Transintestinal Cholesterol Excretion Is an Active Metabolic Process Modulated by PCSK9 and Statin Involving ABCB1

Cédric Le May,* Jean Mathieu Berger,* Anne Lespine, Bruno Pilot, Xavier Prieur, Eric Letessier, M. Mahmood Hussain, Xavier Collet, Bertrand Cariou, Philippe Costet

Objective—Transintestinal cholesterol excretion (TICE) is an alternate pathway to hepatobiliary secretion. Our study aimed at identifying molecular mechanisms of TICE.

Approach and Results—We studied TICE ex vivo in mouse and human intestinal explants, and in vivo after bile diversion and intestinal cannulation in mice. We provide the first evidence that both low-density lipoprotein (LDL) and high-density lipoprotein deliver cholesterol to TICE in human and mouse jejunal explants at the basolateral side. Proprotein convertase subtilisin kexin type 9 (PCSK9)−/− mice and intestinal explants show increased LDL-TICE, and acute injection of PCSK9 decreases TICE in vivo, suggesting that PCSK9 is a repressor of TICE. The acute repression was dependent on the LDL receptor (LDLr). Further, TICE was increased when mice were treated with Lovastatin. These data point to an important role for LDLr in TICE. However, LDLr−/− mice showed increased intestinal LDL uptake, contrary to what is observed in the liver, and tended to have higher TICE. We interpret these data to suggest that there might be at least 2 mechanisms contributing to TICE; 1 involving LDL receptors and other unidentified mechanisms. Acute modulation of LDLr affects TICE, but chronic deficiency is compensated for most likely by the upregulation of the unknown mechanisms. Using mice deficient for apical multidrug active transporter ATP-binding cassette transporter B1 a and b, and its inhibitor, we show that these apical transporters contribute significantly to TICE.

Conclusions—TICE is operative in human jejunal explants. It is a metabolically active process that can be acutely regulated, inversely related to cholesterolemia, and pharmacologically activated by statins. (Arterioscler Thromb Vasc Biol. 2013;33:1484-1493.)

Key Words: ATP-binding cassette transporter B1 | lipoprotein | low-density lipoprotein receptor | PCSK9 | transintestinal cholesterol excretion

Excess cholesterol must be eliminated from the body to avoid its accumulation in tissues and to prevent or diminish atherosclerosis. The hepatobiliary pathway has been considered as the major cholesterol elimination route. Nevertheless, the existence of a nonbiliary route contributing to fecal sterol loss was revealed decades ago in dogs, rats, and later in humans with impaired biliary secretion. More recently, a normal fecal cholesterol excretion rate was observed in mice deficient for cholesterol biliary excretion attributable to the absence of the canalicular phospholipid transport multidrug resistance 2 or to the overexpression of hepatic Niemann-Pick C1-Like 1. Normal or lower biliary cholesterol excretion and increased fecal sterol loss were also observed in mice with no or dramatically less liver cholesterol esterification by the enzyme acyl-coenzyme A:cholesterol acyltransferase 2. Transintestinal cholesterol excretion (TICE) is now recognized as a significant alternative route to the hepatobiliary pathway. It has been estimated that TICE represents constitutively 33% of total fecal sterol loss in mice. More recently, Temel et al showed that TICE is essential to macrophage reverse cholesterol transport in mice suggesting a potential antiatherogenic role for TICE. Intestinal cholesterol excretion is inducible nutritionally by a high-fat diet or pharmacologically by ligands of liver X receptor or peroxisome proliferator activated receptor-δ, but the molecular mechanisms remain unknown.

See accompanying article on page 1452

Several receptors mediate hepatobiliary cholesterol elimination. Hepatic low-density lipoprotein receptor (LDLR) plays a major role in the classic hepatobiliary route and clears...
plasma cholesterol through the endocytosis of apolipoprotein (apo) B-containing LDL\(^1\) particles or apoE-coated lipoproteins, such as large high-density lipoprotein (HDL) or chylomicrons and very low-density lipoprotein remnants. Another important receptor, scavenger receptor B1, binds preferentially to apoA1 and mediates the selective uptake of esterified cholesterol from HDL.\(^2\) Scavenger receptor B1–deficient mice present with increased TICE.\(^3\)

Beside the liver, LDLR is expressed in many tissues, including the intestine where it is localized on the basolateral side of enterocytes.\(^3\) Experiments in rats infused with LDL showed that intestinal LDLR mediates 60% of the LDL uptake.\(^4\) In the liver and in the intestine, the quantity of cell surface LDLR results from a balance between its synthesis and degradation. Cellular cholesterol depletion and cholesterol synthesis inhibitors like statins increase the LDLR transcription via the sterol response element binding protein 2 pathway.\(^1\) Plasma proprotein convertase subtilisin kexin type 9 (PCSK9) induces the LDLR degradation because it binds to the extracellular domain of the LDLR and prevents its recycling to the cell surface.\(^5\) Thus, mice deficient in PCSK9 have more LDLR protein in the liver\(^6\) and in the intestine.\(^7\) The functional importance of intestinal LDLR and its circulating regulator PCSK9 in TICE remains to be explored.

Efflux of free cholesterol from the apical side of the enterocytes mainly takes place via ATP-binding cassette transporter G5/ATP-binding cassette transporter G8 (ABCG5/G8).\(^1\) TICE is reduced by only 40% in ABCG5-deficient mice,\(^8\) suggesting that TICE-derived cholesterol exit enterocytes via other cholesterol transporters. P-Glycoprotein (P-gp; multidrug resistance-1 [MDR1]) or ATP-binding cassette transporter B1 (ABCB1) belonging to the ATP-binding cassette family is an integral membrane protein expressed in most epithelial cells, notably in the liver and at the apical side of enterocytes. It exports a large variety of structurally unrelated compounds out of cells and out of organisms protecting tissues from xenobiotic toxicity.\(^2\) ABCB1 is also involved in the movement of endogenous molecules, such as cholesterol, phospholipids, and sphingolipids,\(^2\) and a variety of steroids.\(^2\) Although its role in cholesterol efflux per se remains controversial,\(^2\) it has been shown that ABCB1 contributes to cholesterol distribution from the cytosolic leaflet to the exoplasmic leaflet of the plasma membrane by acting as a floppase.\(^2\)

Although the existence of TICE per se is not debated, the nature of the phenomenon remains unclear. The main missing elements are (1) a molecular mechanism for cholesterol entry on the basal side of enterocytes; (2) a direct evidence of TICE in intestinal explants, in particular, in human tissues; (3) data showing an increase of TICE in the context of lower cholesterolemia; (4) the contribution of apical transporters; and (5) acute modulation of TICE. The present study was developed to fill these gaps.

Material and Methods

Material and Methods are available in the online-only Supplement.

Results

TICE Is an Active Metabolic Process

To develop an ex vivo assay for TICE, we mounted mouse duodenal explants in Ussing chambers and added LDL (0.7 mg/mL) radiolabeled with \(^3\)H-free cholesterol (\(^3\)H-LDL) to the basolateral side of duodenal mouse explants and incubated at 37°C or 4°C. After 30 minutes and at 37°C, 0.07% of the initial dose of \(^3\)H-cholesterol present in the basolateral chamber was collected into the apical chamber. We determined the passage of cholesterol to the apical chamber >90 minutes (3×30 minutes), and the radioactive content remained in the explants at the end of the experiment. We verified that TICE and \(^3\)H-cholesterol intestinal content values were stable over the first, the second, and the last period of 30-minute measurement (data not shown). \(^3\)H-LDL TICE (Figure 1A) and uptake (Figure 1B) were repressed by cold temperatures. Next, we measured TICE from \(^3\)H-LDL in explants over 3 consecutive periods of 30 minutes in the presence or absence of oxygen in the media (Figure 1C). TICE was observed when media were oxygenated. In group C, oxygenation-induced TICE is stronger when the oxygenated period is consecutive to a 30-minute phase without oxygen. This could be attributable to cells being loaded with cholesterol during the no-oxygenated period. This might mean that oxygen is important to cholesterol efflux. As a control, we verified that bubbling of N\(_2\) instead of oxygen had no effect on TICE (data not shown). TICE was not secondary to cytotoxicity as there was no significant increase in lactate dehydrogenase under different conditions (Figure 1D).

