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Extensive epidemiological evidence supports the associa-
tion of air pollution with adverse health effects, leading 

to increased cardiovascular morbidity and mortality of world-
wide significance,1 in particular of ischemic nature.2 Although 
ambient air pollutants are a complex mixture of compounds 
with both gaseous and particle phases, epidemiological data 
and work with experimental animals support a causal asso-
ciation between the particulate matter (PM) components 
and atherosclerosis.1,3 For example, exposure of Watanabe 
hyperlipidemic rabbits to intratracheal PM

10
 (PM<10 µm)4 

or apolipoprotein E–deficient (apoE−/−) mice to inhaled fine 
particulates (PM

2.5
<2.5 µm)5 resulted in enhanced atheroscle-

rosis. It seems that PM proatherogenic actions are linked to 
their ability to elicit systemic pro-oxidative and proinflam-
matory effects.3 In addition, we have reported that ambient 
PM in the ultrafine-size range (PM<0.18 µm) enhanced aortic 
atherosclerosis to a larger degree than PM

2.5
,6 supporting the 

notion that the smallest particulates could lead to stronger car-
diovascular effects.7 Moreover, although normal high-density 

lipoprotein (HDL) can protect against pro-oxidant effects 
induced by air pollutant organic chemicals in endothelial cells 
and macrophages,8 both fine and ultrafine ambient PM lead to 
the development of dysfunctional HDLs that lose their anti-
inflammatory properties.6

Although the sources of air pollution are heterogeneous, 
emissions from gasoline and diesel-powered motor vehicles 
are major contributors in urban settings. Indeed, diesel exhaust 
(DE) emissions are characterized by a large number of ultrafine 
particles, rich in organic content, such as polycyclic aromatic 
hydrocarbons. Exposure of apoE−/− mice to total DE resulted 
in atherosclerotic plaques with enhanced oxidative stress,9 
increased cellularity,9 and larger macrophage content10 that 
could, in the setting of human atherosclerosis, suggest a greater 
propensity for rupture. Although the accrued experimental 
evidence supports the proatherogenic effects of ambient PM, 
the mechanisms by which the inhalation of air pollutants are 
transduced systemically and lead to adverse vascular effects are 
not well understood. We have hypothesized that PM-induced 
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Objective—To evaluate whether exposure to air pollutants induces oxidative modifications of plasma lipoproteins, resulting 
in alteration of the protective capacities of high-density lipoproteins (HDLs).

Approach and Results—We exposed apolipoprotein E–deficient mice to diesel exhaust (DE) at ≈250 µg/m3 for 2 weeks, 
filtered air (FA) for 2 weeks, or DE for 2 weeks, followed by FA for 1 week (DE+FA). DE led to enhanced lipid 
peroxidation in the brochoalveolar lavage fluid that was accompanied by effects on HDL functionality. HDL antioxidant 
capacity was assessed by an assay that evaluated the ability of HDL to inhibit low-density lipoprotein oxidation estimated 
by 2′,7′-dichlorofluorescein fluorescence. HDL from DE-exposed mice exhibited 23 053±2844 relative fluorescence 
units, higher than FA-exposed mice (10 282±1135 relative fluorescence units, P<0.001) but similar to the HDL from 
DE+FA-exposed mice (22 448±3115 relative fluorescence units). DE effects on HDL antioxidant capacity were 
negatively correlated with paraoxonase enzymatic activity, but positively correlated with levels of plasma 8-isoprostanes, 
12-hydroxyeicosatetraenoic acid, 13-hydroxyoctadecadienoic acid, liver malondialdehyde, and accompanied by perturbed 
HDL anti-inflammatory capacity and activation of the 5-lipoxygenase pathway in the liver.

Conclusions—DE emissions induced systemic pro-oxidant effects that led to the development of dysfunctional HDL. This 
may be one of the mechanisms by which air pollution contributes to enhanced atherosclerosis.    (Arterioscler Thromb 
Vasc Biol. 2013;33:1153-1161.)
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alterations in HDL may be associated with or are the result of 
systemic pro-oxidant effects, and that changes in HDL function 
mediate some of the PM-induced proatherogenic responses. 
Although plasma levels of HDL cholesterol have been shown 
to be inversely correlated with atherosclerosis and ischemic 
heart disease,11,12 high HDL cholesterol levels may not always 
be protective,13 and genetic mechanisms that raise plasma HDL 
cholesterol do not lower risk of myocardial infarction,14 which 
suggests that HDL composition and functional aspects may be 
even more important than the levels of HDL cholesterol. In 
addition, different HDL protective qualities may correlate with 
different outcomes. Thus, the reverse cholesterol transport 
function of HDL inversely associates with carotid intima-
media thickness and the likelihood of angiographic coronary 
artery disease,15 whereas the antioxidant function of HDL 
was significantly impaired in subjects with acute coronary 
syndromes as compared with healthy subjects or those with 
stable coronary artery disease.16

In the current study, we aimed to determine whether 
2-week inhalation exposures of mice to DE emissions could 
induce alterations in HDL antioxidant capacity similar to 
the way that 5-week inhalation of concentrated ambient 
particles resulted in the development of dysfunctional pro
inflammatory HDL6 and to determine whether the alterations 
in HDL are associated with and attributable to DE pro-oxi-
dative effects in systemic tissues and plasma lipoproteins. 
In addition, we explored the potential reversibility of the 
DE-induced effects.

Materials and Methods
Materials and Methods are available in the online-only Supplement.

Results
Exposure to Diesel Emissions Results in Loss of 
Plasma HDL Anti-Inflammatory Properties
We conducted 2 inhalation experiments on mice (Figure 1A). 
In experiment 1, we explored whether inhalation exposures to 
DE would alter HDL anti-inflammatory capacity as did con-
centrated ambient particles.6 Nine-week-old male apoE null 
mice were assigned to 3 groups (n=12–13/group) that were 
exposed to the following: (1) DE for 2 weeks (DE group), (2) 
filtered air (FA) for 2 weeks (FA) as controls, and (3) DE for 
2 weeks followed by FA for 1 additional week (DE+FA). The 
purpose of the DE+FA group was to assess the reversibility of 
DE-induced changes after 1 week of additional FA exposures 
(Figure 1A). DE exposures consisted of total DE at ≈250 μg/
m3 of PM

2.5
 (PM diameter <2.5 µm) mass in a Biozone unit 

at the Northlake exposure facility. Exposure parameters are 
mentioned in the online Material and Methods in the online-
only Data Supplement. The DE particle mass size distribution 
corresponding to all experiments is shown in Figure 1B. To 
test the HDL anti-inflammatory capacity, we used a monocyte 
chemotaxis assay that evaluates the ability of HDL to inhibit 
low-density lipoprotein (LDL)–induced monocyte migration 
in a vascular cell coculture system.17 Although plasma HDL 
from the FA controls inhibited LDL-induced monocyte migra-
tion, plasma HDL from DE and DE+FA mice did not protect 
but induced significantly more monocyte migration than LDL 

alone. This indicates that the HDL had become proinflamma-
tory (Figure 2A). The proinflammatory properties were not 
attributable to a gain of serum amyloid A because there were no 
significant changes in serum amyloid A levels (data not shown).

