During the past 10 years, large-scale genetic studies have identified hundreds of novel genetic variants for heart disease and other forms of cardiovascular (CV) disease and their risk factors.1 Although highly successful in identifying novel genomic loci, genomic research has been criticized for its high costs, slow translation to clinical care, and many unfulfilled promises. It is now clear that the promised timeline to reap the genomic benefits for medicine was too short, and the benefits themselves, to some degree, were exaggerated.2 But major progress continues to be made on several fronts in translational genomics to medicine. In this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, 3 articles demonstrate 1 way by which the CV genomics community is using genomic discoveries to further our understanding of fundamental issues in the prediction and prevention of CV disease.

See accompanying articles on pages 2233, 2261, and 2267

Isaacs et al,3 using lipid genetic scores, add to the mounting evidence that lifelong alterations of both total cholesterol and low-density lipoprotein cholesterol, but not high-density lipoprotein cholesterol, promote atherosclerosis and vascular plaque, leading to a higher rate of CV events. Because these natural Mendelian randomization experiments take advantage of the lifelong nature of the genetic exposure4,5 and are devoid of confounding and reverse causality, they provide important confirmatory evidence for the critical causal role of the cumulative effect of modifiable risk factors, such as low-density lipoprotein-cholesterol, in atherosclerosis, vascular disease, and CV events while furthering the case against high-density lipoprotein cholesterol as an important cause of vascular disease.6 Indeed, these genetic studies contribute to the growing evidence base that indicate that the lifelong effect of low-density lipoprotein cholesterol lowering is significantly greater than that seen in short-term pharmacological trials, suggesting that lowering cholesterol earlier in life (eg, in early or midadulthood) may be substantially more effective in reducing CV disease7,8 than current strategies that target lipid-lowering interventions to older adults.

In 2 other articles appearing in this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, Ganna et al9 and Tikkanen et al10 provide new data that genetic information can be used to identify individuals who are at high risk for CV disease beyond traditional risk factors. In both studies, a genomic profile constructed of highly validated genetic variants from genome-wide association studies was created, and in both cases, the genetic risk score (GRS) was highly associated with incident CV disease even after adjustment for traditional risk factors during 10 to 20 years of follow-up. The authors used rigorous criteria11 for the evaluation of the performance of the GRS over and above traditional risk factor algorithms (eg, Framingham risk score), including examination of discrimination and reclassification. Although prior studies reported small to modest12,13 or limited14 incremental benefit for improved CV risk prediction over and above traditional risk factor algorithms, both of the currently reported large studies impressively demonstrate potentially clinically important changes in risk classification (net reclassification index=4%–5%) by addition of a GRS, suggesting that a GRS may be a useful adjunct for risk prediction.

To illustrate the potential benefit of applying a GRS for risk prediction, both studies provided estimates of the potential public health impact of adding GRS scoring in people at intermediate risk based on conventional risk algorithms. Ganna et al9 estimate that 318 individuals would need to be screened, with 83 treated to avoid 1 CV event. Using a slightly longer time horizon of 14 years (and a larger sample size), Tikkanen et al10 provide slightly more encouraging data showing that for every 135 intermediate-risk individuals screened with a GRS, 16 more individuals would be eligible for statin treatment, and 1 additional CV event would be prevented during 14 years of treatment.

Although not yet ready for application in the clinical setting, these data are encouraging and seem to suggest that a GRS may be superior to other recently suggested biomarkers (eg, C-reactive protein, fibrinogen)15 for screening intermediate-risk individuals. A major advantage of a GRS is that because genetics are immutable through life, this risk information is available (and potentially actionable) starting at birth, in contrast to many other biomarkers that vary significantly through life or only become predictive at later ages. Even more encouraging is the fact that current GRS captures only a fraction of the total genetic risk, and future iterations of a GRS based on larger discovery samples are expected to better discriminate risk.16 In addition, as current contemporary cohorts with genetic data age, we will soon be able to relate future GRS not only to 10- to 20-year risks of disease, but also to lifetime risks that will also help inform future preventive strategies.

Genomics have provided some of the most compelling data for the importance of earlier lipid lowering while also giving us tools to predict at an early age the individuals at highest risk for heart disease. These insights suggest that it may be conceivable to target earlier preventive treatments to young genetically
predisposed individuals with a propensity for accelerated atherosclerosis and premature heart disease (eg, based on a high GRS) before they develop any or little vascular disease to maintain vascular health, a form of genomic primordial prevention. By targeting this type of patient population early in the disease process, such a prevention strategy would be expected to be highly effective. However, carefully designed innovative randomized trials will be needed to confirm the expected benefits of such strategies before they can be applied clinically. To do so efficiently without resorting to extremely large sample sizes may require use of direct measures of reduced atherosclerosis progression, using vascular imaging or other surrogate outcomes, as valid trial outcomes, instead of hard CV events or mortality with the understanding that by preventing atherosclerosis, CV events will be reduced. In addition, we will need to carefully consider the risks and benefits of interventions to be offered to young, predisposed patients. Will lifestyle modifications alone be sufficient to prevent disease in the young or will prolonged lipid-lowering therapy be required? More importantly, we are only beginning to understand how people handle genomic information and whether such information in itself leads to meaningful changes in preventive behaviors.

Although genomics may have been oversold for its immediate impact on medicine, we have without doubt learned a great deal from genomics, as highlighted in this issue of *Arteriosclerosis, Thrombosis, and Vascular Biology*, with important implications for the prevention of heart disease. The time to translate these discoveries and develop the evidence base for genomic medicine is now.

Disclosures

None.

References


Key Words: atherosclerosis ■ cholesterol ■ genetics ■ genomics ■ myocardial infarction ■ prediction ■ prevention ■ risk
Genomic Medicine for Improved Prediction and Primordial Prevention of Cardiovascular Disease
George Thanassoulis, Gina M. Peloso and Christopher J. O'Donnell

Arterioscler Thromb Vasc Biol. 2013;33:2049-2050
doi: 10.1161/ATVBAHA.113.301814

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/33/9/2049

An erratum has been published regarding this article. Please see the attached page for:
/content/33/11/e131.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
In the editorial by Thanassoulis et al, which appeared in the September 2013 issue of the journal (Arterioscler Thromb Vasc Biol. 2013;33:2049–2050. DOI: 10.1161/ATVBAHA.113.301814), the following references were cited incorrectly:

On page 2049, 2nd column, paragraph that starts with “Although not yet…”, the reference after “…fibrinogen)” should have been reference 15.

On page 2049, 2nd column, paragraph that starts with “Although not yet…”, the reference after the sentence that starts with “Even more encouraging is the fact that…” should have been reference 16.

On page 2050, 1st column, the references after the sentence that starts with “To do so efficiently without resorting to…” should have been references 17 and 18.

On page 2050, 1st column, the reference after “…handle genomic information…” should have been reference 19.

On page 2050, 1st column, the references after the sentence that starts with “More importantly, we are only…” should have been references 20 and 21.

The online version of the article has been corrected and is available at http://atvb.ahajournals.org/content/33/9/2049.full.