Next we measured the impact on TICE of apical cholesterol acceptors present in Figure 1A–1D (Figure 1E). Removing cholesterol acceptors from the apical chamber significantly reduced TICE. No cytotoxicity associated with the presence of cholesterol acceptor was detected and, therefore, we systematically used cholesterol acceptors, unless stated. Therefore, transport of \(^3\)H-LDL cholesterol is attributable to an active metabolic pathway when explants were provided with oxygenated media at 37°C. To our knowledge, this is the first report of a method to measure TICE ex vivo.

Both HDL and LDL Provide Cholesterol for TICE

To determine whether HDL and LDL contribute to TICE, we added \(^3\)H-LDL and \(^3\)H-HDL to the basolateral side of duodenal mouse explants. Comparison of TICE showed that both lipoproteins can deliver cholesterol for TICE in explants (Figure 2A). Similar results were observed when LDL and HDL were labeled with \(^3\)H-cholesterol oleate (Figure IA in the online-only Data Supplement). Next we measured TICE in vivo. Previous studies measured TICE with \(^3\)H-cholesterol diluted in intralipid.\(^2\) Here, we delivered \(^3\)H-cholesterol using lipoproteins. Bile-diverted C57B16/J mice were intravenously injected with \(^3\)H-cholesterol labeled LDL or HDL (1.8 mg of LDL and HDL cholesterol in a volume of 130 μL), and TICE was measured by quantifying intestinal perfusates. After injection, both plasma \(^3\)H-cholesterol and total cholesterol were increased (Figure 1B and ID in the online-only Data Supplement) because of the accumulation of cholesterol in the LDL or the HDL fraction, as verified by fast protein liquid chromatography (Figure IC in the online-only Data Supplement). TICE had already reached a plateau 15 minutes after injection of lipoproteins and was stable >2 hours (Figure 1E in the online-only Data Supplement). Both LDL and HDL were found to provide cholesterol for in vivo TICE (Figure 2B). Thus, various lipoproteins can participate in TICE.
Figure 1. Transintestinal cholesterol excretion (TICE) is an active metabolic pathway. C57Bl6J mouse proximal intestinal explants were mounted on Ussing chambers. 3H-cholesterol–labeled low-density lipoprotein (LDL; 3H-LDL) was added to the Krebs/glucose buffer at the basolateral side. A, TICE was determined by measuring the appearance of radioactivity at the apical side and uptake of was measured by quantifying radioactivity in the explants incubated at 37°C or 4°C (n=8–16 explants from 4 to 8 mice per group) (B). Results represent the average of TICE measured over 3 periods of 30 minutes. C, TICE was measured at 37°C in 3 groups of C57Bl6J explants for 3 consecutive phases of 30 minutes (1, 2, 3). In group A, the buffers were not oxygenated. In group B, buffers were constantly oxygenated. In group C, buffers were oxygenated only during the second period of 30 minutes (n=8–10 explants from 8 to 10 mice per group). D, The effect of oxygenation on lactate dehydrogenase (LDH) release was measured in the apical chamber at 37°C in 2 groups of C57Bl6J explants for 2 consecutive phases of 30 minutes (4 explants per condition from 4 mice). In group D, the buffers were not oxygenated during the first 30-minute period (1) and were oxygenated for the second 30-minute period (2). In group E, explants were oxygenated for the first period but not during the second one. E, C57Bl6J mouse proximal intestinal explants were mounted on Ussing chambers. 3H-cholesterol–labeled LDL (3H-LDL) was added to the Krebs/glucose buffer at the basolateral side. TICE was determined by measuring the appearance of radioactivity at the apical side over 30 minutes during 2 consecutives conditions: with a buffer containing cholesterol acceptors (taurocholate/phosphatidylcholine, 10/2 mmol/L; Black bar) or without acceptors. Cell cytotoxicity was assessed in the apical chamber during the 2 periods of 30 minutes by measuring LDH release in the apical chamber. All values represent means±SEM. **P<0.05, ***P<0.001. For positive cytotoxic effects, explants were exposed to a cell lysis solution containing Triton-X-100. NS indicates nonsignificant.
TICE Is Operative in Human Intestine

There has been no evidence of TICE in humans yet. Using an Ussing Chamber, we measured TICE with 3H-LDL and 3H-HDL in jejunal explants from 3 patients who underwent bariatric surgery (Figure 2C). Explants were collected 50 cm below duodenojejunal flexure for all patients. We also compared TICE in the absence or in the presence of cholesterol acceptors in the apical chamber. TICE was operative in human explants. The presence of cholesterol acceptors (taurocholate/phosphatidylcholine, TC/PC: 10/2 mmol/L) increased TICE by roughly 100% for 3H-LDL and 300% to 400% for 3H-HDL. Thus, human intestine might play a role in TICE.

PCSK9 Deficiency Increases TICE

To determine whether the LDLR can contribute to TICE, we measured TICE derived from LDL in PCSK9−/− mice that present with higher amounts of LDLR in their gut, as we previously showed.17 LDL-TICE was increased by 103% (P<0.05) in duodenal explants from PCSK9−/− mice, compared with explants from PCSK9+/+ (Figure 3A). Next, we verified these results in vivo. PCSK9−/− mice have ≈50% less plasma cholesterol than littermates because of an increased clearance of HDL and LDL, respectively, via the apoE and apoB.16 We measured TICE with 3H-LDL in PCSK9−/− and PCSK9+/+ littersmates. Injection of 3H-LDL increased plasma cholesterol in wild type (WT) and PCSK9−/− mice but increases were higher in WT mice (Figure IIA in the online-only Data Supplement). Moreover, increases in 3H-cholesterol were similar in WT and PCSK9−/− mice, but subsequent clearance was faster in PCSK9−/− mice (Figure IIB in the online-only Data Supplement). These data are consistent with observations that PCSK9−/− mice clear LDL-derived 3H-cholesterol more rapidly than control mice.16 In vivo TICE was increased by 62% (P<0.01) in PCSK9−/− mice (Figure 3B), despite their lower plasma cholesterol levels throughout the experiment (Figure IIA in the online-only Data Supplement). Similar results were observed with LDL labeled with 3H-cholesterol oleate (Figure IIC and IID in the online-only Data Supplement). In accordance with increased TICE, PCSK9−/− mice have increased fecal cholesterol loss, despite normal cholesterol absorption (Figure IIC and IID in the online-only Data Supplement). Thus, PCSK9 deficiency increases TICE.