DE Exposures Also Lead to Alteration 
of HDL Antioxidant Function
To assess HDL antioxidant capacity, we used a cell-free 
assay that evaluates the ability of HDL to inhibit LDL 
oxidation measured by 2′,7′-dichlorofluorescein (DCF) fluo
rescence.8 Mice exposed to DE (DE and DE+FA groups) 
exhibited significantly higher levels of DCF fluorescence as 
compared with FA controls (Figure 2B). Interestingly, there 
were no differences between the DE and DE+FA groups. We 
generated an HDL Oxidant Index (HOI) by normalizing the 
DCF fluorescence in the presence of HDL by the fluorescence 
developed in its absence. Although all of the mice from the 
DE (2.21±0.27) and DE+FA groups (2.10±0.25) displayed 
an HOI>1.0, indicative of pro-oxidative HDL, 10 of 13 
mice exhibited HOI<1.0 in the FA group (0.94±0.12; Figure 
2C). Thus, a 2-week exposure to DE significantly induced 
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Figure 1. Diesel exhaust (DE) exposures. A, Experimental pro-
tocol. Three groups of male apolipoprotein E (apoE) null mice 
(experiment 1) were exposed to filtered air (FA) for 2 weeks, 
DE for 2 weeks (DE), and DE for 2 weeks followed by FA for 1 
additional week (DE+FA). In experiment 2, apoE null mice were 
exposed to FA vs DE. *Time at which mice were bled and eutha-
nized, and tissue harvesting was performed. B, Particle mass and 
size. Typical particle mass and size distribution of DE measured 
at a PM2.5 concentration of 217 μg/m3. In this case, the mass 
median aerodynamic diameter was 77 nm, and the count median 
thermodynamic equivalent diameter was 87 nm, indicating that 
a large portion of DE particles are in the ultrafine-size range. d 
indicates derivative; dp, particle diameter; m, mass; and PM, par-
ticulate matter.
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the generation of dysfunctional pro-oxidative HDL that 
remained as such after 1 week of additional FA inhalation. 
Although these results paralleled the loss of anti-inflammatory 
protection in the DE mice (Figure 2A), the level of DCF 
fluorescence remained elevated in the DE+FA group but the 
degree of monocyte migration in the DE+FA group was lower 
as compared with the DE group (P<0.0001), suggesting that 
the kinetics of recovery of HDL anti-inflammatory properties, 
although only partial, was faster than that of the HDL 
antioxidant capacity (Figure 2). Changes in HDL functionality 
occurred without influencing HDL cholesterol levels (Table I 
in the online-only Data Supplement), plasma lipoproteins fast 
protein liquid chromatography profile (Figure I in the online-
only Data Supplement), or HDL ability to promote cholesterol 
efflux (Figure II in the online-only Data Supplement).

DE-Induced Dysfunctional HDL Is Associated 
With Decreased Paraoxonase Activity 
and Increased Lipid Peroxidation
We first explored whether DE actions on HDL function could 
have been attributable to enhancement of myeloperoxidase 
activity in the blood, but there were no significant differ-
ences in myeloperoxidase activity between groups (Figure 
III in the online-only Data Supplement). We then hypoth-
esized that DE may lead to changes in paraoxonase 1 (PON1) 
that could alter its enzymatic activity, known to provide an 
important contribution to HDL-mediated antioxidant protec-
tion.18 In support of our hypothesis, plasma PON1 activity 
was significantly decreased in DE mice as compared with FA 
controls (Figure 3A) despite the presence of similar levels of 
PON1 mRNA in the liver (Figure IVA in the online-only Data 
Supplement). There was a trend for a negative correlation 
between PON1 activity and HOI (r=−0.2197; P=0.19) that was 
statistically significant when the DE+FA mice were excluded 
(r=−0.392; P=0.05; Figure 3B), suggesting that changes in 
PON1 activity may account for some of the HDL effects in 

only the DE group. In addition, we observed an increase in 
plasma levels of 8-isoprostanes, one of the products of lipid 
peroxidation, in both DE and DE+FA mice (Figure 3C), and a 
positive correlation with the HOI (r=0.741; P<0.0001; Figure 
3D). Furthermore, we found that as compared with FA con-
trols, mice from the DE and DE+FA groups exhibited 2- to 
3-fold increases in the plasma levels of 12-hydroxyeicosa-
tetraenoic acid (12-HETE) and 13-hydroxyoctadecadienoic 
acid (13-HODE), peroxidation products of arachidonic and 
linoleic fatty acids, respectively (Figure 3E and 3G). There 
were also strong correlations between the plasma levels of 
12-HETE, 13-HODE, and the HOI (P<0.001; Figure 3F and 
3H). Because increased peroxidation in plasma lipoproteins 
may not only involve HDL lipoproteins but also other non-
HDL fractions, such as LDL, intermediate-density lipopro-
tein, or very low density lipoproteins (VLDL), we assessed 
the degree to which apoB-containing lipoproteins were sus-
ceptible to oxidation by DCF fluorescence. Mice from the DE 
group exhibited non-HDL lipoproteins that were more oxi-
dizable than those from the FA controls (P<0.05; Figure V 
in the online-only Data Supplement). In contrast, 1 week of 
FA exposures after DE was sufficient to reduce the oxidation 
capacity of non-HDL lipoproteins that tended to be lower than 
that of the DE group (P=0.12).

DE Leads to Increased Lipid Peroxidation in  
the Bronchoalveolar Compartment and in  
Systemic Tissues
We hypothesized that the lungs would be the logical source for 
the increased oxidized lipids in the plasma. Surprisingly, there 
were no changes in the levels of malondialdehyde (Figure 4A) 
or increases in HETEs/HODEs in whole lung homogenates 
(Table II in the online-only Data Supplement). However, 
we did observe an increase of almost 4-fold in the levels of 
12-HETE (P<0.05; Figure 4B, Table) and a borderline sig-
nificant trend toward increased levels of 13-HODE (P=0.06; 
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Figure 2. Diesel exhaust (DE) leads to dysfunctional high-density lipoprotein (HDL). A, HDL anti-inflammatory capacity. Pooled plasma 
HDL from filtered air (FA; n=4), DE (n=3), and DE+FA mice (n=4) was added to cocultures of human aortic endothelial and smooth muscle 
cells in the presence of human low-density lipoprotein (LDL). Values are expressed as mean±SEM of the number of migrated monocytes/
field in 9 fields. B, HDL antioxidant capacity expressed by DCF relative fluorescence intensity. Plasma HDL from FA (n=13), DE (n=12), 
and DE+FA mice (n=13) was tested by a cell-free assay method. Values are expressed as the mean±SEM of relative fluorescence units. C, 
HDL Oxidant Index (HOI) calculated as described in the online Materials and Methods in the online-only Data Supplement. Group averages 
are indicated by straight horizontal bars. DCFH indicates 2′,7′-dihydrodichlorofluorescein; hHDL, human HDL; and hLDL, human LDL.
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Figure 4B; Table) in the presence of similar bronchoalveolar 
lavage total protein (Figure 4C). This mirrored similar effects 
seen in the plasma. In addition, as compared with FA controls, 
DE mice exhibited greater levels of 5-HETE (P<0.05; Figure 
4D) and MDA (P<0.05; Figure 4E) in the liver, and there was 
a positive correlation between liver MDA and plasma HOI 
(Figure 4F). Similarly, DE led to increased levels of 5-HETE 
in the intestines (Table).

