor activation without ligand binding. Possibly, mechanical force might change platelet-derived growth factor receptor structure conformation leading to kinase domain exposure and consequently activate downstream signal transducers. Finally, it is known that both mechanical stimulation and transforming growth factor-β signaling play unique and important roles in the regulation of progenitor differentiation into smooth muscle cells at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues might promote this process. Mechanical stretch–induced stem cell differentiation processes involve different signaling molecules and pathways and most likely depend on the activities of several mechanical sensors and signal transducers. Concerning transcription factor–mediated smooth muscle–specific gene expression, it is known that myocardin/serum response factor complex can directly bind to CArG element of promoter regions in smooth muscle–specific genes, which was partially confirmed in mechanical stress–initiated muscle differentiation. Thus, strain/stress can stimulate smooth muscle differentiation from stem cells, but detailed molecular mechanisms are largely unclear.

Clinical Relevance and Perspective

Bioengineered Vessel Constructs

Knowledge of the physical forces that regulate stem/progenitor cell differentiation will be beneficial in utilization of such cells in the clinic. For instance, to generate functional vessels suitable for grafting, it will be useful to culture cells on a scaffold constructed from materials that are likely to promote differentiation into vascular cells while discouraging the formation of bone-like materials. When vascular progenitors are applied to both the inner surface and the adventitial side of a decellularized vessel scaffold, biomechanical forces can be sensed by these cells during pressure-driven perfusion with culture medium. These cells were differentiated into both endothelial and smooth muscle cells, that is, laminar flow shear–inducing endothelial differentiation and cyclic stretch–inducing smooth muscle phenotypes in tissue-engineered vessels. There is evidence that cells may retain epigenetic memory that may allow them to be more responsive and speed up the differentiation process when in situ. Culturing cells under exposure to biomechanical forces may also improve the ability of the engineered vessels to withstand pressures when transplanted into the body.

Restenosis After Stenting

Angioplasty, the insertion of a wire stent into an occluded artery to increase blood flow, is one of the most commonly performed surgeries worldwide. However, it is not a conclusive solution to the problem because restenosis of the vessel is not uncommon. Restenosis rates have improved dramatically because bare metal stents were replaced with drug-eluting stents in most angioplasty surgeries. Some of the most common drugs used, sirolimus (Rapomycin) that elicits an antiproliferative effect through its action on mammalian target of rapamycin, and paclitaxel that acts via the antimigratory stabilization of cell microtubules, have decreased restenosis rates from 22% to 2%. However, because of the large number of such surgeries performed per year, this 2% still represents a significant problem. One of the key causes of pathogenesis is altered blood flow after stenting, because the lumen size of the vessel differs from the original artery. Recent work suggests that much of this restenosis could be down to the invasion of Sca-1 vascular progenitors. Sirolimus was found to induce progenitor cell chemotaxis via activation of CXCR4 and drive smooth muscle cell differentiation through ERK and β-catenin, which could contribute to restenosis and vascular remodeling. Through increased understanding of the biochemical and biomechanical pathways that drive progenitor proliferation, migration, and differentiation, we could ensure drugs that promote progenitor differentiation toward endothelial lineages are applied in future generations of drug-eluting stents.

Stem/progenitor cells present a valuable tool for tissue bioengineering in the vasculature. However, their activation in the setting of arterial disease and their contribution to adverse vascular remodeling remain problematic. A greater understanding
of how these cells can be manipulated by physical forces may allow us to develop preventative strategies for their adverse behavior and harness their full therapeutic potential in treating cardiovascular disease.

Sources of Funding

Vascular stem cell research in the Xu lab is supported by the British Heart Foundation and Oak Foundation.

Disclosures

None.

References

Potter et al Biomechanics and Stem Cells 2189

Role of Biomechanical Forces in Stem Cell Vascular Lineage Differentiation
Claire M.F. Potter, Ka Hou Lao, Lingfang Zeng and Qingbo Xu

Arterioscler Thromb Vasc Biol. 2014;34:2184-2190; originally published online July 10, 2014;
doi: 10.1161/ATVBAHA.114.303423
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272
Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://atvb.ahajournals.org/content/34/10/2184

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org/subscriptions/