Acute Degradation of LDLR by PCSK9 Decreases TICE

Next we verified whether acute depletion of LDLR decreases TICE. It has been shown that injection of recombinant
PCSK9 in the circulation rapidly degrades the hepatic and extrahepatic LDLR.25,26 We first measured TICE in PCSK9−/− mice, 1 hour after they were intravenously injected with 100 μg recombinant PCSK9.25 Western blot analysis showed that the LDLR content of the duodenum was reduced within 1 hour (Figure 3E). As expected, increases in cholesterol after the injection of 3H-LDL were more pronounced in mice infused with PCSK9 (Figure 3C; Figure III in the online-only Data Supplement). TICE was decreased by ≈35% in these mice (Figure 3D). As a control, PCSK9 was injected in LDLR−/− mice (Figure 3C and 3D). LDLR−/− mice presented with 40% higher TICE in absolute value than PCSK9−/− mice (data not shown). It is unclear whether this is because of very active TICE in LDLR−/− mice or to the difference in genetic background between strains. Indeed, Van der Velde et al24 showed that mice of different genetic backgrounds have different levels of TICE. Nevertheless as expected, no effect of injected PCSK9 was observed on cholesterolemia nor on TICE in LDLR−/− mice. These studies show that circulating PCSK9 acutely decreases TICE in an LDLR-dependent fashion.

Lovastatin Stimulates TICE

Next we hypothesized that cholesterol synthesis inhibitors, such as statins, that upregulate LDL receptors could stimulate TICE. To test this hypothesis, C57Bl6J mice were given a diet containing or not 0.02% Lovastatin for 10 days. This treatment decreased cholesterolemia by ≈18% (P<0.05; Figure 4A) mainly because of a marked decrease in HDL cholesterol (Figure IVB in the online-only Data Supplement). Injection of 3H-LDL increased plasma cholesterol (Figure IVC in the online-only Data Supplement) and 3H-cholesterol (Figure IVB in the online-only Data Supplement). Lovastatin increased TICE in WT mice by 71% (P=0.02; Figure 4). Thus, TICE can be pharmacologically activated by Lovastatin.

TICE Is Increased in the Absence of LDLR

The above studies involving modulation of LDLR by PCSK9 and Lovastatin indicated that LDLR might play an important role in TICE. Therefore, we hypothesized that TICE might be significantly reduced in LDLR−/− mice. Chronic LDLR deficiency results in delayed LDL plasma clearance27 because of less binding of LDL particles in the liver.28 To evaluate
whether TICE is affected by the absence of LDLR, we compared TICE in C57Bl6J and LDLR−/− mice using 3H-LDL. In contrary to what was expected, we observed that TICE is slightly higher in LDLR−/− mice than in C57Bl6J in vivo (P=0.055; Figure 5A; Figure V in the online-only Data Supplement). TICE also tended to be increased in LDLR−/− explants (P=0.28; Figure 5B). In both experiments, the differences were not statistically significant but the trends were reproducible over time. To explain no reduction in TICE in LDLR−/− mice, we studied the uptake of 125I-LDL by the various intestinal segments in C57Bl6J and LDLR−/− mice after intravenous injections. Clearance from plasma was determined at various time points and radioactive content of liver and intestinal segments at 2 hours after injection; a duration equivalent to that we used for in vivo TICE (Figure 5D). We observed a delay in 125I-LDL clearance in LDLR−/− mice and a reduction of 125I-LDL hepatic uptake (−24%; P<0.05) consistent with other studies.27,28 There was no significant difference in radioactivity uptake by the medial and distal intestinal segments, but a significant increase in radioactivity was seen in the proximal segment. Thus, contrary to what occurs in the liver, chronic LDLR deficiency results in increased LDL uptake in the proximal intestine. This might contribute to increased TICE.

ABCB1 Contributes to TICE

Next we focused on molecules that could efflux cholesterol from the apical side of enterocytes. ABCG5 contributes to TICE,8 probably because of its important role in cholesterol efflux. However, ABCG5−/− mice still have an appreciable level of TICE, suggesting that other apical transporters play a role in TICE. Among the candidates, multidrug transporter ABCB1, which is located at the apical pole of enterocyte, can act as a cholesterol floppase.23 We recently showed that older mice deficient for both isoforms of the apical cholesterol floppase

![Figure 4](image-url) Transintestinal cholesterol excretion (TICE) in C57Bl/6 on Lovastatin treatment. C57Bl/6 mice were fed for 10 days with a regular chow diet supplemented or not with 0.2% Lovastatin (10–12 mice per group). A, Plasma cholesterol levels at the end of the treatment. B, Effect of Lovastatin on 3H-cholesterol labeled low-density lipoprotein TICE. Values represent mean±SEM. *P<0.05.

![Figure 5](image-url) Transintestinal cholesterol excretion (TICE) and low-density lipoprotein (LDL) uptake in C57Bl/6 and LDLR−/− mice. 3H-LDL TICE in C57Bl/6 and LDLR−/− mice (A) in vivo (10–12 mice per group) and (B) ex vivo (n=12 mice and 16–17 explants in total for each genotype). Values represent mean±SEM. C, 12-hour–fasted male C57Bl6J or LDLR−/− mice (6–7 mice per group) received intravenous injection of 125I-LDL (10 μg; 1252 cpm/ng) and were euthanized after 120 minutes (cf. Methods in the online-only Data Supplement). Plasma content of 125I-LDL was measured at 2, 15, and 120 minutes. 125I radioactivity content was measured in livers and in 3 equals parts of the intestine: Proximal (P), medial (M), distal (D; histograms). Values are expressed as percentage of the dose injected. NS indicates nonsignificant; *P<0.05; **P<0.01.
ABCB1a and ABCB1b (ABCB1a/b^{−/−}) spontaneously develop hepatic steatosis, obesity, diabetes mellitus, and increased HDL-C. We performed our studies in 15-week-old male mice that presented with similar cholesterol levels (Figure VIA in the online-only Data Supplement), before metabolic disturbances arise. We observed that ABCB1a/b^{−/−} mice present with 26% less fecal cholesterol excretion (P<0.05; Figure 6A). Next, we injected intravenously ³H-cholesterol diluted in endolipid to measure TICE in control Fv-l^b allele for sensitivity to the B strain of Friend leukemia virus (FVB) and ABCB1a/b^{−/−} mice. Increases and subsequent decays of cholesterol were similar in WT and in ABCB1a/b^{−/−} mice (Figure VIB in the online-only Data Supplement). TICE was decreased by 26.5% (P<0.05) in ABCB1a/b^{−/−} mice (Figure 6B). We further verified involvement of ABCB1a/b in TICE using pharmacological inhibitors (Figure 6C). We added ABCB1 reference inhibitor PSC-833³⁰ to the apical chamber. Thirty minutes after the addition of ³H-cholesterol/endolipid to the basal chamber, the medium was collected in the apical chamber for determination of ³H-cholesterol level (initial TICE). The apical chamber was rinsed and PSC-833 was added with new medium for 30 minutes. TICE observed with no inhibitor was arbitrarily set at 1. PSC-833 inhibited TICE by 50% to 64% (P<0.05) in control mice but had no effect in ABCB1a/b^{−/−} mice. These studies provide evidence that ABCB1a/b contribute to TICE.

Discussion

These results fill a gap in our understanding of plasma cholesterol excretion by the small intestine. We demonstrate that both LDL and HDL provide cholesterol for TICE in vivo and ex vivo in mice. Further, we provide the first direct evidence that human intestinal explants can excrete plasma-derived LDL or HDL cholesterol. On the basis of these studies, we propose a model (Figure 7) in which both LDL and HDL can contribute to TICE, a metabolically active pathway present in mice and humans. LDL-TICE can be modulated positively by statins and negatively by PCSK9. In addition, the multidrug transporter ABCB1 contributes to the luminal efflux of cholesterol.