DE Activates the 5-lipoxygenase Pathway  
in the Liver
The singular increase in hepatic 5-HETEs suggested specific 
activation of the 5-lipoxygenase pathway in the liver (Figure 
5A). This was supported by the DE-induced significant upreg-
ulation of the arachidonate 5-lipoxygenase mRNA (Figure 5B) 
and protein (Figure 5C) expression, together with increased 
mRNA expression of glutathione peroxidase 6 (Figure 5B), 

but no significant differences in arachidonate 12-lipoxygenase 
or arachidonate 15-lipoxygenase mRNA expression (Figure 
IVB and IVC in the online-only Data Supplement). Increased 
lipid peroxidation in the liver led to triggering of an antioxi-
dant response as evidenced by the upregulation not only of 
glutathione peroxidase 6, but also of NAD(P)H-quinone oxi-
doreductase 1 (79-fold), the catalytic subunit of glutamate cys-
teine ligase (6.2-fold) and superoxide dismutase 1 (2.1-fold). 
There was also upregulation of activating transcription factor 
4 (4.9-fold), an important component of one of the branches of 
the unfolded protein response (Figure 5C). DE+FA group also 
exhibited upregulation of the first 4 genes but no differences in 
superoxide dismutase 1 levels as compared with FA controls, 
suggesting that the transcriptional regulation of various anti-
oxidant genes had different kinetics.

Discussion
Our study reveals that a 2-week exposure to DE leads to sys-
temic pro-oxidative effects characterized by increased lipid 
peroxidation and alteration of HDL protective capacities.

This extends our previous study where 5-week exposure 
of apoE−/− mice to ultrafine ambient particles led to enhanced 
atherosclerosis and the development of dysfunctional pro
inflammatory HDL6 by demonstrating: (1) modifying effects 
of the direct inhalation of motor vehicle emissions, considered 
to be an important contributor to air pollution in cities, on HDL 
antioxidant as well as anti-inflammatory properties, (2) DE 
induction of various lipid peroxidation products in the BALF, 
plasma, and systemic tissues, such as the liver and intestines, 
and (3) activation of the 5-lipoxygenase pathway in the liver. 
Our findings are consistent with epidemiological studies that 
have found associations between exposure to ambient particu-
late PM and measures of systemic oxidative stress that include 
biomarkers of oxidative alteration of proteins, lipids, and DNA 
in the circulating blood or in products excreted in the urine.3,19

DE-induced pro-oxidative effects were indicated by 
increased lipid peroxidation20 that in the blood and in the liver 
correlated with the HOI (Figure 3). This suggests that altera-
tions in HDL functions are likely associated with HDL oxida-
tive modifications. For example, mice from the DE and DE+FA 
groups exhibited increased plasma levels of 8-isoprostanes, 
which are formed by nonenzymatic free radical–mediated oxi-
dation of arachidonic acid and have been regarded as a gold 
standard in the assessment of lipid peroxidation and oxida-
tive stress.3,20 Although we did not measure 8-isoprostanes in 
the HDL fraction but only in whole plasma, HDL has been 
reported to be the major lipoprotein carrier of 8-isoprostanes 
in human plasma, with levels that are significantly higher than 
in LDL or VLDL.21 It is likely that increased plasma levels of 
8-isoprostanes in mice also reflect an increased content in the 
HDL particles. However, we also found increased susceptibil-
ity to oxidation of apoB-containing lipoproteins from the DE 
mice (Figure V in the online-only Data Supplement), and this 
suggests that lipid peroxidation products could also be seeding 
particles from the VLDL and LDL size fractions. DE-induced 
8-isoprostanes in the blood could originate from the peroxida-
tion of arachidonic acid in plasma lipoproteins but they could 
also derive from lipid peroxidation occurring in systemic tis-
sues. Our results are consistent with the study by Bai et al9 who 

Table. Tissue and BALF Levels of HETEs and HODEs†

FA DE DE+FA

Plasma, ng/mL‡

  5-HETE ND ND ND

  12-HETE 936.9±185.0 1845.1±361.4* 1873.8±241.5**

  15-HETE ND ND ND

  9-HODE 4.08±0.52 4.30±0.80 4.89±0.22

  13-HODE 6.69±2.32 15.3±2.83* 18.0±1.46**

Liver, ng/g tissue§

  5-HETE 10.6±3.70 56.9±17.0* 25.3±10.1

  12-HETE 111.1±38.0 119.1±14.0 102.9±13.4

  15-HETE 84.1±8.13 93.7±14.7 108.4±7.05

  9-HODE 1413.7.5±130.1 1304.2±150.3 1365.3±49.8

  13-HODE 1247.5±192.7 989.1±188.7 1357.8±105.8

Large intestine,  
ng/g tissue║

  5-HETE 21.1±2.83 125.9±24.9* …

  12-HETE 503.8±55.3 600.9±91.5 …

  15-HETE 897.6±38.9 1022.4±103.9 …

  9-HODE 8353.2±336.8 6535.7±950.5 …

  13-HODE 4493.2±86.1 4501.0±54.1 …

BALF, ng/mL¶

  5-HETE ND ND …

  12-HETE 3.3±1.5 12.2±3.2* …

  15-HETE ND 1.4±0.1* …

  9-HODE 0.8±0.2 1.8±0.5 …

  13-HODE 4.6±0.5 9.6±2.4# …

DE indicates diesel exhaust; FA, filtered air; HETE, hydroxyeicosatetraenoic 
acid; HODE, hydroxyoctadecadienoic acid; and ND, not detected.

†Results are expressed as mean±SEM. 
‡n=5 for each group. 
§n=5 for FA and DE+FA; n=6 for DE group. 
║n=5 for FA and n=3 for DE group. 
¶n=5 for each group. 
‡,§ correspond to experiment 1. 
║,¶ correspond to experiment 2.
*P<0.05 vs FA group. 
**P<0.005 vs FA group. #P=0.06.
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showed that DE exposure of apoE−/− mice in the same facility 
resulted in increased levels of 8-isoprostane and 8-hydroxy-
deoxyguanosine levels in the urine and significantly extends it, 
by providing direct evidence of increased lipid peroxidation in 
the plasma together with alteration of HDL functions.

DE exposure also led to increased levels of other peroxi-
dation products in the blood, derived from polyunsaturated 
fatty acids, such as 12-HETEs and 13-HODEs22,23 (Table). 
We hypothesized that DE exposures may have induced oxida-
tive modifications of HDL particles that could have resulted 
in alterations of antioxidant enzymes associated with HDL, 
modifications in HDL architecture or changes in apoA1, lead-
ing to a decreased ability to inhibit oxidation. Previous reports 
have shown that increased plasma–oxidized phospholipids 
associate with decreased activity of PON1, platelet-activating 
factor acetylhydrolase (also known as lipoprotein-associated 
phospholipase A2), and lecithin-cholesterol-acyltransferase in 
apoE−/− mice,24 but it is not clear whether those associations 
were causal. Although we did not assess platelet-activating 
factor acetylhydrolase or lecithin-cholesterol-acyltransferase, 

