Lympocytes and plasma cells have long been detected in the plaque and adventitia of atherosclerotic human arteries, yet their role in regulating atherosclerosis has only recently begun to emerge. Two important studies published in 2002 provide evidence for an atheroprotective role for B cells. More recently, 2 groups broadened our understanding of B cells and atherosclerosis by providing evidence that B cells can also promote atherosclerosis. Treating atherosclerosis-prone mice with an anti-CD20 monoclonal antibody depleted mature B2, but not B1a cells, attenuated atherosclerosis. This B2 cell depletion was associated with decreased activated splenic CD4+ T cells, T-cell proliferation, and lesional T cells, suggesting that B2 cells aggravate atherosclerosis through a T-cell-dependent mechanism. Further evidence for an atherogenic role for B2 cells was provided by studies by Kyaw et al who found aggravated atherosclerosis in lymphocyte-deficient apolipoprotein E-/- recombination activating gene 2 (--)-/- common cytokine receptor γ chain-deficient or to B-cell--deficient atherogenic mice after adoptive transfer of 5×10^6 B2, but not B1, B cells.

See accompanying article on page 1573

Sage et al present another important study on the impact of loss of B2 cells on atherosclerosis by using a genetic strategy of B cell-activating factor receptor (BAFFR) deficiency to deplete B2 cells. BAFFR is a tumor necrosis factor receptor family member that is critical for maintaining mature B2 B cells. The authors reconstituted lethally irradiated low-density lipoprotein receptor--/- mice with 80% µMT/20% C57BL/6 marrow. This was associated with reduced atherosclerosis, measured by Oil Red O staining of the aortic root, after 6 and 8 weeks of diet in lesions from µMT/BAFFR--/- mice compared with controls, underscoring that in the context of atherosclerosis B2 cells are necessary for activation and proliferation of CD4+ T cells. Consistent with the findings of Sage et al, Kyaw et al also recently published that BAFFR--/- mice had depletion of mature B2 cells, reduced lesional inflammation, and attenuated atherosclerosis. Taken together, these studies clearly demonstrate that significantly reducing B2 cell number attenuates atherosclerosis.

Yet several important questions about B cell subsets, the context in which they reside and their role in atherosclerosis, remain unanswered. Reduced T-dependent circulating antibodies to modified lipids may be one mechanism of atherosclerosis by which B2 cell depletion attenuated reduced circulating IgG to malondialdehyde-modified low-density lipoprotein was seen with both anti-CD20 monoclonal antibody and BAFFR deletion approaches. Recent work provides evidence that splenic B cells from apolipoprotein E-/- mice home to the aorta, and provide atheroprotection. Yet, spleen-derived B cells are predominantly B2 cells. Might there be B2 cell--derived atheroprotective B-cell subsets in the spleen that home to the aorta? Indeed, B2 cells can give rise to regulatory B cells that produce the atheroprotective cytokine interleukin-10. Are interleukin-10 producing Bregs atheroprotective? Is it BAFFR-dependent? Or might there be important atheroprotective B1 cells in the spleen that constitutively home to the aorta to promote atheroprotection?

Identifying the subsets of B cells in the normal aorta and throughout the progression of disease may provide important clues to the local function of B-cell subsets in regulating atherogenesis. It is also interesting to note that Sage et al found a significant reduction in B1b, but not B1a, cell number with BAFFR deficiency. Although the role for B1b cells in atherosclerosis remains elusive, these data suggest that subtypes within the B1 subset may also have unique functions in regulating atherosclerosis (Figure). B1a cells have been reported to be atheroprotective, yet recent work describes a new peritoneal B1a-derived B1 cell, innate response activator B cells, that produces the majority of lipopolysaccharide-stimulated granulocyte macrophage-colony stimulating factor in the spleen. Granulocyte macrophage-colony stimulating factor stimulates myeloid progenitors in the spleen to differentiate to Ly6C^{hi} monocytes which traffic to sites of atherosclerosis, suggesting that specific contexts can alter B cell subset phenotypes from atheroprotective to atherogenic. Although, whether innate response activator B cells are atherogenic has not been determined.

The study by Sage et al adds to the accumulating evidence that depleting B2 cells in mice attenuates atherosclerosis, and
supports a role of T cells in this process. The BAFFR could be a target for reducing B2 cells as a strategy to limit atherosclerosis. Yet, a full understanding of the atherogenic and atheroprotective B-cell subsets, the impact of context on their function, and the mechanisms whereby they mediate their effects is needed in order to lead to exciting new strategies whereby immune protection against atherosclerosis could be bolstered without risk of global immune compromise.

Disclosures

None.

References

KEY WORDS: atherosclerosis ■ B cell-activating factor receptor ■ B cells

Figure. B-cell subtypes within the B1 and B2 lineages. Conventional B2 B cells promote atherosclerosis. Functions linked to atherogenesis include CD4 T-cell activation and proliferation. The role of Bregs in atherosclerosis is not yet determined. They may attenuate or promote atherosclerosis by secretion of interleukin-10 (IL-10) or IL-12 respectively. Peritoneal B1a cells are atheroprotective. Mechanisms linked to atheroprotection include production of IgM and IL-10. The role of innate response activator B cells (IRA; derived from peritoneal B1a cells) is unknown. Function linked to atherogenesis includes production of granulocyte macrophage-colony stimulating factor (GM-CSF). The role of B1b cells in atherosclerosis is unknown. *Role in atherosclerosis, not yet determined.*
Refining the Role of B Cells in Atherosclerosis
Heather M. Perry and Coleen A. McNamara

doi: 10.1161/ATVBAHA.112.249235
Arteriosclerosis, Thrombosis, and Vascular Biology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1079-5642. Online ISSN: 1524-4636

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://atvb.ahajournals.org/content/32/7/1548

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Arteriosclerosis, Thrombosis, and Vascular Biology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Arteriosclerosis, Thrombosis, and Vascular Biology is online at:
http://atvb.ahajournals.org//subscriptions/