TICE has generally been studied by injecting ³H-cholesterol as part of intralipid emulsions. Our studies demonstrate that cholesterol present as part of plasma lipoproteins is amenable to TICE. How do these lipoproteins contribute to TICE? Studies in mice deficient for hepatic acyl-coenzyme A:cholesterol acyltransferase 2, where hepatic cholesterol cannot be esterified and stored, and recent findings in mice with impaired hepatobiliary cholesterol excretion suggest that cholesterol is first delivered to the liver before being rerouted to the intestine for excretion. Our findings do not exclude this possibility. However, our ex vivo experiments reveal that LDL and HDL can directly provide cholesterol to the intestine for TICE. While this article was in preparation, Vrins et al³¹ published a study stating that TICE is not mediated by HDL. Overall, the main point of this article is that TICE derived from radiolabeled HDL is much lower than TICE measured after injection of ³H-cholesterol diluted in a mixture of lipids. In particular, HDL-derived TICE seems to be roughly 10× lower than biliary cholesterol excretion. For comparison, the authors

![Figure 6. ABCB1 cholesterol floppase contributes to transintestinal cholesterol excretion (TICE).](http://atvb.ahajournals.org/)

A In vivo

Fecal cholesterol excretion (µmol/100g BW)

| | FVB | ABCB1a/b^{−/−}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

B In vivo

TICE (CPM/min/100g BW)

| | FVB | ABCB1a/b^{−/−}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

C Ex vivo

| PSC833 (µM) | FVB | ABCB1a/b^{−/−}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05.

Downloaded from http://atvb.ahajournals.org/ by guest on July 7, 2017
determined that lipid emulsions contribute twice as much to TICE compared with biliary excretion. Specific activity in the bile was also 10× lower when using HDL compared with lipid emulsions, but the doses of 3H-CO injected were 5× lower. Further, HDL-TICE was actually measurable and unfortunately no other lipoproteins, such as LDL, were used for comparison. Thus, we believe that under the experimental conditions used by these investigators, HDL is much less efficient than intralipid.

In this study, we used LDL and HDL. The importance of triglyceride-rich lipoproteins or remnants in TICE was not explored here. A study suggested that triglyceride-rich emulsion particles are not cleared directly by the small intestine but are rapidly taken in by the liver. Cholesterol is then secreted into the plasma mainly on HDL. More experiments are required to address the role of larger triglyceride-rich lipoproteins in TICE.

Using a genetic model (PCSK9 −/− mice) and pharmacological treatment (Lovastatin), we showed for the first time that TICE and cholesterolemia can be inversely related. Lovastatin-treated and PCSK9−/−-injected mice have low plasma cholesterol and yet show increased TICE. Thus, TICE does not seem to be a concentration-dependent passive process. This observation was further supported by ex vivo studies showing that TICE occurs at physiological temperatures and in the presence of oxygen. Therefore, TICE seems to be an active process.

We observed that Lovastatin increased LDL-derived TICE in C57Bl6J mice. The effect of Lovastatin was also investigated in parallel in LDLR−/− mice and Lovastatin reproducibly failed to increase TICE in the absence of LDLR (data not shown). However, we cannot exclude that TICE reached a plateau in LDLR−/− mice under Lovastatin. Thus, more work is needed to fully understand the relevance of the modulation of LDLR to TICE.

As discussed above, our data show that modulation of LDLR expression by PCSK9 and statins affects TICE. However, we were surprised to see that TICE was not decreased in LDLR−/− mice. To explain these apparent contradictory findings, we propose that uptake of LDL by the intestine that contributes to TICE might involve several mechanisms. Comodulation of LDLR and TICE by PCSK9 and statins suggests that LDLR plays a role in TICE in WT mice. However, in LDLR−/− mice TICE is not reduced suggesting that other unknown mechanism(s) might have been upregulated to compensate for genetic deficiency of LDLR. This is consistent with the observations showing increased gastrointestinal sterol cholesterol excretion in patients with homozygous familial hypercholesterolemia and bile diversion. The nature of this unknown mechanism(s) remains to be elucidated. There are several possible candidates that can be tested in the future, such as LDLR-related protein 1 that is expressed in the intestine, the very low-density lipoprotein receptor which is a also degraded by PCSK9, and Sortilin 1 and proteoglycans. Of note, although apoE receptor low-density lipoprotein receptor-related protein 1 does not clear LDL under normal conditions, LDLR−/− mice do accumulate apoE in their plasma and present with apoE on LDL. Thus, it is possible that excess plasma apoE bound LDL after their injection in LDLR−/− mice.

Besides LDL, we also show that HDL-derived cholesterol is also amenable to TICE. It is unclear yet which receptor on
the basolateral side mediates HDL-TICE. Selective uptake of cholesterol esters from HDL is made possible by scavenger receptor B1. TICE has been found to be increased or unchanged in SRB-1−/− mice.31 Another possible entry gate for HDL cholesterol in TICE could be P2Y13/ectoF1-ATP synthase pathway,32 although it is unclear whether this pathway is functional in the small intestine. Obviously, more work is needed to answer these questions.

Our data show that ABCB1 contributes to TICE. It is unclear why the effect seen in vivo in the absence of transporter was not more pronounced that that seen ex vivo with the inhibitor. Several human studies describe a link between cholesterol levels and ABCB1 gene polymorphisms.30–41 Owing to its apical location in enterocytes, it is tempting to speculate that ABCB1 could work additively or in synergy with ABCG5/G8 transporter to manage the luminal efflux of cholesterol. It would be very interesting to characterize the effect of ABCB1 deletion/inhibition in ABCG5/G8 knockout mice. Altogether results presented here provide evidence that TICE is an active process in human and in rodent intestine. Further, we identified molecules that could participate in this process.

Acknowledgments

We are indebted to the patients who participated to this study.

Sources of Funding

This work was funded by Fondation Génétique, French Society of Nutrition (SFN), the New French Atherosclerosis Society (NSFA), and Nantes University Hospital (Grant BRD:06/8-1).

Disclosures

None.

References

Atherosclerosis is an inflammatory disease promoted by the accumulation of cholesterol in macrophages of the arterial wall, leading to the complication of coronary heart disease, a major cause of death in westernized countries. The classic pathway of cholesterol elimination is hepatic-biliary cholesterol secretion. There is accumulating evidence that transintestinal cholesterol excretion is an alternative pathway. There is compelling evidence from population-based data and clinical trials that low-density lipoprotein–associated cholesterol reduction is an effective strategy to prevent coronary heart disease. It is unclear whether high-density lipoprotein is antiatherogenic because of their role in reverse cholesterol transport, the main hypothesis, or via other properties, such as their anti-inflammatory, antioxidant actions. Here, we identified low-density lipoprotein and high-density lipoprotein direct contribution to transintestinal cholesterol excretion as well as pharmacological agents, proteins that modulate cholesterol entry at the basal side of enterocytes, and its efflux into the intestinal lumen, at the apical side.

Significance

Atherosclerosis is an inflammatory disease promoted by the accumulation of cholesterol in macrophages of the arterial wall, leading to the complication of coronary heart disease, a major cause of death in westernized countries. The classic pathway of cholesterol elimination is hepatic-biliary cholesterol secretion. There is accumulating evidence that transintestinal cholesterol excretion is an alternative pathway. There is compelling evidence from population-based data and clinical trials that low-density lipoprotein–associated cholesterol reduction is an effective strategy to prevent coronary heart disease. It is unclear whether high-density lipoprotein is antiatherogenic because of their role in reverse cholesterol transport, the main hypothesis, or via other properties, such as their anti-inflammatory, antioxidant actions. Here, we identified low-density lipoprotein and high-density lipoprotein direct contribution to transintestinal cholesterol excretion as well as pharmacological agents, proteins that modulate cholesterol entry at the basal side of enterocytes, and its efflux into the intestinal lumen, at the apical side.