we did observe that mice exposed to DE exhibited decreased 
PON1 activity, likely as a result of post-translational modifica-
tions because there were no differences in hepatic PON1 mRNA 
expression (Figure IVA in the online-only Data Supplement). 
This has also been shown to occur in oxidized HDL,25,26 result-
ing in decreased protection against lipid oxidation in LDL and 
cell membranes.26 However, the lack of recovery in the HDL 
antioxidant capacity in the DE+FA mice suggests that other 
factors must be responsible for the persistent alteration noted 
in this group. In addition to changes in antioxidant enzymes, it 
is possible that HDL nonenzymatic components with antioxi-
dant properties, such as apoA1,27 could have been altered. For 
instance, aldehydes derived from lipid peroxidation could also 
modify such proteins, similar to the way MDA has been shown 
to modify apoA1.28 Thus, DE exposures led to increased lev-
els of MDA and oxidative stress in the liver (Figures 4 and 
5), which is consistent with our previous findings in apoE−/− 
mice exposed to ambient ultrafine particles.6,29 Although liver 
MDA strongly associated with the HOI, it is unknown whether 
this association was causal. DE also led to activation of the 
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Figure 3. Diesel exhaust (DE) exposures lead to 
plasma enzymatic and lipid alterations. Plasma 
paraoxonase activity (A), plasma 8-isoprostane lev-
els (C), plasma levels of 12-hydroxyeicosatetraenoic 
acid (12-HETE; E) and 13-hydroxyoctadecadienoic 
acid (13-HODE; G). Correlations of plasma paraox-
onase activity (B), 8-isoprostane (D), 12-HETE (F), 
and 13-HODE (H) with High-Density Lipoprotein 
Oxidant Index (HOI) in mice from the filtered air (FA; 
empty rhomboids), DE (filled triangles), and DE+FA 
(gray circles) mice. n= 5 to 10/group.
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5-lipoxygenase pathway in the liver as evidenced by increased 
expression of arachidonate 5-lipoxygenase and glutathione 
peroxidase 6, which resulted in increased levels of 5-HETEs 
(Figure 5). Interestingly, DE-induced 5-HETEs were also 
noted in the intestines but not in the blood (Table) or the lungs 
(Table II in the online-only Data Supplement). This raises the 
possibility that part of the DE could have entered the body 
through the gastrointestinal tract. Additional studies will be 
required to determine the importance of this potential port of 
entry in the inhalation exposures to DE.

One putative mechanism for how the inhalation of motor 
vehicle emissions contributes to systemic inflammation is 
via the release of inflammatory mediators from the lungs 
into the systemic circulation. Surprisingly and unlike in 
the liver, we did not observe any DE-induced pro-oxidative 
effects on the levels of MDA, HETEs, and HODEs in whole 
lung homogenates or proinflammatory effects on the levels 
of BALF total protein. This is consistent with the study of 
Tong et al where intratracheal administration of ultrafine 
particles resulted in enhanced cardiac ischemia/reperfusion 
injury in the absence of any significant pulmonary inflam-
matory responses.30 However, we did observe increased lev-
els of 12- and 15-HETE (P<0.05) and an almost significant 
trend for greater levels of 13-HODE (P=0.06) in the BALF 
(Figure 4B), which supports the notion that DE can induce 

lipid peroxidation in the bronchoalveolar space that may 
contribute to the increased oxidized lipids in the circulating 
blood. DE-induced oxidative products in the BALF suggest 
obviation of the surfactant barrier function, perhaps resulting 
in exposure of lipoproteins to the DE or oxidative products 
induced in the alveolar-capillary unit. This is consistent with 
the report of Kampfrath et al31 that inhalation of concentrated 
PM

2.5
 led to increased oxidized phospholipid derivatives of 

1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine 
in the BALF, that depended on toll-like receptor 4 signaling 
and NADPH oxidase activation. Interestingly, HDL has been 
reported to inhibit lipopolysaccharide-induced activation of 
macrophage inflammatory genes that are toll-like receptor 
4-dependent, specifically via inhibition of the TRAM/TRIF 
pathway, independently of its effects on sterol metabolism.32 
This is important because DE-induced changes in the anti-
oxidant and anti-inflammatory functions, but not in its reverse 
cholesterol transport capability, are consistent with the associ-
ations reported in human subjects between various cardiovas-
cular end points and different functional aspects of HDL.15,16 
In addition, we have recently shown that although normal 
HDL can inhibit the oxidation of DE particles organic chemi-
cals and DE particles pro-oxidative effects in endothelial cells 
and macrophages, dysfunctional HDL further induces, rather 
than inhibits, DE particles oxidation.8
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Figure 4. Diesel exhaust (DE) leads to 
increased lipid peroxidation in the BALF 
and in the liver. A, Lung MDA, (B) BALF 
hydroxyeicosatetraenoic acid (HETEs)/
hydroxyoctadecadienoic acid (HODEs), 
expressed as fold changes over filtered 
air (FA) controls. C, BALF total protein. 
D, Liver 5-HETE levels, expressed as fold 
changes over FA controls (n=5/group). 
E, Liver MDA levels. F, Correlation of 
liver MDA and High-Density Lipoprotein 
Oxidant Index (HOI). Data in (A and D–F) 
correspond to experiment 1, and data in 
(B and C) correspond to experiment 2.
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In this study, we did not determine which component(s) of 
the DE were responsible for the observed effects. However, DE 
emissions have a high content of particles in the ultrafine-size 
range (Figure 1B), which accounted for ≈48% (aerodynamic 
diameter <0.10 µm) of the total particulate mass and ≈55% of 
the number of particles (thermodynamic equivalent diameter 
<0.103 µm). Similarly, ≈68% of the total particle mass had 
diameters <0.17 µm, and ≈74% of the total number of particles 
had diameters <0.15 µm. The particle count size distribution 
of the DE in this investigation is consistent with aged ambi-
ent particles that have been measured near roads,33–35 generally 
larger than the count size distribution of freshly emitted DE.36 
Therefore, 2-week exposures to DE may have reproduced the 
systemic pro-oxidative effects exerted by 5-week exposures 
to concentrated ultrafine particles likely because of their high 
content in ultrafines. Consistent with our previous report,6 

additional studies in mice have shown that inhalation of ambi-
ent PM for several weeks results in enhancement of athero-
sclerotic lesions,3 and that exposure to DE leads to aortic 
atherosclerotic plaques with a greater macrophage content10 
and foam cell formation9 that in human subjects could indicate 
a greater propensity for rupture. Indeed, exposure to PM

2.5
, 

largely originating from diesel and gasoline emissions in cit-
ies, has been correlated with increased risk for cardiovascular 
events and mortality, to the extent that the associations reflect 
not only between-city effects but also within-city effects.37

In conclusion, this study provides the first evidence that 
inhalation exposure to total DE leads to alteration of the HDL 
antioxidant and anti-inflammatory properties in association 
with increased lipid peroxidation in plasma and systemic tis-
sues as well as activation of the 5-lipoxygenase pathway in 
the liver. Future studies that include either pharmacological 
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Figure 5. Diesel exhaust (DE) activates 5-LPO pathway in the liver. A, Schematics indicating oxidation of arachidonic acid into 
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or genetic interventions will be required to elucidate the pre-
cise mechanism(s) responsible for these effects. In addition, 
both epidemiological and experimental human studies will be 
important to determine the relevance of the DE-induced HDL 
alteration in human subjects.
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subjected to diesel exhaust emissions for 2 weeks. Mice also exhibited increased susceptibility for the oxidation of non-HDL lipoproteins and 
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Supplemental Tables 

