Platelet hem-Immunoreceptor Tyrosine–Based Activation Motif Receptors
At Least One Required

Michael C. Berndt, Robert K. Andrews

Platelet interaction with the vessel wall in thrombosis and hemostasis is mediated through a complex interplay of distinct activation and signaling events, involving cell adhesion receptors for matrix proteins (von Willebrand Factor, collagen) and G-protein receptors for soluble agonists (thrombin, ADP, thromboxane A2).1 Adding to this complexity, it has become apparent in recent years that hemostasis and thrombosis as patho(physiological) processes are not identical, raising the hope that new antithrombotic therapeutic targets can be identified that are not associated with increased risk of bleeding.2 Two receptors, with promise, as potential antithrombotic therapeutic targets are members of the (hem)ITAM receptor family on platelets, glycoprotein VI (GPVI)/FcRγ-chain, the primary platelet collagen receptor,1,3 and C-type lectin-like receptor 2 (CLEC-2), which potentially plays a role in platelet aggregate and thrombus formation under arterial flow and is a receptor for the lymphatic endothelial cell protein, podoplanin.4–6 GPVI/FcRγ-chain and CLEC-2 are the only (hem)ITAM receptors present on mouse platelets. Human platelets have a third family of this family, the Fc receptor, FcγRIIa.7 GPVI/FcRγ-chain and CLEC-2 receptors signal through Src-family kinase tyrosine phosphorylation of the receptor cytoplasmic tail and a similar, but not identical, signaling pathway that involves the initial assembly and activation of the tyrosine kinase, Syk (Figure).1,2,8 Previous studies from the Nieswandt group have shown that treatment of mice with either antibodies against GPVI/FcRγ-chain (JAQ1) or CLEC-2 (INU1) leads to long-term depletion of the respective platelet receptor and is associated with long-term antithrombotic protection with minimal effects on hemostasis.4,9,10 In contrast, antibody-mediated depletion of both receptors by simultaneous treatment of mice with JAQ1 and INU1 completely shut down ITAM-mediated signaling in mouse platelets and caused a profound bleeding diathesis and a more complete antithrombotic effect in a FeCl3-injured mesenteric arteriole injury model than single deletion of either receptor. This is in the context that platelets were lacking ITAM-mediated signaling; normally to platelet agonists, where signaling is propagated through Gly–protein–coupled receptors. Similar findings concerning dual absence of GPVI and CLEC-2 were found in mice genetically deficient in GPVI, in which CLEC-2 was antibody depleted, and in mice genetically deficient in both GPVI and platelet CLEC-2, although in the latter mice it was not possible to confirm the profound effect on thrombosis because of a dramatically altered vascular structure and blood-filled lymphatics in the intestines of these mice (this phenotype is consistent with previous studies establishing a role for platelet CLEC-2 in the developmental separation of the blood and lymphatic vessels).5,13,14 Recently, a requirement for the presence of either GPVI/FcRγ-chain or CLEC-2 has also been independently shown to be critical for the prevention of inflammation-induced hemorrhage.15 Although these studies clearly establish that at least 1 (hem) ITAM receptor needs to be present in platelets to sustain effective hemostasis (and thrombotic response), the mechanism for why this is the case remains unclear. It is possible that this functional redundancy in part reflects a requirement for ITAM-dependent signaling as a requisite in platelet activation. This seems to be the case for inflammation-induced hemorrhage because SLP-76 deficiency in mice recapitulated the phenotype seen with dual GPVI/FcRγ-chain/CLEC-2 deficiency (SLP-76 is an essential downstream signaling assembling protein required for ITAM-dependent signaling).15 This is less certain with respect to hemostasis and thrombosis because in contrast to dual GPVI/ FcRγ-chain/CLEC-2 deficiency, neither genetic deficiency of Syk nor its pharmacological inhibition have been reported to be associated with major effects on either bleeding or arterial thrombosis.16–18 One caveat is that there is evidence for Syk-independent signaling events, at least downstream of GPVI.19 Another possibility is that GPVI/FcRγ-chain and CLEC-2 play distinct but overlapping adhesive roles in hemostasis and thrombus formation, with GPVI binding collagen and CLEC-2 a yet to be identified platelet ligand involved in platelet/platelet interaction or aggregate stabilization. Finally, FcγRIIa is an ITAM receptor present on human platelets, but not mouse platelets, has recently been shown to play an important role in augmenting outside-in signaling involving αIIbβ3, the key platelet integrin mediating...
platelet aggregation. Relative to wild-type mice, platelets from mice expressing platelet FcγRIIa show increased thrombus formation when infused over collagen in vitro at both venous and arterial shear flow rates and increased thrombus formation in vivo models of vascular injury. Whether GPVI/FcγRIIa and CLEC-2 also augment αIIbβ3 outside-in signaling contributing to their functional redundancy remains to be investigated.

Disclosures

None.

References


KEY WORDS: cell adhesion receptors ▫ glycoproteins ▫ platelet interaction
Platelet hem-Immunoreceptor Tyrosine–Based Activation Motif Receptors: At Least One Required
Michael C. Berndt and Robert K. Andrews

doi: 10.1161/ATVBAHA.113.301400
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/33/5/884

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/