Transintestinal Cholesterol Excretion Is an Active Metabolic Process Modulated by PCSK9 and Statin Involving ABCB1
Cédric Le May, Jean Mathieu Berger, Anne Lespine, Bruno Pillot, Xavier Prieur, Eric Letessier, M. Mahmood Hussain, Xavier Collet, Bertrand Cariou and Philippe Costet

Arterioscler Thromb Vasc Biol. 2013;33:1484-1493; originally published online April 4, 2013; doi: 10.1161/ATVBAHA.112.300263

Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/33/7/1484

Data Supplement (unedited) at:
http://atvb.ahajournals.org/content/suppl/2013/04/04/ATVBAHA.112.300263.DC1
http://atvb.ahajournals.org/content/suppl/2013/04/04/ATVBAHA.112.300263.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/
MATERIAL AND METHODS

Materials
Human PCSK9 recombinant protein was purchased from Cyclex (Nagano, Japan). L-phosphatidylcholine, sodium taurocholate were purchased from Sigma–Aldrich (Saint Quentin Fallavier, France). 3H-cholesterol and 3H-cholesteryl oleate were obtained from Perkin Elmer (France). PSC-833 was purchased from R&D System Europe (Lille, France). Endolipid 20% was provided by B. Braun Medical SA (Boulogne, France).

Animals & Diet studies
PCSK9+/− and LDLR−/− mice were purchased from Jackson Laboratories (Maine, USA). C57Bl6J mice were from Charles River Laboratory (l’Arbresle, France). ABCB1a/b−/− and FVB control mice were purchased from TACONIC (Germantown, NY, USA). Mice had free access to food and water under a 12-hour light/12-hour dark cycle in a temperature-controlled environment. All animal studies were conducted on male mice and approved by the Ethic Committee for Animal Experimentation of Pays de la Loire. For one study, C57Bl6J and LDLR−/− mice were fed ad libitum a regular chow diet (Safe A03 diet) supplemented or not with 0.2% (wt/wt) Lovastatin (Sequoïa Research, CA, USA) for 10 days.

Lipoprotein purification and labeling
Human plasma (Établissement Français du Sang, Nantes, France) lipoproteins were isolated by sequential ultracentrifugation using a LKB ultracentrifuge (RP55T rotor at 40 000 rpm for 20 h at 4°C) by adjusting densities to obtain individual lipoproteins (1,019, 1,063 and 1,21 g/mL for VLDL/IDL, LDL, HDL, respectively) with NaCl/NaBr solutions. Then, lipoprotein fractions were dialysed against dialysed 3 times against a NaCl 0.15 M, KH2PO4 20 mM, EDTA 1 mM buffer for 12 h at 4°C. Fast protein liquid chromatography analysis was performed at room temperature to validate the purity of each lipoprotein fraction. As indicated, lipoproteins were either incubated overnight at 4°C with free 3H-cholesterol and LPDS (LipoProtein Depleted Serum) or overnight at 37°C with 3H-cholesteryl oleate and LPDS.
Radiolabelling procedure with 125I was performed according to the iodogen method modified by Fraker et al. One mg LDL was labelled with 0.2mCi 125I using 100mg iodogen for 30 min. Unbound 3H-cholesterol, 3H-cholesteryl oleate, 125I were removed using exclusion diffusion column (Sephadex G25 - GE Healthcare, Fairfield, USA).

Mouse intestinal perfusion
Male mice were anesthetized with a ketamine/xyazine mix (90/10 mg/Kg BW IP) and placed onto a heat pad. Perfusion solution composition as well as surgical procedures to realize bile duct diversion and proximal intestinal cannulation was performed as described by Van der Velde et al 2. The intestinal perfusion was initiated 15 minutes prior to injection of lipoproteins to verify that surgical procedures did not cause luminal bleeding. Bile was diverted and collected by gravimetry. Proximal small intestines (10 cm) were perfused using a stable flux of 5 ml/h. The perfusion solution consisted of a modified solution of KREBS (119.95 mmol/L NaCl, 4.8 mmol/L KCl, 1.2 mmol/L KH2PO4, 1.2 mmol/L MgSO4 .7H2O, 15 mmol/L sulfonic acid 4-(2-Hydroxyethyl)-1-piperazineethane, 1.3 mmol/L CaCl2.2H2O and 10 mmol/L L-glutamine ; pH 7.4) supplemented with taurocholate / phosphatidylcholine (10 mmol/L taurocholate : 2 mmol/L phosphatidylcholine) as cholesterol acceptors. 3H-cholesterol, 3H-cholesteryl oleate labeled
lipoproteins (6.10^6 and 1.10^6 CPM/mouse respectively) or endolipid containing 3H-cholesterol (6.10^6 CPM/mouse) were injected via the penile vein. Blood samples were harvested at 0, 2, 30, 60 and 120 minutes after injection to determine plasma cholesterol and 3H-cholesterol levels. Intestinal perfusates were collected every 15 minutes over 120 minutes. The results correspond to the average of radioactivity measured in these collections.

TICE measurement in Ussing chambers
Proximal intestinal explants from C57Bl/6 mice and human jejunum were fixed on sliders (P2405 - physiologic instruments) and then placed in Ussing chambers (P2400 - physiologic instruments). Unless specified in the legend, intestinal explants were incubated at 37°C in presence of an oxygenated Krebs solution (NaCl 115 mM; NaHCO$_3$ 25 mM; K$_2$HPO$_4$ 2,4 mM; MgCl$_2$ 1,2 mM; CaCl$_2$ 1,2 mM; KH$_2$PO$_4$ 0,4 mM) containing 10 mmol/L Glucose (basal chamber) or 10mM Mannitol apical chamber. The apical chamber also contains cholesterol acceptors (10 mM taurocholate, 2 mM phosphatidylcholine). 3H-cholesterol labeled lipoproteins (4.10^6 CPM/ml) were added to the basal chamber. The integrity of the intestinal explants was determined by verifying the absence of leakage of non-permeable 70kDa FITC-dextran beads (Sigma-Aldrich, France) from the basal to the apical chamber. Medium in the apical chamber was collected and renewed every 30 min. Unless indicated, TICE represents the average of radioactivity over 3 periods of 30 min. Eventually intestinal explants were digested overnight at 37°C in an aqueous based solubilizer (Solvable - Perkin Elmer) in order to measure their radioactive content.

Subjects: Human intestinal biopsies were obtained from patients undergoing bariatric surgery (Roux-en-Y gastric by-pass), with their informed consent and according to the French laws (Nantes University Hospital ID RCB: 2006-A00196-45; Reference CPP: 2006/31; BRD: 06/8-I).

Plasma cholesterol measurement
Plasma total Cholesterol concentrations were determined using a commercially available kit (BioMerieux, France).

Western blots
Intestinal mucosae were scraped and homogenized in a RIPA buffer containing protease inhibitor cocktail (Roche Diagnostic). Total lysate proteins were resolved on NuPAGE 4–12% BisTris gels in MES SDS buffer (Invitrogen) under reducing conditions and transferred using Iblot system onto a nitrocellulose membrane (Invitrogen). Membranes were probed with antibodies raised against the mouse LDLR antibody (R&D Systems Europe, Lille, France) and cyclophilin A (Millipore, France). Immunoreactive bands were revealed using the ECL plus kit (Amersham Biosciences).

Cytotoxicity assay: Cytotoxicity was routinely measured using LDH cytotoxicity assay kit in apical medium (Abcam, Paris, France).