 

Supplemental Table I. Plasma lipids a   

                                

        Total cholesterol        HDL cholesterol             non-HDL cholesterol 

                                (mg/dl)                                (mg/dl)                               (mg/dl)            

FA                            402±37                                 35±4                                   371±26                              

DE                           396±24                                 38±3                                   356±18 

DE+FA                    456±41                                 30±5                                    411±45 

 

 a Results are expressed as mean ± SEM. n=8 for each group  

 

 

Supplemental Table II. Lung levels of HETEs and HODEs   

 

                                         FA                                  DE                                DE+FA 

Lung (ng/ tissue)  

 5-HETE                    60.9±6.8                         26.3±3.6**                        43.0±8.1       

12-HETE                   23220.7±3118.4             21062.4±2143.5               27119.3±2522.5   

15-HETE                   739.4±65.8                     546.1±27.5*                     599.6±48.8 

 9-HODE                   4031.9±658.5                 4124.4±191.6                   3649.3±613.7   

13-HODE                  4654.9±723.3                 4316.1±196.9                   4553.1±728.3  

 

Results are expressed as mean ± SEM. n=6 for each group, samples correspond to 
Experiment 1.  * p< 0.05 vs FA group. **p< 0.005 vs FA group. 
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Supplemental Table III. Primers 
 
 
Gene                                Forward                                                Reverse 
 
GCL-C a   AGAAGGGGGAGAGGACAAAC          AGTGATGGTGCAGAGAGCCT 

NQO1a   TTCTCTGGCCGATTCAGAGT   GGCTGCTTGGAGCAAAATG 

ATF4 a   ATGATGGCTTGGCCAGTG     CCATTTTCTCCAACATCCAATC 

SOD a   CTTCTCGTCTTGCTCTCTCTGG   TCCTGTAAATTTGTCCTGACAACA 

Alox-5 b GGCACGGCAAAAACAGTATC   TGGCATTTGGCATCAATACTC 

Alox-12 b, CATGCCCAGGACAGAGGA     CACACATGGTGAGGAAATGG 

Alox-15 b GGGGATGGAGAAGCTACAGG   TCCGCTTCAAACAGAGTGC 

PON-1 b   GCATCTGAAAACCATCACACA     AAGCTCTCAGGTCCAATAGCA 

GPX6 b CTGTGGCCTGACAGCTACG     AAAACCGTGACGTTGAATGG 

β-actin a AGCCATGTACGTAGCCATC      CTCTCAGCTGTGGTGGTGA 

β-actin b TAGCAGGATGCAGAAGAAGA       CGCTCAGGAGCAATG 

 
a Q-PCR was determined using Sybr Green. b Q-PCR was done using mouse Universal 
library probes (Roche).  
 

 

 
 

 



C
h

o
le

st
er

o
l 

(m
g

/d
l)

FA

DE

DE+FA

VLDL

IDL+LDL

0
50

100
150
200
250
300
350
400
450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

FPLC  Fractions

HDL

Supplemental Figure I. Mouse plasma (200l) was applied to  two Superose

 

6 
columns in series. Fractions were collected and cholesterol was measured by an 
enzymatic assay as described in the Supplemental Materials and Methods.

Supplemental Figure I. FPLC profile of plasma lipoproteins

Supplemental Figures
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Supplemental Figure II. Cholesterol efflux was determined in duplicate wells of J774 
cells, loaded with 3H cholesterol overnight and incubated with HDL 20 μg/ml for 4 
hours, apoA1 25 μg/ml or media alone. The degree of efflux is expressed as the 
mean ±

 

SEM radioactivity in the media divided by the sum of radioactivity in the 
media plus the cells (x100). HDL was prepared by ultracentrifugation as indicated in 
the Materials and Methods in animals from  the FA (n=3 pools made of 6 individual 
mice), DE (n=4 individual mice) and DE+FA (n=3 individual mice) from experiment 1. 
There was no significant difference among HDL from the various mouse groups.
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Supplemental Figure III. Myeloperoxidase

 

(MPO) activities are expressed as the 
mean ±

 

SEM in blood leukocytes from FA (n=6) and DE (n=6). Samples correspond 
to Experiment 2.

Supplemental Figure III. Myeloperoxidase activity of blood leukocytes
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Supplemental Figure IV. Gene expression levels were determined by quantitative 
PCR in the livers of FA, DE and DE+FA mice. Values are expressed

 

as the mean ±

 

SEM of mRNA levels normalized by β-actin

 

mRNA. Five samples per group were 
assayed in triplicate. A) PON1: Paraoxonase

 

1.

 

B) ALOX-12: arachidonate

 

12-

 

lipoxygenase, C) ALOX -15: arachidonate

 

15-lipoxygenase. DE+FA mice were not 
significantly different to FA or DE mice (p=0.1). Samples correspond to experiment 1.

A B

0.0

0.5

1.0

1.5

 FA DE DE+FA

A
L

O
X

-1
2/


 a
ct

in
 m

R
N

A

0.0

0.5

1.0

1.5

2.0

2.5

FA DE DE+FA

A
L

O
X

-1
5/


 a
ct

in
 m

R
N

A

0.0

0.5

1.0

1.5

2.0

 FA  DE  DE+FA

P
O

N
1/


-a
ct

in
 m

R
N

A

C

Supplemental Figure IV. Liver PON1 and lipoxygenases mRNA expression
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Supplemental Figure V. Oxidation of ApoB

 

containing lipoproteins by air was

 

assessed by DCF fluorescence as described in Supplemental Materials and 
Methods. Values are expressed as the mean ±

 

SEM of DCF relative fluorescence 
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Supplemental Figure V.  DE exposure increases oxidizability of 
apoB-rich lipoproteins.
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DE exposure system 
Diesel exhaust (DE) was generated in the exposure facility with a Yanmar America Corp. single 
cylinder diesel engine generator set with a maximum electrical power  output of 5.5 kW (Model 
YDG5500EV-6EI). The diesel fuel combusted in the generator was ultra low sulfur highway-
grade number 2, which is obtained from local distributors. Chevron Grade SAE 15W-40 motor 
oil was used for lubricating oil. A Simplex Swift-E FT load bank provided a resistive load on the 
generator that was maintained at 82%. The DE dilution system consisted of a two-step dilution 
process with overall dilution of 1:380 with heated and humidified air. The DE is aged for ~5 
minutes in order to mimic DE aging in the atmosphere. All dilution air for the system was passed 
through HEPA and carbon filters, permitting a filtered air control exposure option with very low 
particulate and gaseous organic pollutant levels. The mass concentration was monitored during 
exposures with a TEOM analyzer (Rupprecht & Patashnick Model 1400a) and an integrating 
light-scattering nephelometer (Radiance Research Model 903) 1. For experiment 1, exposures 
were between 8/30/10 and 11/5/10, the average PM2.5 concentration measured was 258 µg/m3 
(SD 39). In experiment 2 (exposures between 10/17/11 and 11/1/11), the average PM2.5 

concentration was 253 µg/m3 (SD 5).    
 
