Cardiovascular events, such as myocardial infarction and stroke, are leading causes of mortality and morbidity in Western societies. Biomarkers could help to predict the risk of a patient and to advance the treatment of people at risk by allowing fine-tuning of the intensity of therapy. Although more recent studies have used proteomic, metabolomic, and genetic approaches to identify biomarkers, Borissoff et al. here investigate the importance of double-stranded DNA, nucleosomes, thrombin-antithrombin complex complexes, and myeloperoxidase (MPO)–DNA complexes in predicting the severity of atherosclerosis and the risk of future cardiovascular events. Their data indicate that these markers were elevated in patients with severe coronary atherosclerosis or calcified coronary arteries. Furthermore, plasma nucleosome levels were found to be associated with an increased risk of coronary stenosis, whereas MPO–DNA complexes predicted the occurrence of major adverse cardiac events. Double-stranded DNA, nucleosomes, and MPO–DNA complexes are all markers of neutrophil extracellular traps (NETs), a mesh of DNA released from activated neutrophils (Figure).

See accompanying article on page 2032

NETs as Biomarkers or Mediators of Atherosclerosis?

Neutrophils have just recently emerged as important contributors to atherosclerosis. Depletion studies revealed that neutrophils primarily contribute to atherogenesis by mechanisms involving the release of alarmins, such as cathelicidin, that promote arterial recruitment of classical monocytes. In addition, NETs were identified in murine and human atherosclerotic lesions, as well as in myocardial thrombi. Hence, the study by Borissoff et al. does not only point toward a possible role for NET components in the prediction of cardiovascular risk but also raises the question whether NETs are mediators of the disease process per se. Mechanistically, complexes of self-DNA and neutrophil-derived granule proteins are potent activators of plasmacytoid dendritic cells in the vessel wall, thus promoting atherosclerotic lesion formation. At later stages, luminal NETs may contribute to the activation of platelets, resulting in thrombus formation as was shown in models of venous thrombosis. Although these stand out as possible mechanisms of NET-driven atherothrombotic complications, it remains unclear to what extent neutrophils and neutrophil-derived NETs contribute to plaque destabilization.

Are NET Components Superior in Predicting Cardiovascular Risk?

Before the work presented here, several proteins typically expressed and released by neutrophils emerged as possible biomarkers for cardiovascular events. Plasma levels of MPO, an enzyme stored in neutrophil primary granules and partially released on neutrophil activation, positively correlate with the risk of coronary artery disease. Furthermore, the clinical value of MPO to predict acute myocardial infarction and adverse events during a follow-up period in patients presenting with signs of acute coronary syndrome has been established. Similarly, matrix metalloproteinase-2 and matrix metalloproteinase-9, abundantly expressed in neutrophil secondary and tertiary granules, are elevated in patients with acute coronary syndrome. These observations are further extended by studies indicating a positive correlation between circulating neutrophil counts and the risk of cardiovascular events. However, it is important to note that NET components, namely DNA complexes and nucleosomes, may also be released during other programs of cell death, for example, during endothelial cell apoptosis or macrophage necrosis in advanced atherosclerotic plaques. Despite the potential clinical value, this imposes an important caveat for attempts to extrapolate a causative role of clinically detectable NET components in the pathogenesis of atherosclerosis and for the notion that such DNA constituents are necessarily or exclusively neutrophil- and NET-derived. Nevertheless, given the possible mechanistic implications of MPO and matrix metalloproteinases in plaque destabilization, future work needs to clearly define a clear role for NETs and their fragments in the prediction of atherosclerosis as well as in the process of atherothrombosis.

Sources of Funding

The authors’ research is supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VIDI project 91712303), the Deutsche Forschungsgemeinschaft (SO876/3-1, SO876/6-1, FOR809, SFB914-B08, SFB1054-B04), the Leducq Transatlantic Network of Excellence CVGeneF(x), the FoFoLe Program of the Ludwig Maximilians University Munich, and the Else Kröner Fresenius Stiftung.

Disclosures

None.

References

2. Borissoff JJ, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, ten Cate H, Hofstra L, Crijns HJ, Wagner...
Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Circulation. 2010;122:1837–1845.


Footprints of Neutrophil Extracellular Traps as Predictors of Cardiovascular Risk

Yvonne Döring, Christian Weber and Oliver Soehnlein

Arterioscler Thromb Vasc Biol. 2013;33:1735-1736; originally published online July 1, 2013;
doi: 10.1161/ATVBAHA.113.301889

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://atvb.ahajournals.org/content/33/8/1735

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the
Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for
which permission is being requested is located, click Request Permissions in the middle column of the Web
page under Services. Further information about this process is available in the Permissions and Rights
Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online
at:
http://atvb.ahajournals.org//subscriptions/