3H-Cholesterol measurement
Plasma (20 µl), intestinal perfusates (500 µl) and Ussing media (500 µl) were mixed with 5 ml of liquid scintillation (ECOLITE, Perkin Elmer) and radiolabeled cholesterol levels were assessed by liquid scintillation counting.
125I-LDL clearance

C57BL/6J or LDLR-/- 12h-fasted anesthetized mice received an intravenous injection of 125I-labelled LDL (10µg; 1252 CPM/ng). Blood was harvested at 2, 15 and 120 minutes after injection. After two hours, mice were exsanguinated by puncturing the right atrium. Heart were perfused with 10 ml of saline to clear plasma 125I-labelled LDL associated with tissues. Thereafter, liver and small intestine were harvested. Small intestine was divided in 3 equal proximal, medial, distal segments. Lumen of each segment was gently flushed with saline solution. Plasma, liver and intestinal segment radioactivity were measured with a GammaCounter (1480 Wizard 300 Automatic Gamma Counter, Wallac, Waltham, Massachusetts, USA).

Fecal cholesterol excretion

Food consumption over 3 days was measured by weight difference method. Feces was collected every 24 h during the same period of time. Feces were desiccated overnight and ground. One hundred mg of feces were resuspended in 2 ml H2O for 10 h at 4°C on a rotating wheel. Liquid extraction with chloroform/methanol was performed overnight at 4°C on a rotating wheel. Samples were centrifuged and the inferior phase containing the lipids was evaporated with N2 and dissolved in 100 µL ethanol (repeated agitation with a vortex over 8 hours) and sonicated for 5 min. Cholesterol was measured in these extracts using a commercially available kit (BioMerieux, France).

Cholesterol absorption measurement-Plasma dual isotope ratio method

A feeding needle with round tip was inserted into the stomach of non-fasted mice, and each animal was given an intragastric bolus of 1 µCi [14C] cholesterol in olive oil. Under anaesthesia, 1 µCi [3H] cholesterol in Endolipid was injected via the penile vein. After dosing, mice were returned to cages, where they were free to feed for an additional 3 days. Animals were then anesthetized, and bled from the heart. Proportions of [14C] cholesterol and [3H] cholesterol doses remaining in plasma at 3 days were determined by liquid scintillation counting. The plasma ratio of the 2 radiolabels was used for calculating the percent cholesterol absorption as described elsewhere ³.

Statistics

All results are reported as means ± SEM. Statistical significance was analyzed using a non-parametric Mann-Whitney test. The values of p< 0.05 were considered as significant.

Reference List

(1) Fraker PJ, Speck JC, Jr. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. Biochem Biophys Res Commun 1978;80:849-857.

SUPPLEMENTARY FIGURE LEGEND

Figure I. Both LDL and HDL contribute to TICE
(A) C57Bl6J mouse proximal intestinal explants were mounted on Ussing Chambers. 3H-cholesteryl oleate labelled LDL or HDL (3H CO-LDL; or 3H CO-LDL; n=14-13 explants from 7 mice per group) were added to Krebs/glucose buffer in the basolateral chamber. After 30 min, TICE was determined by measuring the appearance of radioactivity in the apical chamber filled with Krebs buffer enriched with cholesterol acceptors (taurocholate/phosphatidylcholine; TC/PC: 10/2 mM). (B-E) Both LDL and HDL provide cholesterol for TICE in vivo. NaCl, 3H-LDL or 3H-HDL were injected in the penile vein of C57Bl6 mice (6-8 mice per group) and transintestinal 3H-cholesterol excretion (TICE) was measured over 2 hours by intestinal canulation (cf. Figure 1C). (B) Cholesterol levels and (D) 3H-cholesterol were measured (n= 3-4 mice per group) during the course of the experiment. (C) Cholesterol distribution in various classes of lipoproteins was determined by Fast protein liquid chromatography analysis 15 min after injection of the lipoproteins (pool of 3 mice). (E) 3H cholesterol in fractions of perfusion solution collected every 15 minutes. NS: non significant. Results are means ± SEM.

Figure II. PCSK9 deficiency stimulates TICE.
(A-B) PCSK9$^{+/+}$ (n=10) and PCSK9$^{-/-}$ (n=13) mice received an intravenous injection of 3H-cholesterol-LDL at t = 0 min and TICE was measured over 2 hours. (A) Plasma cholesterol and (B) 3H-cholesterol levels of PCSK9$^{+/+}$ and PCSK9$^{-/-}$ littermates before and after the injection. (C-D) PCSK9$^{+/+}$ (n=6) and PCSK9$^{-/-}$ (n=6) mice received an intravenous injection of 3H-cholesteryl oleate-LDL at t = 0 min and TICE was measured over 2 hours. (C) Plasma 3H-Cholesteryl oleate levels and (D) TICE during the course of the experiment. (E) Fecal cholesterol output in PCSK9$^{-/-}$ mice. Food intake, dried feces weight and fecal cholesterol output and cholesterol absorption were determined in PCSK9$^{-/-}$ and PCSK9$^{+/+}$ littermates (n =6 per group) over 3 days. Data represent means ± SEM. * p<0.05.

Figure III. PCSK9 modulates TICE in an LDLR dependent manner.
PCSK9$^{-/-}$ (n=6) and LDLR$^{-/-}$ (n=7) mice received an intravenous injection of NaCl or 100µg of recombinant human PCSK9 protein at t=0. Sixty minutes later, mice were injected with 3H-LDL. Plasma 3H-cholesterol levels in mice injected or not with PCSK9. Values represent means ± SEM.
Figure IV. TICE in C57Bl/6J mice upon lovastatin treatment.

C57Bl6J mice fed for 10 days with or without 0.2% lovastatin received an intravenous injection of 3H-LDL at $t = 0$ min and TICE was measured over 2 hours. (A) Plasma Cholesterol (C) Cholesterol content in FPLC fractions of mouse plasma at the end of the treatment before measuring TICE (B) plasma 3H -cholesterol during the course of the experiment (n= 10-12 mice per group). Results represent means ± SEM.

Figure V. TICE in C57Bl/6 and LDLR$^{-/-}$ mice.

TICE was measured in vivo with 3H-LDL in C57Bl6J and LDLR$^{-/-}$ mice over 2 hours. (A) Plasma Cholesterol and (B) plasma 3H -cholesterol during the course of the experiment (n= 10-12 mice per group). Results represent means ± SEM.

Figure VI. ABCB1a/b cholesterol floppase contributes to TICE.

FVB and ABCB1a/b$^{-/-}$ received an intravenous injection of 3H-cholesterol diluted in endolipid at $t = 0$ min and TICE was measured over 2 hours. (A) Plasma cholesterol and (B) plasma 3H-cholesterol during the course of the experiment (n= 6 mice per group). Results represent means ± SEM.
Fig. B, C, D:

- **Fig. B**: Plasma Cholesterol (g/l) over time after I.V. injection. The graphs show that the cholesterol levels increase significantly in the LDL group compared to the HDL group.

- **Fig. C**: Elution volume profile showing the distribution of cholesterol in different groups. The peaks are indicative of the elution of cholesterol from the injected fractions.

- **Fig. D**: Plasma 3H cholesterol (CPM/µl) over time. The graph shows a significant increase in 3H cholesterol levels in the LDL group compared to the HDL group.