The following selected exposure characteristics were measured with the DE generated under 
the same conditions within the human exposure room of the exposure facility with an average 
PM2.5 mass concentration of 216 µg/m3 (SD 10). The mass median aerodynamic diameter 
(MMAD) was 77 (GSD 7.4), obtained by gravimetric analysis of samples collected with a micro 
orifice uniform deposit impactor (MOUDI, MSP Model 110-NR). The mass distribution is shown 
in Figure 1B. The average particle number concentration was 145,000 particles/cm3 (SD 5400), 
measured with a P-Trak Ultrafine Particle Counter, Model 8525, with specified collection of 
particle diameters >20 nm. The mass fraction of particle-bound polycyclic aromatic 
hydrocarbons (PAH) was 21 ng/µg PM2.5 (SD 2), measured with an Ecochem PAS 2000. The 
ratio of the organic carbon to elemental carbon mass concentration was 0.10 (SD 0.02), based 
on quartz filter samples adjusted with a concurrent dynamic blank; samples were analyzed by 
Sunset Laboratories using the IMPROVE A thermo optical reflectance method. Oxides of 
nitrogen concentrations were 1220 ppb NO (SD 160) and 45 ppb NO2 (SD 17) measured using 
a Thermo Scientific Model 42C analyzer.  The concentration of carbon monoxide was 1.3 ppm 
(SD 0.1), measured using a Langan analyzer, Model T15n. 
 
 
Animals and exposure protocol 
ApoE-/- (C57BL/6J background) male mice (originally obtained from The Jackson Laboratory, 
Bar Harbor, ME) were bred in the University of Washington South Lake Union animal facility. 
The mice were housed in a temperature- and humidity-controlled environment with a 12-h 
light/dark cycle. Mice were allowed access to water and standard rodent chow during non-
exposure periods. At ~ 8 weeks of age, the mice were kept in standard mouse cages and 
moved into a self enclosed “Biozone” facility connected to the DE generating system. DE 
exposures were controlled by opening or closing a valve to the “Biozone” resulting in minimal 
stress for animals during the exposure period. Two exposure experiments were performed 
(Figure 1A). Experiment 1 consisted in mice assigned to three experimental groups (n=12-
13/group) that were exposed to: A) DE for 2 weeks (DE group, n= 12), B) Filtered air for 2 
weeks as controls (FA, n=13), and C) DE for 2 weeks followed by FA for 1 additional week 
(DE+FA, n= 13). Experiment 2 consisted in mice assigned to two experimental groups (n = 10-
12/group), exposed to almost identical conditions as groups A (n = 10) and B (n= 12) of 
experiment 1. Exposures were started after a 7-day period of acclimatization in the “Biozone” 
and consisted in sessions of 6 hours/day (9 am to 3 pm), 5 sessions/week. DE was titrated to 
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achieve a concentration of ~ 250 µg/m3 PM2.5 as indicated in the DE exposure system section. 
Prior to any exposures and immediately following the last exposure session, blood was drawn 
from the retro-orbital sinus of each mouse into heparin containing tubes and centrifuged (300 x 
g) to generate plasma. In experiment 2, mice were euthanized with an overdose of inhaled 
isoflurane immediately after retro-orbital bleeding. The trachea was isolated and cannulated to 
allow the lungs to be lavaged with 1.0 ml PBS, two times. The lavage fluid was centrifuged at 
250 x g for 10 minutes at 4°C. The resulting supernatant was immediately stored at -80ºC for 
subsequent analysis of HETEs/HODEs and total protein. Animal procedures were approved by 
the Animal Care and Use Committee of the University of Washington. 
 
Plasma Lipoproteins and separation by dextran sulfate precipitation 
Human LDL (hLDL) and human HDL (hHDL) were obtained from healthy donors at the UCLA 
Division of Cardiology. Human LDL was prepared by ultracentrifugation 2 or by FPLC 3 in the 
assessment of anti-oxidant and anti-inflammatory capacities, respectively. Human HDL and test 
mouse HDLs were prepared by dextran sulfate precipitation or FPLC in the assessment of HDL 
anti-oxidant and anti-inflammatory capacities, respectively. All mouse plasma samples were 
cryo-preserved in sucrose prior to use as described 4. For the dextran sulfate precipitation, 
apoB-containing particles were precipitated from plasma by dextran sulfate via adding 10μl of 
LipiDirect Magnetic HDL cholesterol precipitating reagent (Reference Diagnostics, Inc, Bedford, 
MA) to 50μl of plasma. This mixture was incubated at room temperature for 10 min, then 
centrifuged at 12,000 rpm for 15 min at 4º  C. The supernatant, containing the HDL fraction, was 
removed and cholesterol was quantified using a colorimetric assay (Thermo Scientific, 
Middletown, VA, USA). This HDL fraction was used in the assessment of anti-oxidant capacity 
(Figures 2B&C). The precipitated pellet was also dissolved in Tris-HCl (pH7.4) buffer and 
centrifuged at 12,000rpm for 15 min at 4 º C. The supernatant, containing ApoB-rich lipoproteins, 
was collected and used for the oxidizability assay (Supplemental Figure V).  
 
Separation of plasma lipoproteins by fast performance liquid chromatography (FPLC) 
and ultracentrifugation 
Plasma lipoproteins FPLC profile shown in Supplemental Figure I was obtained using mouse 
plasmas with a AKTA purifier system FPLC equipped with a SuperoseTM6,10/300 column. (GE 
Healthcare, Pittsburgh, PA, USA). The elution was performed in 0.15 M NaCl, 0.01 M Na2HPO4, 
pH 7.5, 0.02% NaN3 as a running buffer. After loading 150 μl plasma, the system was run with a 
constant flow rate of 0.5 ml/min. Set the fraction collector for 0.5 ml/tube. Discarded the first 12 
fractions (6ml) and started collecting from fraction numbers 13 to 72 (i.e. 60 fractions are 
collected). Fractions containing the plasma lipoproteins were used for further analysis to 
determine cholesterol levels of each fraction. The cholesterol (Thermo Scientific, Pittsburgh, PA, 
USA ) determination assays are standard enzymatic, colorimetric methods. Plasma lipoproteins 
were also separated by ultracentrifugation as described by us 5, using a D2O/sucrose lipoprotein 
separation ultracentrifugation methodology, based on minor modifications of the previously 
reported technique 6. Briefly, 0.2ml of plasma with an adjusted density of 1.019 g/ml was added 
to the polycarbonate tubes (Cat #: 343776, Beckman Coulter, Palo Alto, CA), the upper fraction 
with density less than 1.019 g/ml, mainly containing VLDL was carefully withdrawn with a 
Pasteur pipette after a 2.5 h ultracentrifugation at 495,000 g with TLA 120.1 rotor in an optimaTM 
MAX-XP ultracentrifuge at 16°C. The density of bottom fraction containing LDL and HDL was 
adjusted to 1.063 g/ml and the volume was brought up to 0.4 ml. The upper fraction containing 
LDL with the density of 1.019–1.063 g/ml was obtained after centrifugation at 495,000 g for 3 h 
at 16°C. 0.2 ml of the bottom fraction with adjusted density of 1.210 g/ml and final volume of 0.4 
ml, was centrifuged at 495,000 g for 16 h at 12°C to recover the upper fraction with density of 
1.063–1.210 g/ml (HDL). HDL separated by ultracentrifugation was used in the cholesterol efflux 
assays (Supplemental Figure II). 
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Assessment of HDL anti-oxidant capacity 
We used a cell-free assay as reported in details by us 5. Briefly, Dichlorofluorescein diacetate 
(DCF-DA, Sigma-Aldrich, St. Louis, MO) stock solution was prepared in fresh methanol at 2.0 
mg/ml and stored at -80 ºC protected from light. Prior to each experiment, 1 ml of 0.1 M NaOH 
was added to 250 μl of stock DCF-DA and incubated at room temperature while protected from 
light for 30 min. The reaction was stopped by neutralizing the solution with 8.75 ml of 0.1 M 
phosphate buffered saline (PBS). This results in the conversion of DCF-DA to 
dihydrodichlorofluorescein (DCFH). Upon oxidation, DCFH transforms into DCF. We evaluated 
HDL anti-oxidant capacity by assessing its ability to inhibit LDL oxidation by air, measured by 
DCF fluorescence.  The change in fluorescence intensity is the result of the oxidation of DCFH 
induced by free radicals generated in the oxidation of human LDL (hLDL) in the absence or 
presence of the test HDL. 12.5 μl of human LDL (50μg cholesterol/ml) was mixed with 12.5 μl of 
test mouse HDL (50μg cholesterol/ml), and 75 μl of Tris-HCL buffer (pH7.4) in black, flat bottom 
polystyrene microtiter plates and incubated at 37°C for 60 min. 25 μl of DCFH solution (50μg 
/ml) was then added to each well, mixed, and incubated at 37°C for 2h. 12.5 μl of human HDL 
(hHDL, 50μg cholesterol/ml) were used as a positive control for test mouse HDL. hLDL was 
prepared by ultracentrifugation 2. hHDL and test mouse HDLs were prepared by dextran sulfate 
precipitation as described above. Fluorescence intensity was determined with a plate reader 
(SynergyMx, BioTek, Vermont, USA) at an excitation wavelength of 485 nm, emission 
wavelength of 530 nm. A sensitivity level slit width of 9 nm was used for excitation and 
emission, the intra- and inter-assay CVs were 2.2 and 6.4, respectively. The DCF fluorescence 
data was converted into an HDL oxidant index (HOI) that equals the ratio of fluorescence in the 
presence of HDL divided by the fluorescence in the absence of HDL. An index < 1.0 denotes 
protective anti-oxidant HDL, while an index > 1.0 denotes pro-oxidant HDL. 
 