- **Fig. E**: TICE (CPM/fraction) over time. The figure compares the TICE values between different groups of mice injected with 3H-LDLc, 3H-HDLc, and NaCl.
Plasma 3H cholesterol (CPM/µl)

A

- PCSK9$^-$
- PCSK9$^-+$ PCSK9
- LDLR$^-$
- LDLR$^-+$ PCSK9

TICE
Minutes after I.V. injection

Plasma cholesterol (g/l)

C57Bl6J
LDLR⁻/⁻

Plasma ³H cholesterol (CPM/µl)

0 30 60 90 120

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 2 30 60 120

C57Bl6J
LDLR⁻/⁻
A

Minutes after I.V. injection

Plasma Cholesterol (g/l)

FVB

ABCB1 ab-/-

B

Minutes after I.V. injection

Plasma \(\text{H}_2 \text{ cholesterol} \) (CPM/ml)

WT FVB

Pgp KO

Minutes after I.V. injection

Plasma \(\text{H}_2 \text{ cholesterol} \) (CPM/ml)
MATERIAL AND METHODS

Materials
Human PCSK9 recombinant protein was purchased from Cyclex (Nagano, Japan). L-phosphatidylcholine, sodium taurocholate were purchased from Sigma–Aldrich (Saint Quentin Fallavier, France). 3H-cholesterol and 3H-cholesteryl oleate were obtained from Perkin Elmer (France). PSC-833 was purchased from R&D System Europe (Lille, France), Endolipid 20% was provided by B. Braun Medical SA (Boulogne, France).

Animals & Diet studies
PCSK9$^{+/}$ and LDLR$^{-/-}$ mice were purchased from Jackson Laboratories (Maine, USA). C57Bl6J mice were from Charles River Laboratory (l’Arbresle, France). ABCB1a/b$^{-/-}$ and FVB control mice were purchased from TACONIC (Germantown, NY, USA). Mice had free access to food and water under a 12-hour light/12-hour dark cycle in a temperature-controlled environment. All animal studies were conducted on male mice and approved by the Ethic Committee for Animal Experimentation of Pays de la Loire. For one study, C57Bl6J and LDLR$^{-/-}$ mice were fed ad libitum a regular chow diet (Safe A03 diet) supplemented or not with 0.2% (wt/wt) Lovastatin (Sequoia Research, CA, USA) for 10 days.

Lipoprotein purification and labeling
Human plasma (Établissement Français du Sang, Nantes, France) lipoproteins were isolated by sequential ultracentrifugation using a LKB ultracentrifuge (RP55T rotor at 40 000 rpm for 20 h at 4°C) by adjusting densities to obtain individual lipoproteins (1,019, 1,063 and 1,211 g/mL for VLDL/IDL, LDL, HDL, respectively) with NaCl/NaBr solutions. Then, lipoprotein fractions were dialysed against dialysed 3 times against a NaCl 0.15 M, KH$_2$PO$_4$ 20 mM, EDTA 1 mM buffer for 12 h at 4°C. Fast protein liquid chromatography analysis was performed at room temperature to validate the purity of each lipoprotein fraction. As indicated, lipoproteins were either incubated overnight at 4°C with free 3H-cholesterol and LPDS (LipoProtein Depleted Serum) or overnight at 37°C with 3H-cholesteryl oleate and LPDS.

Radiolabelling procedure with 125I was performed according to the iodogen method modified by Fraker et al. One mg LDL was labelled with 0,2mCi 125I using 100mg iodogen for 30 min. Unbound 3H-cholesterol, 3H-cholesteryl oleate, 125I were removed using exclusion diffusion column (Sephadex G25 - GE Healthcare, Fairfield, USA).

Mouse intestinal perfusion
Male mice were anesthetized with a ketamine/xyazine mix (90/10 mg/Kg BW IP) and placed onto a heat pad. Perfusion solution composition as well as surgical procedures to realize bile duct diversion and proximal intestinal cannulation was performed as described by Van der Velde et al. The intestinal perfusion was initiated 15 minutes prior to injection of lipoproteins to verify that surgical procedures did not cause luminal bleeding. Bile was diverted and collected by gravimetry. Proximal small intestines (10 cm) were perfused using a stable flux of 5 ml/h. The perfusion solution consisted of a modified solution of KREBS (119,95 mmol/L NaCl, 4,8 mmol/L KCl, 1,2 mmol/L KH$_2$PO$_4$, 1,2 mmol/L MgSO$_4$.7H$_2$O, 15 mmol/L sulfonic acid 4-(2-Hydroxyethyl)-1-piperazineethane, 1,3 mmol/L CaCl$_2$.2H$_2$O and 10 mmol/L L-glutamine ; pH 7,4) supplemented with taurocholate / phosphatidylcholine (10 mmol/L taurocholate : 2 mmol/L phosphatidylcholine) as cholesterol acceptors. 3H-cholesterol, 3H-cholesteryl oleate labeled
lipoproteins (6.10^6 and 1.10^6 CPM/mouse respectively) or endolipid containing ^3^H-cholesterol (6.10^6 CPM/mouse) were injected via the penile vein. Blood samples were harvested at 0, 2, 30, 60 and 120 minutes after injection to determine plasma cholesterol and ^3^H-cholesterol levels. Intestinal perfusates were collected every 15 minutes over 120 minutes. The results correspond to the average of radioactivity measured in these collections.

TICE measurement in Ussing chambers
Proximal intestinal explants from C57Bl/6 mice and human jejunum were fixed on sliders (P2405 - physiologic instruments) and then placed in Ussing chambers (P2400 - physiologic instruments). Unless specified in the legend, intestinal explants were incubated at 37°C in presence of an oxygenated Krebs solution (NaCl 115 mM; NaHCO_3 25 mM; K_2HPO_4 2,4 mM; MgCl_2 1,2 mM; CaCl_2 1,2 mM; KH_2PO_4 0,4 mM) containing 10 mmol/L Glucose (basal chamber) or 10mM Mannitol apical chamber. The apical chamber also contains cholesterol acceptors (10 mM taurocholate, 2 mM phosphatidylcholine). ^3^H-cholesterol labeled lipoproteins (4.10^6 CPM/ml) were added to the basal chamber. The integrity of the intestinal explants was determined by verifying the absence of leakage of non-permeable 70kDa FITC-dextran beads (Sigma-Aldrich, France) from the basal to the apical chamber. Medium in the apical chamber was collected and renewed every 30 min. Unless indicated, TICE represents the average of radioactivity over 3 periods of 30 min. Eventually intestinal explants were digested overnight at 37°C in an aqueous based solubilizer (Solvable - Perkin Elmer) in order to measure their radioactive content.

Subjects: Human intestinal biopsies were obtained from patients undergoing bariatric surgery (Roux-en-Y gastric bypass), with their informed consent and according to the French laws (Nantes University Hospital ID RCB: 2006-A00196-45; Reference CPP: 2006/31; BRD: 06/8-I).

Plasma cholesterol measurement
Plasma total Cholesterol concentrations were determined using a commercially available kit (BioMerieux, France).

Western blots
Intestinal mucosae were scraped and homogenized in a RIPA buffer containing protease inhibitor cocktail (Roche Diagnostic). Total lysate proteins were resolved on NuPAGE 4–12% BisTris gels in MES SDS buffer (Invitrogen) under reducing conditions and transferred using I blot system onto a nitrocellulose membrane (Invitrogen). Membranes were probed with antibodies raised against the mouse LDLR antibody (R&D Systems Europe, Lille, France) and cyclophilin A (Millipore, France). Immunoreactive bands were revealed using the ECL plus kit (Amersham Biosciences).

Cytotoxicity assay: Cytotoxicity was routinely measured using LDH cytotoxicity assay kit in apical medium (Abcam, Paris, France).

^3^H-Cholesterol measurement
Plasma (20 µl), intestinal perfusates (500 µl) and Ussing media (500 µl) were mixed with 5 ml of liquid scintillation (ECOLITE, Perkin Elmer) and radiolabeled cholesterol levels were assessed by liquid scintillation counting.
125I-LDL clearance

C57BL6J or LDLR-/- 12h-fasted anesthetized mice received an intravenous injection of 125I-labelled LDL (10µg; 1252 CPM/ng). Blood was harvested at 2, 15 and 120 minutes after injection. After two hours, mice were exsanguinated by puncturing the right atrium. Heart were perfused with 10 ml of saline to clear plasma 125I-labelled LDL associated with tissues. Thereafter, liver and small intestine were harvested. Small intestine was divided in 3 equal proximal, medial, distal segments. Lumen of each segment was gently flushed with saline solution. Plasma, liver and intestinal segment radioactivity were measured with a GammaCounter (1480 Wizard 300 Automatic Gamma Counter, Wallac, Waltham, Massachusetts, USA).

Fecal cholesterol excretion

Food consumption over 3 days was measured by weight difference method. Feces was collected every 24 h during the same period of time. Feces were desiccated overnight and ground. One hundred mg of feces were resuspended in 2 ml H2O for 10 h at 4°C on a rotating wheel. Liquid extraction with chloroform/methanol was performed overnight at 4°C on a rotating wheel. Samples were centrifuged and the inferior phase containing the lipids was evaporated with N2 and dissolved in 100 µL ethanol (repeated agitation with a vortex over 8 hours) and sonicated for 5 min. Cholesterol was measured in these extracts using a commercially available kit (BioMerieux, France).

Cholesterol absorption measurement-Plasma dual isotope ratio method

A feeding needle with round tip was inserted into the stomach of non-fasted mice, and each animal was given an intragastric bolus of 1 µCi [14C] cholesterol in olive oil. Under anaesthesia, 1 µCi [3H] cholesterol in Endolipid was injected via the penile vein. After dosing, mice were returned to cages, where they were free to feed for an additional 3 days. Animals were then anesthetized, and bled from the heart. Proportions of [14C] cholesterol and [3H] cholesterol doses remaining in plasma at 3 days were determined by liquid scintillation counting. The plasma ratio of the 2 radiolabels was used for calculating the percent cholesterol absorption as described elsewhere 3.

Statistics

All results are reported as means ± SEM. Statistical significance was analyzed using a non-parametric Mann-Whitney test. The values of p< 0.05 were considered as significant.

Reference List

(1) Fraker PJ, Speck JC, Jr. Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril. *Biochem Biophys Res Commun* 1978;80:849-857.

SUPPLEMENTARY FIGURE LEGEND

Figure I. Both LDL and HDL contribute to TICE
(A) C57Bl6J mouse proximal intestinal explants were mounted on Ussing Chambers. \(^{3}\)H-cholesteryl oleate labelled LDL or HDL (\(^{3}\)H CO-LDL; or \(^{3}\)H CO-LDL; n=14-13 explants from 7 mice per group) were added to Krebs/glucose buffer in the basolateral chamber. After 30 min, TICE was determined by measuring the appearance of radioactivity in the apical chamber filled with Krebs buffer enriched with cholesterol acceptors (taurocholate/phosphatidylcholine; TC/PC: 10/2 mM). (B-E) Both LDL and HDL provide cholesterol for TICE in vivo. NaCl, \(^{3}\)H-LDL or \(^{3}\)H-HDL were injected in the penile vein of C57Bl6 mice (6-8 mice per group) and transintestinal \(^{3}\)H-cholesterol excretion (TICE) was measured over 2 hours by intestinal canulation (cf. Figure 1C). (B) Cholesterol levels and (D) \(^{3}\)H-cholesterol were measured (n= 3-4 mice per group) during the course of the experiment. (C) Cholesterol distribution in various classes of lipoproteins was determined by Fast protein liquid chromatography analysis 15 min after injection of the lipoproteins (pool of 3 mice). (E) \(^{3}\)H cholesterol in fractions of perfusion solution collected every 15 minutes. NS: non significant. Results are means ± SEM.

Figure II. PCSK9 deficiency stimulates TICE.
(A-B) PCSK9\(^{+/-}\) (n=10) and PCSK9\(^{+/+}\) (n=13) mice received an intravenous injection of \(^{3}\)H–cholesterol-LDL at t = 0 min and TICE was measured over 2 hours. (A) Plasma cholesterol and (B) \(^{3}\)H-cholesterol levels of PCSK9\(^{+/+}\) and PCSK9\(^{+/-}\) littermates before and after the injection. (C-D) PCSK9\(^{+/+}\) (n=6) and PCSK9\(^{+/-}\) (n=6) mice received an intravenous injection of \(^{3}\)H-cholesteryl oleate-LDL at t = 0 min and TICE was measured over 2 hours. (C) Plasma \(^{3}\)H-Cholesteryl oleate levels and (D) TICE during the course of the experiment. (E) Fecal cholesterol output in PCSK9\(^{+/-}\) mice. Food intake, dried feces weight and fecal cholesterol output and cholesterol absorption were determined in PCSK9\(^{+/-}\) and PCSK9\(^{+/+}\) littermates (n =6 per group) over 3 days. Data represent means ± SEM. * p<0.05.

Figure III. PCSK9 modulates TICE in an LDLR dependent manner.
PCSK9\(^{+/-}\) (n=6) and LDLR\(^{-/-}\) (n=7) mice received an intravenous injection of NaCl or 100\(\mu\)g of recombinant human PCSK9 protein at t=0. Sixty minutes later, mice were injected with \(^{3}\)H-LDL. Plasma \(^{3}\)H-cholesterol levels in mice injected or not with PCSK9. Values represent means ± SEM.
Figure IV. TICE in C57Bl/6J mice upon lovastatin treatment.
C57Bl6J mice fed for 10 days with or without 0,2% lovastatin received an intravenous injection of 3H-LDL at $t=0$ min and TICE was measured over 2 hours. (A) Plasma Cholesterol (C) Cholesterol content in FPLC fractions of mouse plasma at the end of the treatment before measuring TICE (B) plasma 3H -cholesterol during the course of the experiment (n= 10-12 mice per group). Results represent means ± SEM.

Figure V. TICE in C57Bl/6 and LDLR$^{-/-}$ mice.
TICE was measured in vivo with 3H-LDL in C57Bl6J and LDLR$^{-/-}$ mice over 2 hours. (A) Plasma Cholesterol and (B) plasma 3H -cholesterol during the course of the experiment (n= 10-12 mice per group). Results represent means ± SEM.

Figure VI. ABCB1a/b cholesterol floppase contributes to TICE.
FVB and ABCB1a/b$^{-/-}$ received an intravenous injection of 3H-cholesterol diluted in endolipid at $t=0$ min and TICE was measured over 2 hours. (A) Plasma cholesterol and (B) plasma 3H-cholesterol during the course of the experiment (n= 6 mice per group). Results represent means ± SEM.
A

Plasma cholesterol (g/L)

B

Plasma cholesterol (CPM/µL)

C

Plasma 3H CO (CPM/µL)

D

TICE (CPM/min/100g BW)

E

Food intake (g/d)

Excreted dried feces (mg/d)

Fecal cholesterol Excretion (µmol/d/100g BW)

Cholesterol absorption (%)
Plasma 3H cholesterol (CPM/µl)

A

- PCSK9$^{-/-}$
- PCSK9$^{-/-}$ + PCSK9
- LDLR$^{-/-}$
- LDLR$^{-/-}$ + PCSK9
A. Plasma Cholesterol (g/l)

B. A histogram of data

C. Plasma 3H cholesterol (CPM/µl)

IV. Graph showing the effect ofLovastatin on plasma cholesterol levels.
Minutes after I.V. injection

C57Bl6J
LDLR⁻/⁻
A

Minutes after I.V. injection
Plasma Cholesterol (g/l)

- FVB
- ABCB1 ab/-

B

Plasma H+ cholesterol (CPM/ml)

- WT FVB
- Pgp KO

Minutes after I.V. injection