Assessment of HDL anti-inflammatory capacity 
We used a Monocyte Chemotaxis Assay (MCA) that evaluates the protective capacity of HDL 
against LDL-induced monocyte chemotactic activity as previously described 7 . Monocytes were 
isolated from blood obtained from a large pool of healthy donors at the UCLA Division of 
Cardiology, Atherosclerosis Research Unit under a protocol approved by the Human Research 
Subject Protection Committee of the University of California, Los Angeles (Los Angeles, CA). 
Human aortic endothelial cells (HAEC) and human aortic smooth muscle cells (SMC) were 

isolated from trimmings of fresh surgical aortic specimens from normal donor hearts during 
transplantation under a protocol approved by the Human Research Subject Protection 
Committee of the University of California, Los Angeles (Los Angeles, CA). Co-cultures of HAEC 
and SMC were treated for 18 hours with a standard source of human LDL (100 µg LDL 
cholesterol/ml), in the absence or presence of a standard source of human LDL (hLDL) or test 
mouse HDL (50 μg HDL cholesterol/ml). Human HDL (hHDL) was used as a positive control for 
the test mouse HDL. LDL and both human and test mouse HDLs were separated by FPLC 3.  
Cells were then washed and incubated in fresh culture medium for 8 hours, following which 
supernatants were collected to assess monocyte chemotactic activity after 40-fold dilution, 
which was expressed as the number of monocytes that have transmigrated per high power field 
(HPF) 3.  
 
Assessment of oxidizability of apoB-containing lipoproteins  
ApoB-containing lipoproteins were precipitated from plasma with the use of LipiDirect Magnetic 
HDL cholesterol precipitating reagent as indicated above. Precipitated ApoB-containing pellets  
were dissolved in 100 μl of 40mM Tris-HCl (pH 7.4) buffer, vortexed, and centrifuged at 12,000 
rpm, 4°C for 10 min. The supernatant, enriched in LDL and VLDL fractions, was used to assess 
oxidizability by air, measured by DCF fluorescence. The supernatant cholesterol concentrations 
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were adjusted to 5 µg/ml by adding Tris-HCl buffer (ph 7.4) to a total volume of  150 µl, which 
were then transferred to black, flat bottom polystyrene microtiter plates, and incubated at 37°C 
for 60 min. 25 μl of DCFH solution (50μg /ml) was then added to each well, mixed, and 
incubated at 37°C for 2h. Fluorescence intensity was determined with a plate reader 
(SynergyMx, BioTek, Vermont, USA) at an excitation wavelength of 485 nm, emission 
wavelength of 530 nm. 
 
Myeloperoxidase (MPO) activity 
Leukocytes (were isolated from blood with Lympholyte-poly reagent as per the manufacturer 
instructions (CEDARLANE LABORATORIES LIMITED, Hornby, Ontario, Canada). Neutrophil 
MPO activity was determined with a fluorescence kit as per the manufacturer instructions 
(Cayman Chemical Company, Ann Arbor, MI, USA). 
 
Paraoxonase Activity 
The rate of hydrolysis of paraoxon was measured as described by Eckerson et al. 8 with some 
modifications. Briefly, 1.0-mM paraoxon (Sigma-Aldrich), freshly prepared in 195 μL of 50-mM 
glycine buffer containing 1-mM calcium chloride (pH 10.5) was incubated at 37°C with 5 μL of 
serum for 10 minutes in 96 well plates. Formation of p-nitrophenol was monitored at 412 nm and 
activity was expressed as μmol p-nitrophenol/L/plasma/min. 
 
Plasma 8-isoprostane levels 
Plasma 8-isoprostane levels were determined with an ELISA kit as per the manufacturer 
instructions (Cayman Chemical Company, Ann Arbor, MI, USA). 
 
Assessment of liver and lung MDA levels 
Snap frozen liver (50-70 mg) or lung tissue samples (70-90mg) were homogenized with 8× 
weight of ice-cold 40 mM Tris-HCl buffer (pH 7.4, containing %0.01 BHT). The homogenate was 
centrifuged at 6,000 × g for 15 min at 4°C; the supernatant was taken to determine MDA levels 
by a colorimetric assay (OxisResearch, OR, USA) as per the manufacturer’s instructions.  The 
MDA concentrations were normalized by total protein levels in the homogenates. The protein 
concentration of tissue homogenates was determined by a BCATM method (Thermo Scientific, 
Middletown, VA, USA).  A standard curve was used to calculate the concentration (µM/mg 
protein) of MDA for each sample. 
 
Cholesterol Efflux  
Cholesterol efflux assays were performed as previously described 9. Briefly, J774 cells were 
cultured in DMEM and 10% FBS. On day 1 of the assay, cells were plated at 50% confluence in 
24-well plates. On day 2, the cells were washed and incubated for 24 h in medium A 
supplemented with an ACAT inhibitor (Oleyl Anilide; 2 μg/ml) and [3H]cholesterol (1.0 μCi/ml). 
On day 3, the cells were washed twice with PBS and then incubated for 2–4 h in fresh medium, 
devoid of radiolabeled cholesterol, The cells were rewashed before addition of 0.5 ml medium B 
(DMEM containing 0.2% BSA) in the absence or presence of different mouse HDL (20 μg/ml) 
and apoAI  (25 μg/ml). After 4 hour incubation, the supernatants were removed and 
centrifuged at 14,000 × g for 10 min and radioactivity content was measured. Cells were 
washed with PBS, lysed using 0.1N NaOH and assessed for radioactivity content. Radioactivity 
was determined by liquid scintillation counting in a TRI-CARB 2900TR liquid scintillation counter  
(Packard Bioscience Company). Cholesterol efflux was determined in duplicate for each 
condition and efflux of radioactive cholesterol from the cells into the medium was 
calculated as the radioactivity in the media divided by the sum of radioactivity in cells plus 
radioactivity in media x 100. 
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Western immunoblots of mouse liver samples 
Snap frozen liver (50-70 mg) samples were homogenized with 8× weight of ice-cold 40 mM Tris-
HCl buffer (pH 7.4, containing %0.01 BHT). The homogenate was centrifuged at 6,000 × g for 
15 min at 4°C. The supernatant was taken and protein concentrations were determined by the 
BCA method (Thermo Scientific). 40–60 μg of protein lysate were denatured with SDS-reducing 
buffer by boiling it for 5 min; samples were electrophoresed on a 10% polyacrylamide SDS gel. 
The separated proteins were transferred to PVDF membranes and probed with rabbit anti-5LOX 
polyclonal Ab (AB3796, Millipore) followed by incubation with goat anti-actin polyclonal Ab (sc-
1616; Santa Cruz, Biotechnology). Reactive proteins were detected using an enhanced 
chemiluminescence detection system (Amersham, Arlington Heights, IL, USA) according to the 
manufacturer's procedures. Quantification of the Western blots was performed by densitometric 
analyses using the ImageJ software.  
 
 Plasma and tissue levels of oxidized free fatty acids  
a) Chemicals: (±)13-hydroxy-9Z,11E-octadecadienoic acid (13-HODE), (±)9-hydroxy-10E,12E-
octadecadienoic acid (9-HODE), (±)15-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-
HETE), (±)5-hydroxy-6E,8E,11Z,14Z-eicosatetraenoic acid (5-HETE),15(S)-hydroxy-
5Z,8Z,11Z,13E-eicosatetraenoic- 5,6,8,9,11,12,14,15-d8 acid (15(S)-HETE-d8), 13 (S)-hydroxy-
9Z,11E-octadecadienoic-9,10,12,13-d4 acid (13 (S)-HODE-d4), were purchased from Cayman 
Chemicals (Ann Arbor, MI, USA). HPLC grade methanol was obtained from Sigma-Aldrich (St. 
Louis, MO, USA). HPLC grade acetonitrile was obtained from Fisher Scientific (Pittsburgh, PA, 
USA). b) Preparation of plasma samples: Samples were prepared as previously described with 
slight modifications 10. Briefly, 25μl volume of plasma samples were transferred to a 2 ml 
polypropylene tube, and spiked with 12.5μl of internal standards mixture (15(S)-HETE-d8, 
13(S)-HODE-d4, 50ng/ml each) in methanol. Subsequently, the pH of the samples was adjusted 
to ~ 3.0 using 450 μl of 0.5% acetic acid. The samples were left for 15 min on ice for complete 
acidification and equilibration. The resulting sample was loaded onto a preconditioned 1cc 
Oasis HLB solid-phase extraction (SPE) cartridge (Waters). The SPE cartridge was equilibrated 
with 1 ml methanol followed by 1 ml water before the sample load. The sample was slowly 
loaded on the cartridge, and the cartridge was washed with 1ml 5% methanol in water. 
HETEs/HODEs were eluted with 1 ml methanol. The eluate was then evaporated to dryness 
under a stream of nitrogen. 61 μl of methanol was added to the dried extract, vortexed for 30s, 
and the reconstituted extract was centrifuged at 13,200 rpm for 20min at 4 °C to remove any 
precipitate that could clog the LC/MS/MS instrument. The resulting supernatants were 
transferred to autosampler vials and processed for LC/MS/MS analysis, the final concentration 
for internal standards mixture was 10 ng/ml for each. c) Preparation of liver, lung and large 
intestine tissue samples: Snap frozen liver (50-70 mg), lung tissue samples (70-90mg), large 
intestine ( 4cm length, 60-90 mg) were homogenized with 8× weight of ice-cold 40 mM Tris-HCl 
buffer (pH 7.4, containing %0.02 BHT). The homogenate was centrifuged at 6,000 × g for 15 
min at 4°C. The supernatant was transferred to another vial. About 100-μL aliquot of the 
homogenate (normalized by protein concentration) was subjected to extraction of 
HETEs/HODEs using the same methodology employed for the plasma samples. d) LC–MS/MS 
Analysis: LC-MS/MS analysis was performed as previously described 10. The transitions 
monitored were mass-to-charge ratio (m/z): 319.0→115.0 for 5-HETE; 319.1→179.0 for 12-
HETE; 319.1→219.0 for 15-HETE; 295.0→194.8 for 13-HODE; 295.0→171.0 for 9-HODE; 
327.1→226.1 for 15(S)-HETE-d8; 327.1→184.0 for 12(S)-HETE-d8; 299.0 →197.9 for 13(S)-
HODE-d4 
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Gene expression  
RNA was harvested and gene expression levels were determined by quantitative PCR (qPCR) 
as previously described 11.  Briefly, RNA was isolated from liver, lung and aorta using TRIZOL 
reagent (Invitrogen, Carlsbad, CA). DNase treatment was performed using DNaseI (Invitrogen, 
Carlsbad, CA). cDNA was synthesized using cDNA Synthesis kit (Applied Biosystems). Primers 
(Integrated DNA technologies) to mouse cDNA are shown in Supplemental Table II. 
Quantitative PCR (qPCR) was performed using a LightCycler 480 (Roche Molecular 
Biochemicals), according to manufacturer’s protocols. PCR conditions were: 95ºC for 3 min, 40 
cycles of 95ºC for 15 sec, 60ºC for 30 sec and 72ºC for 30 sec. cDNA quantity for each gene 
was determined using a standard curve constructed from the Cycle thresholds of each dilution 
sample. To quantify the relative amount of cDNA, a standard curve was constructed based on 
the Crossing Point (Cp) values of each dilution sample. The Cp values were determined using 
the second derivative analysis (LightCycler Relative Quantification Software). Samples were 
then normalized to β-actin quantity measured by qPCR for each sample. For some genes, 
qPCR reactions were performed using iQ Sybr Green Supermix (Bio-Rad) while for other genes, 
qPCR reactions were performed using the Universal Probe Library (Roche Molecular 
Biochemicals) as indicated in Supplemental Table II. 
 
Statistical analysis 
All data were expressed as means ± SEM and corresponds to experiment 1 unless indicated 
otherwise. Comparisons among three groups or more were analyzed by one-way analysis of 
variance (ANOVA). When statistically significant, post-hoc analysis was performed by 
Bonferroni. Unpaired two-tailed Student’s t-test was employed for comparisons between two 
groups. We used linear regression and Pearson’s r to determine correlations between HOI and 
various lipid peroxidation products. Differences were considered statistically significant at the p-
value of ≤ 0.05.  
 
 
.  
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